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Abstract. In this work we propose the definition of the ratio of hidden in-

fection of HIV/AIDS epidemics, as the division of the unknown infected pop-
ulation by the known one. The merit of the definition lies in allowing for an

indirect estimation of the whole of the infected population. A dynamical model

for the ratio is derived from a previous HIV/AIDS model, which was proposed
for the Cuban case, where active search for infected individuals is carried out

through a contact tracing program. The stability analysis proves that the

model for the ratio possesses a single positive equilibrium, which turns out
to be globally asymptotically stable. The sensitivity analysis provides an in-

sight into the relative performance of various methods for detection of infected
individuals. An exponential regression has been performed to fit the known

infected population, owing to actual epidemiological data of HIV/AIDS epi-

demics in Cuba. The goodness of the obtained fit provides additional support
to the proposed model.

1. Introduction. The main objective of this work is to study the proportion of
infected individuals who are undetected over the detected infected population in a
contagious disease, as an indirect methodology to provide an insight on the asymp-
tomatic population. These individuals are often unaware of their own infection, thus
they do not take prophylactic measures to avoid contagion to susceptible individu-
als. Information about undetected infected people is especially interesting for the
HIV/AIDS epidemics since this asymptomatic stage can extend over time, avoiding
early assistance and allowing for a greater spread of the disease. Indeed, the incu-
bation period of AIDS is rather variable and, in contrast to other viral infections,
the seropositive individual never ceases to be contagious, which further complicates
the control of the epidemic spread. Consequently, a major topic for health systems
is developing new strategies for early detection, that is to say minimizing the size of
the undetected infected population. These strategies are expensive both in human
and economic resources, thus the study of their efficiency is a key point.

Mathematical modelling of infectious diseases as dynamical systems has received
considerable scientific interest along history (see e.g. [6, 2, 22]). Epidemiologi-
cal models are often constructed upon systems of Ordinary Differential Equations
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(ODEs), by considering distinct populations as state variables. The success of math-
ematical models is partly due to their ability to provide valuable information about
a number of issues: present incidence, future evolution, efficiency and effectiveness
of health authorities strategies or simulated evolution in different conditions. In
this context, the HIV/AIDS disease is not an exception, and since its beginning it
awakened the interest of the experts. Many recent papers concentrate in rather spe-
cific countries or aspects of HIV/AIDS epidemiology, whereas a general framework
can be found in [13].

The analysis of HIV/AIDS in Cuba is particularly interesting due to its low
prevalence, especially when compared to other Caribbean countries. A model con-
sisting of a system of ODEs has been proposed [8], focusing on modelling different
means for detection of the infection that are implemented in Cuba. A detailed
theoretical analysis of a rather similar model [23] and a comparison to real data
[24] have also recently been proposed. All these models suffer from the lack of data
for the unknown infected population, thus no regression or identification method
can be directly used to estimate parameters, hindering the ability of modelling as
a prediction tool. This is the key motivation for this work: provide qualitative in-
formation on the dynamical behaviour of the epidemic, even though the undetected
infected population is unknown.

The starting point for this paper is the model of HIV/AIDS in Cuba [8], which
is described in Section 2, defining the system of ODEs that model both detection
and infection, and setting the value of the parameters that appear in the model.

After the model definition, the ratio of hidden infection is defined as the propor-
tion between undetected and detected seropositive populations, thus avoiding the
explicit use of the undetected infected population. The formal analysis of the ratio
in Section 3 is the main contribution of this paper. The mathematical analysis
proceeds with the standard techniques of dynamical systems theory (see e.g. [7]
and references therein), focusing on stability, resulting that all trajectories tend to
a stable equilibrium. The expression of this fixed point is given as a function of
the system parameters, so the undetected infected population could be estimated
when convergence has taken place, although the need for an accurate parameter
estimation method is also realized.

The relative influence of the model parameters on the dynamics of the ratio of
hidden infection is brought to light by the sensitivity analysis, presented in Section 4.
Focusing on detection of the infection, it turns out that the effect of the contact
tracing program could be less decisive than previously reckoned, which encourages
the development of alternative methods for detection, such as the support to family
doctors.

In contrast to many published papers, a substantial effort has been made to assess
the proposed model by comparing theoretical results to actual epidemiological data.
Hence in Section 5, an exponential regression has been performed in order to fit a
curve to the evolution of the known seropositive population. The rationale is that
the dynamics of the size of the infected population can be rewritten as a linear ODE,
as long as the stable fixed point of the hidden infection ratio has been reached. The
goodness of the obtained fit and the match to the empirical values of the parameters
provide an independent support to the proposed methodology.

Some concluding remarks and directions for further research put an end to the
paper in Section 6.
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2. Epidemic models and HIV/AIDS in Cuba. As mentioned above, mathe-
matical modelling of epidemiological diseases has acquired a great importance, as
it allows for predicting the epidemic evolution and estimating the parameters of
the disease spread, so allowing the design and assessment of strategies for control
and prevention. Thus the design and analysis of novel proposals for enhancing
mathematical models contribute to improve the efficiency of these health strategies.

The conventional approach to epidemiological modelling usually starts from a
population model, which represents the flow of individuals from each population
to another. This is also the case in this work, despite the fact that the whole of
the infected population is not directly measurable. In particular, this model for the
population dynamics of the HIV/AIDS epidemic in Cuba takes into account the
contact tracing program carried out by the Cuban authorities: those individuals
whose infection is detected are requested to disclose their sexual contacts in the last
two years, who are in turn notified their situation and tested for HIV. The model
of HIV/AIDS [4] is described by the system of nonlinear ODEs in Equation (1):

dx

dt
= (λ− k1 − β − µ)x+ λ′ (y1 + y2)− k2

x(y1 + y2)

x+ y1 + y2

dy1

dt
= −(µ+ β′) y1 + k1 x

dy2

dt
= −(µ+ β′) y2 + k2

x(y1 + y2)

x+ y1 + y2

dz

dt
= β x+ β′ (y1 + y2)− µ′ z

(1)

Within the model there exist a number of variables that represent the populations
of the epidemic, and a set of parameters that represent the transitions between the
populations. The rest of this section is dedicated to provide a brief explanation of
these equations and the variables and parameters that appear, in order to make the
paper self-contained.

Three populations take part in the model of Equation (1), namely the variable x
is the population of undetected seropositive individuals, the variable y is the pop-
ulation of detected seropositive individuals and the variable z is the population of
patients that have developed AIDS. Incidentally, note that all variables x, y, z are
positive for any reasonable interpretation of the model given by Equation (1). This
observation will be useful to support the correctness of the definition of the hid-
den infection ratio in the next section. The set of individuals whose infection has
been detected, comprising population y, has been divided into two subpopulations
according to the method by which the detection took place: individuals in the pop-
ulation y2 were detected by means of the contact tracing program and population
y1 comprises those individuals detected by some other method of the Cuban health
program, which are called “random” methods1. The consideration of two different
groups of detected infected individuals allows for evaluating the efficiency of the
contact tracing program. This is particularly interesting since this program, on the
one hand, has been considered to be one of the main reasons for the low prevalence
of the disease in the country, and on the other hand, the program entails a great
economic and human effort for the state.

1This is admittedly a misleading term, since no random search is involved: fortuitous detection
of infections are included, but also reports of family doctors, analysis performed on pregnant

women, etc.
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Table 1. Values and meaning of the parameters in the model.

Parameter Meaning Value

λ
Rate of new infections due to undetected infected
individuals (contact between x and susceptibles)

0.5750

λ′
Rate of new infections due to detected infected
individuals (contact between y and susceptibles)

0.0403

µ General mortality rate (x and y decrease) 0.0110

µ′ AIDS mortality rate (z decreases) 0.7740

β
Rate of transition of undetected HIV-infected
population to AIDS (x progresses to z)

0.1300

β′
Rate of transition of detected HIV-infected pop-
ulation to AIDS (y progresses to z)

0.1660

k2
Rate of detection related to the contact tracing
program (x progresses to y2)

0.1850

k1
Rate of detection unrelated to the program (x
progresses to y1)

0.2190

The parameters that appear in the model of Equation (1) are summarized in
Table 1, which gathers the meaning of each parameter, together with the values
they are given in the experiments of this work. These values were obtained by
similar statistical techniques to those used in [8] for a related model.

Next we consider the eventual transitions between populations that are repre-
sented in the model. The population of undetected seropositive individuals grows
due to the infection of new individuals, due to contact with either undetected (λ′ y)
or detected (λx) infected ones; and it decreases because of the detection of individ-

uals by means of the two considered methods (k1 x and k2
x y

x+ y
), their transition to

AIDS (β x) and the general population mortality (µx). The populations of known
seropositive individuals (y1 and y2) grow due to the detection of new infections

(k1 x and k2
x y

x+ y
respectively); and they decrease due to the transition to AIDS

of seropositive patients (β′ y1 and β′ y2) and due to the general population mor-
tality (µ y1 and µ y2). Finally, the population of individuals who have developed
AIDS grows due to transition from both unknown (β x) and known (β′ y) infected
patients; and it decreases due to the mortality associated to AIDS sufferers (µ′Z).

This paper does not put much emphasis on the model on its own, and the reader
is referred to previous work [4] and references therein. However, it is worth com-

menting on the nonlinear term k2
x y

x+ y
that models the detection of infected indi-

viduals due to the contact tracing program. For the sake of comparison, consider
the linear term k1 x in Equation (1), which represents random detection of infected
individuals. The constant k1 may be thought of as the inverse of the average time
from infection to detection by random methods. Hence, k1 is the average portion of
the undetected population that becomes detected per time unit. In contrast, mod-
elling the detection of the infection by active search has proved to be challenging,
since linear models did not take into account the population y, which comprises
the individuals who participated in the contact tracing program. Thus a nonlinear
model was proposed [8], where the detection by contact tracing was defined by the
term k2 y x. Arguing by analogy to the linear rate k1, the product k2 y might be
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considered as a variable rate of detection, which would take into account the size
of the detected infected population y. However, this assumption was too simplis-
tic; for instance, consider the limiting case where y � x that would represent the
immediate detection of a substantial portion of the unknown infected population,
which is obviously not the case. Consequently, different forms of this nonlinear term

were analysed [16], proposing the term k2
y x

x+ y
. In this case, the proportionality

rate k2
y

x+ y
can be considered as a compromise between a constant rate k2 and a

variable rate k2 y directly related to population y. This novel expression avoids that
the detection rate may grow without bound: when the number of detected infected
individuals is large, the rate amounts to the maximum attainable performance of
the contact tracing program, represented by the value of k2.

There is an increasing awareness that the size of the undetected infected pop-
ulation is a key aspect of AIDS modelling. Indeed, both the populations y and z
that are included in the model of Equation (1) are recorded in statistical databases,
whereas the population x is unknown. In the case of HIV infection, the influence of
this hidden population on the epidemic is deepened by the long and variable incu-
bation period of AIDS. Also, the size of this population must be somehow brought
to light in order to validate epidemic models, so it is extremely important to have
information on the infected population that does not know their situation. This in-
formation gives an idea of the efficiency of the detection policies and, consequently,
of the control strategies which try to avoid the propagation of the disease. The fact
that this undetected infection cannot be directly measured provides the motivation
for this work. The main aim of this paper is to study indirectly the undetected
VIH infected population in Cuba, by defining and analysing the ratio of the un-
known infection to the population of seropositive individuals that have actually
been recorded.

3. The hidden infection ratio. The main objective of this work is to study the
proportion of HIV individuals who are unknown to the health system. With this
aim, the ratio of the hidden infection with respect to the detected population is
defined, i.e. the quotient between the infected population that is not yet detected
and the number of seropositive individuals that have been detected by the medical
system. The study of this proportion allows to not use the undetected infected
population in an explicit way, which is unknown by definition. It turns out that the
obtained ratio is modelled by an ODE that can be explicitly expressed in terms of
the ratio itself, with no reference to the original population. Then, this transformed
model is studied on its own to analyse its stability and discuss its significance with
respect to the epidemic evolution.

3.1. Model definition. The ratio of hidden infection is defined as a quotient be-
tween undetected and detected HIV-infected populations. With the notation of the
model given by Equation (1), the ratio of hidden infection r is given by:

r =
x

y
(2)

Note that this definition is sensible because the populations are always strictly
positive, as mentioned above. Since the populations change with time, so the ratio
r does, hence we can regard the value of r as a dynamical system itself. Next we
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are going to write the dynamical model of such ratio, basing upon the model of
HIV/AIDS in Cuba, defined in Equation (1).

Firstly, the original model is reorganized by adding the two equations of the
detected seropositive populations y1 and y2, which results:

d x

d t
= (λ− k1 − β − µ)x+ λ′ y − k2

x y

x+ y

d y

d t
= −(µ+ β′) y + k1 x+ k2

x y

x+ y

(3)

where y = y1 + y2 has been substituted.
The model for the ratio r results from a straightforward application of the chain

rule to the differentiation of Equation (2):

d r

d t
=
∂ r

∂ x

d x

d t
+
∂ r

∂ y

d y

d t
=

1

y

d x

d t
− x

y2

d y

d t
=

1

y

d x

d t
− r 1

y

d y

d t
(4)

Substituting into this expression the population dynamics, given by Equation (3),
yields:

d r

d t
= (λ− k1 − β − µ) r + λ′ − k2

x

x+ y
− r

(
−(µ+ β′) + k1 r + k2

x

x+ y

)
(5)

which, by grouping terms, results:

d r

d t
= −k1 r

2 + (λ− k1 − β + β′) r + λ′ − (1 + r) k2
x

x+ y
(6)

Note that, since y > 0 ⇒ r > 0 ⇒ r + 1 > 0, the nonlinear term
x

x+ y
can be

further simplified through division of the numerator and denominator by y, thus
x

x+ y
=

r

r + 1
, leading to the final model:

d r

d t
= −k1 r

2 + (λ− k1 − k2 − β + β′) r + λ′ (7)

In the sake of simplicity, the parameter a is defined as a = λ− k1 − k2 − β + β′, so

the ODE
d r

d t
= f(r) can be written as:

d r

d t
= −k1 r

2 + a r + λ′ , f(r) (8)

In this way, an expression has been obtained to model the dynamics of the ratio of
the hidden infection, defined by a single ODE which only depends on the ratio r
itself.

It turns out that Equation (8) has en explicit solution, which will now be com-
puted. Firstly the quadratic equation f(r) = 0, i.e. k1r

2 − ar − λ′ = 0 is solved.
Observe that the discriminant a2 + 4 k1 λ

′ is strictly positive, since the values of all
the parameters are always greater than zero, as long as a realistic model is intended.
Then, the quadratic equation has two distinct real roots:

r+ =
a+
√
a2 + 4 k1 λ′

2 k1

r− =
a−
√
a2 + 4 k1 λ′

2 k1

(9)
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Figure 1. Dynamics of the ratio of the hidden infection.

The solution r+ is positive and, since the square root of the discriminant is greater
than a, the solution r− is negative. Then, we can write f(r) = −k1 (r− r+) (r− r−)
and Equation (8) is integrated to yield:

r(t) =
r+ − C r− e−k1(r+−r−) t

1− C e−k1(r+−r−) t
(10)

where C > 0 is the constant of integration. Given the initial value r(0), the constant
C can be computed and a particular trajectory is obtained.

Several instances of the curve family given by Equation (10), i.e. the solutions
of the model (8), are presented in Figure 1. The parameters of the model are set
to the values defined in Table 1, and different initial values of r are represented.
Although a wide range of initial values has been considered, it is worth noting that
a realistic initial value would be rather large, since at the early stage of the epidemic
outbreak all infections are undetected, i.e. x � y. It is then an appealing feature
that the qualitative behaviour of the trajectory of the ratio r remains similar even
when the initial value is unboundedly increased, since this allows for discussing
the epidemic behaviour despite errors in the initial value are assumed. The figure
strongly suggests that the trajectory of r(t) tends to a fixed point, which is the
same regardless of the initial value r(0). This behaviour, which is nonetheless
obvious from the explicit solution in Equation (10), will be further discussed in the
stability analysis of the system, performed in Section 3.2. Let us observe again that
such convergence is more obvious for large, realistic values of the initial value and
qualitatively robust to the increase of r(0).
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3.2. Stability analysis. In this section, we carry out the qualitative analysis of
the model for the hidden infection ratio r, described by means of the ODE given
by Equation (1). The usual steps of the analysis [15, 20] comprise three concepts:

1. Fixed points, i.e. equilibria, of the dynamical model, which are candidates to
be attractors of the long-term trajectories of the system.

2. Asymptotic stability of the fixed points, by observing the sign of the jacobian
of the model at such points.

3. Basin of attraction of the stable fixed point, in order to establish a global view
of the dynamics of the trajectories.

Since the explicit solution of the ODE that defines the model is available, the
long-term analysis of the trajectories is straightforward by considering t → ∞ in
Equation (10), which yields:

lim
t→∞

r(t) = r+ (11)

regardless of the initial value. Further, r+ is a root of the right-hand side of the
model defined by Equation (8), so it is a fixed point that fulfills f(r+) = 0. We
conclude that the stable fixed point r+ is globally asymptotically stable, if we re-
strict the phase space to the positive half-line r > 0, so the other fixed point r−
is dismissed. Since r > 0 holds for any initial point r, the value of the ratio r
always converges to r+ for physically meaningful values. This fact reconfirms the
suggestion of Figure 1, which showed that the trajectories of the system approach
the equilibrium r+ regardless the chosen (positive) initial value. This theoretical
results will be put in the light of real epidemiological data in the discussion in
Section 5.2.

Since an explicit solution is available, there is no need to perform a conventional
stability analysis. However we briefly recall the main steps of such analysis. The
motivation for this apparent redundancy is twofold. On one hand, we suggest
that qualitative analysis of stability often yields a more elegant and appealing way
to grasp the interesting features of the trajectories of a dynamical system than the
computation of the explicit solution, even if the latter is possible. On the other hand,
even a slight modification of the model would lead to an unsolvable ODE, whereas
the qualitative analysis would still be valid. This latter comment is particularly

relevant, since the form of the nonlinear term
x y

x+ y
is subject to discussion. Some

suggestions for model refinement will be pursued in Section 6. The stability of
the model is analysed by evaluating the system Jacobian at the considered fixed
point r+:

f ′ (r+) = −2 k1

(
−a−

√
a2 + 4 k1 λ′

−2 k1

)
+ a = −

√
a2 + 4 k1 λ′ < 0 (12)

This expression is always negative, which proves that the fixed point r+ is asymp-
totically stable.

The set of initial values that lead to trajectories that approach a stable fixed
point, i.e. the basin of attraction, can be computed by means of Lyapunov’s direct
method [26]. With this aim, a Lyapunov function V (r(t)) is defined:

V (r) = −
∫ (
−k1r

2 + ar + λ′
)
dr =

k1

3
r3 − a

2
r2 − λ′ r +D (13)

where the constant of integration D is chosen to meet the requirement V (r+) = 0.
It is straightforward to prove that all conditions for V being a Lyapunov function
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Figure 2. The Lyapunov function V (r). System trajectories are
represented by arrows that follow a downhill direction on the graph
of V , towards the stable fixed point r+. Note that the Jacobian
f ′(r) is positive at the unstable fixed point r− and negative at the
stable one r+. The basin of attraction of r+ includes all positive
values r > 0.

are met in the interval (r−,∞): V (r) is positive (at least) for every r ≥ r−, r 6= r+,

and
d V

d t
< 0 for every r(t) 6= r−, r+. In particular, since r− < 0, the function V is

a Lyapunov function for every r in the set of feasible states, which, as mentioned
above, is restricted to the positive values. This fact proves again the global asymp-
totic stability of the fixed point r+. Using the values of the parameters defined
in Table 1, the form of the Lyapunov function is sketched in Figure 2, where the
trajectory of the system variable r can be thought of as a downhill descent on the
graph of V (r).

4. Sensitivity analysis of the system. In order to gain further insight into the
behaviour of the dynamical model of the ratio of hidden infection, in this section
we analyse the relative influence of the parameters on the state variable r, i.e. the
sensitivity analysis [14, 10] is performed. For each parameter θ ∈ {λ, λ′, β, β′, k1, k2}
appearing in the dynamical model given by Equation (8), the sensitivity ψθ of the
state variable r with respect to the parameter θ is defined as:

ψθ =
∂ r

∂ θ
(14)

In the sensitivity analysis, since the interest is focused on the partial derivatives,
each parameter can be dealt with individually, keeping the rest of the parameters
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constant. Under sufficient smoothness conditions, the sensitivity can be computed
by means of an ODE:

dψθ
d t

=
d

d t

∂ r

∂ θ
=

∂

∂ θ

d r

∂ t
=
∂ f

∂ r

∂ r

∂ θ
+
∂ f

∂ θ
=
∂ f

∂ r
ψθ +

∂ f

∂ θ
(15)

where f is the function that defines the dynamical model of the variable r
Consider the system of the ratio of the hidden infection, given by Equation (8).

We recall that the Jacobian was computed in Equation (12):

∂ f

∂ r
= −2 k1 r + a (16)

and the partial derivatives with respect to the parameters are:

∂ f

∂ λ
=

∂ f

∂ β′
= r

∂ f

∂ λ′
= 1

∂ f

∂ β
=

∂ f

∂ k2
= −r

∂ f

∂ k1
= −r (r + 1)

(17)

Then, for each parameter θ, the sensitivity ψθ results from substituting these values
in Equation (15), yielding the following system of two coupled ODEs:

d r

d t
= −k1 r

2 + a r + λ′

dψθ
d t

= (−2 k1 r + a) ψθ +
∂ f

∂ θ

θ ∈ {λ, λ′, β, β′, k1, k2} (18)

Interestingly, the first equation is uncoupled to the second, whereas the sensitivity
does depend on the system states. Thus, there is no need to repeat the numerical
solution of the equation of the variable r for each parameter sensitivity: the trajec-
tories that were obtained in Section 3 can be substituted in the sensitivity ODE,
and only this latter, linear equation must be integrated.

Before attempting the numerical solution of the sensitivity ODEs given by Equa-
tion (18), let us perform a brief qualitative analysis of this dynamical system. Note
firstly that for each fixed point of the original model, a corresponding fixed point
of the coupled system exists. Further, the Jacobian of the system of ODEs is:

J =

(
f ′(r) 0
D f ′(r)

)
(19)

where D is the derivative of the second equation with respect to the state r. Then,
the Jacobian has a single eigenvalue with multiplicity two, which turns out to be
the Jacobian of the original model. Therefore, each fixed point of the sensitivity
system inherits the stability of the corresponding fixed point of the main dynamical
model. In the particular system under study, consider the stable fixed point r+

given by Equation (9). Then, the sensitivity ψθ with respect to each parameter θ
will converge to a stable equilibrium given by equating to zero the right-hand side
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of Equation (15), i.e.:

lim
t→∞

ψθ = −

∂ f

∂ θ
∂ f

∂ r

∣∣∣∣∣∣∣
r=r+

= −

∂ f

∂ θ

∣∣∣∣
r=r+

−
√
a2 + 4 k1 λ′

(20)

where the value of the Jacobian at the fixed point has been substituted according
to Equation (12). A look at the partial derivatives computed in Equation (17) hints
that, in the long term, the sensitivities to the parameters λ, β, β′, k2 will be all
equal in absolute value, whereas the (absolute) sensitivity to the parameter k1 will
be relatively larger. We will further pursue this issue in the discussion in Section 5.2.

As mentioned above, sensitivity equations can be dealt with individually for each
parameter, hence the process of obtaining a numerical solution of the sensitivity
equations proceeds in three stages:

• Integrate the system equation to obtain the state trajectory r.
• Evaluate at each time instant the Jacobian and partial derivatives with respect

to the parameters of the right-hand side f of the model equation.
• Numerically solve each uncoupled equation of the sensitivities.

This numerical procedure has been implemented using the values of the parameters
in Table 1, and the results are shown in Figure 3. The initial value for the state
variable r has been set as r(0) = 500, but results are quite similar for a wide range
of initial values. As expected by the qualitative analysis, the trajectories of the
sensitivities converge to a fixed point, which is roughly twice as large for parameter
k1, in absolute value. A large (negative) peak occurs in the transient regime of the
sensitivity with respect to k1, before convergence to the fixed point is apparent.
Values up to |ψk1 | > 600 are reached for t < 0.04 (15 days), which have been left
out of the range of the figure to avoid blurring the other graphs. We interpret this
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phenomenon by realizing that, at early stages of the epidemic outbreak, the value

of the ratio r =
x

y
is large (theoretically infinite) because the detected infected

population y is close to zero. Then, even a small number of randomly detected
infected individuals is prone to force a large decrease in the value of the ratio r.
However, the effect of the contact tracing program, measured by k2, is negligible
because a critical volume of detected infection y has not yet been unveiled in order
to significatively affect the detection (i.e. the transition x → y) through the term

k2
x y

x+ y
.

5. Model fitting to statistical data of HIV-infected population. In this
section we aim to validate the proposed model for the ratio of hidden infection
by comparison to the real data, which is available for the Cuban HIV epidemics.
Firstly, a fit of the model to data is studied. However, since the undetected infected
population is unknown, the model is indirectly assessed by fitting the detected
infection to recorded data. Then, the results of the paper are discussed, focusing
on the real-world interpretation. The objective is to put the theoretical results in
a realistic context, in order to gain further insight on the evolution of the epidemic
and provide some hints on the most suitable health policies.

5.1. The dynamics of detected infection. In this section, the proposed model
for the ratio of hidden infection is put in the light of actual epidemiological data.
The aim is to provide an assessment both of the model itself and the values of the
parameters, in line with the methods of system identification [21, 25]. In particu-
lar, the parameters k1, k2 related to detection of infected individuals are especially
interesting, since their value provides an indirect measure of the efficiency of health
policies. In previous work, a novel method for parameter estimation for dynamical
systems has been applied to similar epidemiological models [3, 12]. However, no
estimation method can be directly applied to the proposed model given by Equa-
tion (8): on the one hand, the states r are not measurable, since data for the
undetected infected population x are not available; on the other hand, a single
equation would not provide enough information to estimate all the parameters in
Table 1, e.g. because the effect of λ and k2 are mixed into a. Both pitfalls can be
traced to the concepts of observability [18] and identifiability [19] in control theory,
respectively.

Since a direct identification of the system of hidden infection is not feasible, we
adopt an indirect approach based upon the available data, which is the recorded
infected population, given by variable y in the model of Equation (3). In this
equation, let us substitute the unknown infected population as x = r y, according
to the definition of the hidden ratio given by Equation (2). The substitution yields
a linear ODE for y:

d y

d t
=

(
−(µ+ β′) + k1 r + k2

r

r + 1

)
y (21)

Of course this latter equation is not directly solvable because r has its own nonlinear
dynamics. However, as mentioned in Section 3.2, where the dynamics and stability
of r(t) were analysed, the trajectories of the ratio tends in all its domain to the
fixed point r+. Thus assume that the convergence has already approximately been
reached, so the value of the hidden infection ratio r can be considered to be constant
for practical purposes. This simplification will be valid as long as we consider a time
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Figure 4. Exponential regression of population y for both periods
[1990, 2000] and [2000, 2008].

window where the system has approximately reached a stationary regime. Then,
the solution of Equation (21) is trivially given by:

y = y0 e
b (t−t0) (22)

where b = −(µ+β′)+k1 r++k2
r+

r+ + 1
. Inspired by this equation, we conjecture that

the size of the population y grows exponentially, and we will perform an exponential
regression in order to estimate the values of y0 and b.

The data that will be used to adjust the exponential model of Equation (22) con-
tains information about all the HIV infections that have been recorded in Cuba2

since the start of the epidemic outbreak, in 1986, up to 2008. Therefore, a daily
series of the size of population y can be constructed, and used to perform an ex-
ponential fit of y with respect to t. Some preprocessing has been applied to data,
in order to obtain meaningful results. Firstly, the first four years of epidemic data
have been removed, so the hidden infection ratio can be assumed to have achieved
an equilibrium. Besides, both the definition of the disease and the circumstances of
infection detection are regarded to have considerably changed after 2000. This was
observable in preliminary experiments, where it was impossible to satisfactorily fit
both the initial point y0 and the slope b of the curve. Consequently, two distinct pe-
riods have been considered—[1990, 2000] and [2000, 2008]—and the coefficients y0, b
of the exponential model have been separately adjusted to data from each period.

The results of the exponential regression are graphically shown in Figure 4. For
the first period [1990, 2000], the obtained values of the estimates of the coefficients

2Needless to say, only anonymous data have been used in this paper.
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Table 2. Error measures for both periods of the exponential re-
gression to data of recorded HIV-infected population y: Mean Ab-
solute Error (MAE), Mean Relative Error (MRE) and coefficient
of determination (R2).

Measure Period 1 Period 2 Complete data base
t0 1990 2000
y0 346 1598
ŷ0 430 1533
b 0.1636 0.1636 0.1636

b̂ 0.1165 0.1600
MAE 65.9584 81.3807 73.0843
MRE 0.0846 0.0278 0.0584
R2 0.9234 0.9954 0.9969

are ŷ0 = 423, b̂ = 0.1169, whereas the regression for the second period [2000, 2008]

leads to the estimates ŷ0 = 1514, b̂ = 0.1597. Both the results for ŷ0 and b̂ seem to
be coherent with actual data: on the one hand, y(1990) = 344 and y(2000) = 1577,
so the obtained ŷ0 are a good approximation, especially at the beginning of the
second period in 2000, when any transient effects should have vanished and the
hidden infection ratio is assumed to have practically converged to the equilibrium;
on the other hand, if the fixed point r+ is substituted according to Equation (9) in

the expression b = −(µ + β′) + k1 r+ + k2
r+

r+ + 1
and the numerical values of the

parameters are set to those assumed in Table 1, we obtain b = 0.1636, which also

shows a striking approximation to the estimates b̂ obtained for the first and second

periods. We emphasize that the estimates ŷ0, b̂ have been obtained by regression
from actual data, with neither resort to the model nor to the values of the parame-
ters. Certainly, the rationale at the beginning of this section has inspired the choice
of exponential, rather than linear, regression; but the obtained coincidence, with
a completely independent procedure, provides an appealing support to both the
model and the claim that the hidden infection ratio tends to an equilibrium.

In order to provide a quantitative assessment of the results of the exponential
adjustment to the data of HIV epidemics, we have computed some goodness-of-
fit measures, such as the Mean Absolute Error (MAE) and the Mean Relative
Error (MRE):

MAE =
1

N

N∑
i=1

|y(i)− ŷ(i)|

MRE =
1

N

N∑
i=1

∣∣∣∣y(i)− ŷ(i)

y(i)

∣∣∣∣
(23)

where N is the dimension of the data vector y and the prediction ŷ is computed from

the estimates as ŷ = ŷ0 e
b̂ (t−t0). The computed errors are shown for each period

and for the whole adjusted time range in Table 2. Although the absolute errors
may seem considerable at first sight, observe that the relative errors are limited. In
particular, the measure for the second period states that the error is below 3 %,
which amounts to a satisfactory fit. Finally, the coefficient of determination R2

has been computed and the results, shown in the last line of Table 2, produce a
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value well above the 0.85 threshold, which is often considered the minimum for a
satisfactory fit. The contrast between the different goodness of fit of both periods
will be further discussed in the next section.

5.2. Discussion. In this section we aim to qualitatively assess the model of the
hidden infection by comparison to epidemiological results. Admittedly one cannot
expect an exact assessment of a biological process in the quantitative sense that
a physical model can be validated. Indeed, we conjecture that some discrepan-
cies suggest conclusions that “are not already obvious to the biologists” [22], thus
contributing to shed light to, and enhance the prediction of, the epidemic evolution.

First of all, we can consider whether it is epidemiologically sensible the conver-
gence of the hidden infection ratio towards a fixed value. Indeed, this fact has al-
ready been pointed out by combining epidemiological arguments and a linear model
[9]. A related work [17] provided further support by linearizing a nonlinear model,
which was quite similar to the one defined in Equation (1). With regard to the value
of the hidden infection ratio r, the former of these works propose that more than

75 % of the HIV-infected persons are known, which would lead to a value r =
1

3
;

whereas the latter obtains the value 0.29 for the ratio of underreporting, which has
a similar meaning to the hidden infection ratio defined here. By substituting the
numerical values of the parameters from Table 1 in the fixed point r+ given by Equa-
tion (9), a ratio of hidden infection of r∗ = 1.11 is obtained, that is to say that the
size of the HIV-infected population that has not been detected by the Cuban health
system is slightly greater than the detected one. Thus we obtain a hidden infection
significantly larger than those reported so far. Certainly the methodologies cannot
be exactly comparable because previous studies, among other disparities, resort to

linear systems. Observe that the nonlinear term k2
x y

x+ y
that governs the detection

due to the contact tracing program can be considered as a linear term multiplied

by a sort of variable rate
y

x+ y
which is less than one. Therefore, a linear model is

prone to overestimate the detection, leading to an increased ratio r that, in turn,

further decreases the rate
y

x+ y
=

1

r + 1
, entering a self-limiting loop. Indeed, it

is noteworthy that a significantly larger hidden infection ratio has been computed
for a country with low detection rates [17]. The mathematical reason for the large
value for r that provides the nonlinear model is thus clear. The question remains
as to which is the correct value. Certainly this cannot be definitely answered, but
the good fit to data that we have obtained in Section 5 suggests that the hidden
infection could be larger than claimed, whereas large figures of detection should be
taken rather cautiously.

Another source of information that could guide health policy decisions stem from
the sensitivity analysis in Section 4. Let us concentrate on the effect of the param-
eters k1, k2 related to the detection of infected individuals. As mentioned above,
sensitivities approach in the long term a fixed value. It was also explained that, in
absolute values, the effect of the random detection k1 decreases, whereas the contact
tracing performance measured by k2 grows as the number of detected individuals
swell the ranks of participants in the program. Obviously, the sign of both sensitiv-
ities with respect to the detection rates is negative, because detection contributes
to decrease the hidden infection. The crux of the matter is the relative strength of
the effect of both parameters. The obtained results show that the system is more
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sensitive to k1 by a factor of r+ 1, that is to say that an increase in the value of k1

leads to a decrease of the ratio r that approximately doubles the one resulting from
a similar increase of k2. Extrapolating this result to the epidemiological analysis of
the HIV/AIDS epidemic, it can be concluded that increasing the detection of in-
fected individuals by the so called random methods influences almost twice as much
as by the contact tracing method. In order to obtain a valid policy rule, certainly
the cost of each method should be taken into consideration, yet a cost analysis is out
of the scope of this paper. Instead, the morale is that a significant investment in the
contact tracing program, with the hope that the detection is drastically enhanced,
may have a cost that is beyond the available resources, whereas methods directed
to the general population are worth being considered. Certain awareness of this
hint could be deduced from the growing support to the action of family doctors.

Although results are far from definitive, the goodness of the fit computed in
Section 5 considerably endorses the proposed model. However, it is intriguing the
different quality of the regression obtained in both time periods, which is apparent
e.g. from the coefficients of determination shown in Table 2. One could argue that
the adjustment is poor at the first period because the ratio r has not yet reached
the equilibrium, but the fact is that the regression error is not concentrated at the
beginning of the period. We point at three—possibly simultaneous—effects that
could eventually explain the different behaviour:

• Due to harsh socioeconomic conditions during the nineties, HIV infections
were often incorrectly recorded, that is to say that the data series for y is
noisy.

• Parameters are assumed to be constant, but this is certainly a rough approx-
imation. In particular,the parameters k1, k2 related to detection are heavily
dependant on the resources that are allotted to health policies, which in turn
depend on varying socioeconomic conditions, so the parameters should be
regarded as time-varying.

• Although throughout this paper the HIV model given by Equation (1) has
been taken for granted, as provided by renowned experts, it is indeed subject
to discussion.

The first two items suggest using a method for parameter estimation that is both
robust with respect to noise and able to deal with time-varying parameters. Al-
though preliminary steps have been taken in this direction [5], there is considerable
margin for improvement. The third point encourages in the search of refined models
of HIV epidemics. Note that an ODE that models the hidden infection ratio can be
obtained from any original HIV system, as long as the nonlinear term of detection

due to contact tracing is expressed by an arbitrary function g

(
x

y

)
.

6. Conclusions. In this work the ratio of hidden infection has been defined as the
proportion between the sizes of known and unknown HIV-infected populations. We
aim at formalizing a notion that has been, more or less implicitly, assumed by epi-
demiologists, that is to say, the fundamental role of detection of infected individuals
as a measure for epidemic control of HIV/AIDS. From the mathematical point of
view, the contribution lies in the observation that the dynamics of the ratio can be
derived from the original HIV model, leading to an uncoupled ordinary differential
equation, which is then analysed within the framework of dynamical systems theory.
The fixed points of the system are computed and the stability analysis reveals that
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the positive equilibrium is globally asymptotically stable, if we restrict the phase
space to the—physically meaningful—positive values. In other words, every tra-
jectory of the system, regardless the initial point, approaches the fixed point. The
particular value of the equilibrium depends on the values of the parameters, but
it is noteworthy that the qualitative analysis is rather robust in this regard, since
both the existence and the stability of the fixed point are proved for all—positive—
parameter values. It is an appealing result that the theoretical analysis provides
an independent support to the intuition of the epidemiology experts, who state
that the proportion of undetected infected individuals with respect to the detected
infected ones remains approximately constant for a given set of fixed parameters.

The sensitivity analysis of the model with respect to the parameters has also
been carried out, confirming that both parameters k1, k2 related to detection of
infected individuals have a negative effect on the hidden infection ratio. Far more
interesting is the fact that the ratio is more sensitive to the random method detection
parameterized by k1 than to the contact tracing programmed measured by k2. This
somewhat unexpected find, and the usefulness that it could have for fixing health
policies, have already been discussed in Section 5.2.

Owing to the records of HIV/AIDS epidemics in Cuba, an exponential regression
has been performed on real data from the known HIV-infected population. The
goodness-of-fit measures strongly support the exponential form for the infected
population y. It turns out that, if the model for the hidden infection ratio is taken
for granted and the equilibrium is assumed to have been reached, the dynamics
of y can be rewritten as a linear ODE, thus the exponential dependance of y with
respect to time. Also, the corresponding parameters approximately match those
obtained from the regression. The significant fit of the exponential form obtained
by two independent procedures provides an additional endorsement to the proposed
model.

The presented work can be further expanded in several, complementary direc-
tions. It has already been mentioned in Section 5.2 the need for both robust meth-
ods for parameter estimation and refinement of the model of HIV/AIDS epidemics.
With regard to estimation, we are currently engaged in the development of paramet-
ric identification techniques, studying their theoretical features and implementing
their application to real-world problems. It is noteworthy that advances in param-
eter estimation can be put into connection with the analysis of the hidden infection
ratio. For instance, one of the aims of parameter estimation is to obtain an estimate
of the basic reproduction number R0 [11], since the condition R0 < 1 determines
that the epidemic will eventually vanish. Then, in view of the results of the expo-
nential regression presented above for the infected population, we conjecture that
an adequate definition of the basic reproduction number could be R0 = (1 + r+) eb,
since it corresponds to the first-year growth of the infected population if an expo-
nential form is assumed. As a general suggestion, we claim that the development of
estimation methods for dynamical systems that deal with time-varying parameters
should go hand in hand with model definition.

Another promising direction of ongoing research is the refinement of the model of
HIV/AIDS epidemics. In particular, in connection with epidemiology experts, we
aim at providing a more accurate representation of the detection due to the contact
tracing program, i.e. the nonlinear term whose coefficient is k2 in Equation (1).

We suggest that the sort of variable rate of detection given by fraction
y

x y
=

1

r + 1
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could be replaced by an arbitrary function g(r), keeping the sensible conditions
g(r) > 0, g(0) = 1, g′(r) < 0. Although an explicit solution of the ODE could
not be computed, the qualitative stability analysis of Section 3 would still be valid
under such perturbation. Then, reproducing the sensitivity analysis of Section 4
a model could eventually be agreed upon, such that the relative influence of both
detection methods is coherent with experts’ appraisal. The model could also be
expanded to make space for further subdivisions of the populations, e.g. considering
an y3 population that comprises those infected individuals whose infection has been
detected by family doctors, which is a method that is considered to be substantially
increasing its efficiency in the last years. The model should also take into account
the shifting epidemiologic and socioeconomic circumstances, such as the changes
in the definition of AIDS [1] and the decrease in the mortality due to the disease,
after the appearance of successful antiretroviral drugs. Certainly the adjustment
of the model in a variable setting should be related to the usage of estimation
methods that deal with time-varying parameters. Finally, regarding the adjustment
of the model to real data, the population z of AIDS sufferers will also be fitted by
exponential regression, which in turn will be compared to appropriate estimates of
the corresponding parameters. The need for a robust, accurate estimation method
for time-varying parameters of dynamical systems is pervasive.
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