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Abstract. We use measured heart rate information (RR intervals) to develop
a one-dimensional nonlinear map that describes short term deterministic be-

havior in the data. Our study suggests that there is a stochastic parameter with

persistence which causes the heart rate and rhythm system to wander about
a bifurcation point. We propose a modified circle map with a jump process

noise term as a model which can qualitatively capture such this behavior of

low dimensional transient determinism with occasional (stochastically defined)
jumps from one deterministic system to another within a one parameter family

of deterministic systems.

1. Introduction. Modeling the behavior of human cardiovascular system is an
interesting problem which draws extensive attention from researchers. A funda-
mental and challenging question is how best to provide a simplified representation
of both the deterministic and stochastic aspects of heart dynamics. Suder et al. [1]
recorded RR intervals while restricting the paced respiration cycle lengths above 8
s, from which they observe that heart rate variability obeyed a dynamic rule that
can be expressed by a one-dimensional, nonlinear circle map. Later, Jason et al.
[2] showed that even during spontaneous breathing (with subject at rest), the angle
component of RR-interval still has a highly deterministic structure after filtering
out low frequency components. Shiau et al. [3] argued that the deterministic charac-
teristic could result from sympathetic activation and thermo-regulation, which are
primarily evidenced in the low frequency component of the RR-interval signal. They
used a simple nonlinear noise-reduction method [4] to remove the high frequency
component and used the next angle map to reconstruct a deterministic attractor.

Our approach is based on Shiau’s work, but we use cubic smoothing spline to
remove the high frequency component of RR-intervals time series data. This filter
approach (via spline) was selected (1) for ease of implementation1, but also (2) be-
cause the smoothing spline enforces a continuity, consistent with our expectation
that heart rate variability should vary continuously . We find the resultant data can
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obtain similar results, which will be discussed, using Low-Pass filtering by FFT.

1253

http://dx.doi.org/10.3934/mbe.2013.10.1253


1254 JIONGXUAN ZHENG, JOSEPH D. SKUFCA AND ERIK M. BOLLT

be easily related to a modified sine circle map, but with an interesting noise behav-
ior which we describe as a stochastic parametric factor with persistence. Here we
define ‘persistence’ as piecewise constant in time, with occasional random jumps.
The stochastic behavior that we find is similar in character to that identified in
Lerma’s recent study on the stochastic aspects of Cardiac Arrhythmias [5], which
argued that in the neighborhood of bifurcation points, the fluctuations induced by
the stochastic opening and closing of individual ion channels in the cell membrane
results in membrane noise that may lead to randomness in the observed dynamics
of cardiac rhythm systems. In [6], Kuusela et al. give a simple one-dimensional
Langevin-type stochastic difference equation which can model the heart rate fluc-
tuations in a time scale from minutes to hours. The similarity between to our work
is that both provide a stochastic model which aims at uncovering the interaction
of determinism and stochastic control of cardiac dynamics. However, we focus our
study on the low frequency component of RR-intervals data, which relates to sym-
pathetic and vagal activity of heart, to reveal the stochastic jump with persistence
around a bifurcation point.

The paper is organized as follows: Section 2 discusses our filtering approach
and our decision to focus on the low frequency (LF) component of the Heart Rate
Variability signal (HRV) in the phase space reconstruction. Section 3 discusses
the phase reconstruction from the ECG data and discusses the complex behaviors
observed in the data. In Section 4, we give a reasonable model to simulate these
observed behaviors, with conclusions in section 5.

2. Spectral components of HRV. Over the past two decades, the general body
of research has recognized a significant relationship between the autonomic nervous
system and cardiovascular mortality, including sudden cardiac death. Although
cardiac automaticity is intrinsic to various pacemaker tissues, heart rate and the
rhythm are largely under control of the autonomic nervous system [7]. Different fre-
quency ranges of the HRV have been related to various physiological phenomenons
[7]. Studies of spectral components of short term recordings of HRV show that the
efferent vagal activity is a major contributor to the high frequency (HF) component,
while the LF component is considered as a marker for sympathetic modulations,
with some studies also suggesting that LF reflects both sympathetic and vagal ac-
tivity [7].

In Suder’s experimental method [1], they obtain a one-dimensional, nonlinear
deterministic observable from the HF component by restricting the respiration-
cycle to greater than 8s. Their theoretical foundation is that controlling respiration
can induce an increase in the HF signal. After high pass filtering, they identify a
one-dimensional deterministic process. Similarly, Janson’s work [2] obtains a low-
dimensional structure by extracting the HF component of HRV, but without control
on respiration. In contrast, Shiau [3] obtains a one-dimensional deterministic pro-
cess from the LF component under spontaneous breathing conditions. Regardless of
the frequency domain being studied, there is evidence showing that low-dimensional
deterministic processes describing the autonomic nervous system can be observed,
with the low-dimensional models providing insight into heart rate dynamics [8, 9].
In this paper, we focus on the LF component while generating a one-dimensional
map, which corresponds to sympathetic and vagal activity [7]. A primary reason
for choosing to analyze the LF component is that it is easier to reduce the effects
of noise introduced by measurement error.
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3. Electrocardiogram data. From an open source repository (physionet.org),
we obtained RR-intervals data taken from volunteers who were supine and asked to
breathe at a fixed rate of 0.25 Hz for 10 min. (Data originally from [10].) The two-
dimensional embedding of the raw data, shown in Figure 1(a), has no apparent low
dimensional structure. To identify a low-dimensional model, we apply the following
sequence of processing steps: First, we filter out the HF component by applying
a cubic smoothing spline interpolation to the RR-intervals data, as illustrated in
Figure 1(b), an alternative filtering technique to that of [4].
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Figure 1. ECG Data. (Left) Time delay embedding of raw RR-
interval data has no apparent low-dimensional deterministic struc-
ture. (Right) A cubic smoothing spline is applied to filter out the
high frequency component of series data of RR. The remaining
low frequency component would lead to a low-dimensional struc-
ture after we extract the angle part in polar coordinates.

As second step, for each filtered data point, we compute an angular coordinate
representation φn measured relative to the centroid of the data set, RR :

φn =
1

π
arctan

(
RRn+1 −RR
RRn −RR

)
mod 1. (1)

We then construct a time delay embedding of the angular coordinates to produce
the “next angle map.”

Figure 2(a) shows the time delay embedding representation of the next angle
map (1) data, which appears to be reasonably well described by a one dimensional
curve, but with data lying nearly on, but both above and below, the identity line
on that graph. We find that there exist two typical cases for the portion of the
trajectory that lies near the intersection between identity line and the data:

• Case 1: The trajectory evolves along a lower branch, below the identity line,
resulting in decreasing values;

• Case 2: The trajectory evolves along an upper branch, which intersects the
identity line with two fixed points, generating increasing values.

Figure 2(b)) illustrates these two behavior. We observe from our data that the
trajectory appears to persist along a branch (either upper or lower) for several iter-
ations before “jumping” to the other branch. Of special importance is that although



1256 JIONGXUAN ZHENG, JOSEPH D. SKUFCA AND ERIK M. BOLLT

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Next Angle Map

φ(n)

φ(
n+

1)

(a) Two-dimensional embedding of angles

0.15 0.2 0.25 0.3 0.35 0.4

0.15

0.2

0.25

0.3

0.35

0.4

Cobweb for Next Angle Map from EKG data

φ(n)

φ(
n+

1)

 

 
original data
lower branch
lower branch with upper branch

1

1

2

(b) Cobweb follows different stochastic branches

Figure 2. Next Angle Map data. (a) A time delay embedding
of data computed from next angle map (1) indicates that a one-
dimensional representation may be a reasonable approximation.
(b) Cobweb along typical data trajectories. Highlighting three
trajectory segments near the line φn+1 = φn. We note that the
trajectory sometimes travels following a lower branch (below the
line and decreasing — case 1) while at other times, it follows an
upper branch (above the line and increasing— case 2).
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the full data set may appear as a “cloud” as if it were noisy observations, any partic-
ular trajectory follows a smooth (seemingly deterministic) path for several iterates.
The noisy cloud appearance results from overlaying numerous deterministic partial
trajectories, each with slightly different parameters. We describe this behavior as
“persistence,” and view it as parametric noise. Describing this phenomena as noise
is not meant to imply that the underlying process is truly stochastic, but is simply
a recognition that even if it is deterministic, we are not modeling the complex con-
trol system behavior, which would be affected by the body condition, circumstance,
emotion,etcetera.

Figure 3. Data trajectories. (Top) Demeaned RR data (RRn −
RR). We label ‘1’ to the case when the trajectory follows the
lower branch, with red patches. The corresponding interval of RRn

is concave down above the average line or concave up and below
average; and ‘2’ to the case when the trajectory follows the upper
branch, with blue patches. The corresponding interval of RRn is
downward cavity when below average or upward concavity when
above average. (Bottom) Series data of φ. Decreasing φn relates
to the patch ‘1’; increasing φn relates to the patch ‘2’. For both
graphs, the data is discrete, with the curve drawn for clarity of
illustration.

For convenience, the following discussion uses ‘1’ as shorthand notation for case
1 trajectories, and ‘2’ for case 2. In 3, we plot the sequence data of RRn and φ(n).
From (1), we can understand the relationship between these data for each monotone
interval of φ(n) :
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Case 1 — φ(n + 1) < φ(n), or φ(n) is decreasing, with data below the identity
line of Fig. 1(b) . The corresponding interval for RRn would be the one where RRn

is concave down above the average line or concave up and below average (See Fig. 3
for the red patches).

Case 2 — φ(n + 1) > φ(n), or φ(n) is increasing, data above the identity line
in Fig. 1(b). The corresponding interval of RRn is downward cavity when below
average or upward concavity when above average (See Fig. 3 for the blue patches).

These observed behaviors lead to a natural symbolic labeling and transition graph
representation using symbols ‘1’ and ‘2.’ In this context, the “persistence” of the
system to stay on a particular branched for several iterates would be evidenced
in the transition diagram (Figure 4) as pii > 1/2, with larger values indicating
greater persistence. We remark that our data and case description admits some
ambiguity that might appear in longer dataset: (1) it is possible that the trajectory
following some branch may experience a parameter ‘jump’, but land on a new
branch that is the same case as before the jump, and that jump would not result
in a transition to the other node, (2) the trajectory might jump to a Case 2 branch
(with a stable fixed point) while the system state is above the fixed point, in which
case the trajectory would decrease toward the stable fixed point, with this behavior
essentially indistinguishable from a Case 1 trajectory.

Figure 4. Transition relationship between upper and lower branch
trajectories, as observed in the data. When pii is large, the system
will tend to “persist” along a either the upper or lower branch.

In this paper, we are not trying to provide a physiological explanation for this
behavior. Rather, we simply have observed the phenomena. In the next section,
we build a model based on the circle map [11, 12] which can mimic the features
discussed above through representation as a stochastic process with an interesting
form of ‘noise’ in that process.

4. The circle map. The circle map is a generic term describing a family of dy-
namical systems whose state space can be interpreted as angles of a circle. A simple
example of circle map using the modulo function and is given by φn+1 = f(φn) =
ω + φn (mod T ), where ω and T are constant. A second example is the sine circle
map, which was introduced by Kolmogorov and well studied by Vladimir Arnold
[11, 12], is defined by

φn+1 = (φn + ω + k sinφn) modulo 2π (2)

where ω and k are constants. Figure 5 plots the Sine Circle Map with ω = 5 and
k = 1.25 as the red curve, while the plotted points (green) are from the data. The
circle map provides a prototypical model for systems that are controlled by two
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pacemakers, with the term k sinφ describing the effect of the nonlinear oscillator
coupling [12], which is why it has been previously studied as a model for the heart
[11].
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Figure 5. The Sine Circle Map. A scaled version of the Sine
Circle Map (red) overlaid on our data from the two-dimensional
embedding of φn (green), with ω = 5 and k = 1.25. The circle map
is not intended to interpolate the points, but the family of such
curves does provide qualitatively similar dynamics. (color online)

Figure 6(a) shows the sine circle map with ω = 5 and k = 1.2, 1.275 and 1.35.
When k = 1.2 trajectories would mimic the Case 1 trajectories of our data. As k
is increased, the map gets closer to the identity line, yields trajectories with slow
passage between the identity line and the curve [13], a ghost of the fixed point
associated to the saddle node bifurcation that occurs at approximately k = 1.283.
When k = 1.35, the curve has crossed through the identity line. Two fixed points
are created, one is stable, the other is unstable. Trajectories on this map would
mimic Case 2 behavior during the transient approach toward the stable fixed point.

In order to simulate similar behaviors of our ECG data using the circle map, we
proceed as follows: We assume that k is piecewise constant (the persistence) with
changes to k occurring as Poisson arrivals. When k changes, the new value for k is
chosen as an i.i.d. variable from a Gaussian distribution:

kn =

{
1.1938 + 0.25εn, pn < pc,

kn−1, else, (3a)

where 0 ≤ pc ≤ 1, pn ∼ U [0, 1], and εn ∼ N [0, 1]. Critical value pc governs how
often kn changes its value. (The Gaussian scale parameters as well as the choice
pc = 1/17 were selected heuristically to provide a good visual match to the observed
data trajectory.) A visualization of such kn is given in Figure 6(b). Whenever
kn < 1.283 (below the red horizontal line in Figure 6(b)) the dynamics are similar
to case 1 of our data. For kn > 1.283, the behavior is like case 2.

Figure 7(a) shows an example of a typical trajectory generated by our model. The
cobweb around the crossover section is plotted in Figure 7(b) for a few trajectory
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Figure 6. The Sine Circle Map. (Left) Zoomed to the portion of
the map where saddle-node bifurcation first occurs. We fix ω = 5,
and show the curves for k = 1.2, 1.275, 1.35, with the identity line
y = x plotted in black. For k = 1.35, (the upper red curve), the
curve has pushed through the identity line to create a stable fixed
point. (Right) A simulation of sequence {kn}, using the stochastic
process defined in (3a). Whenever kn is above the red horizontal
line, the sine circle map is behaves similarly to case 2 of our data;
whenever kn is below the red horizontal line, the sine circle map is
behaving similarly to case 1 of our data;

segments, illustrative reasonable qualitative agreement with our data. We note that
long sequences of ‘2’ behavior results in the nearly horizontal part of φn in Figure
7(a). We similarly give a graph representation for the modified circle map in Figure
8. For our model, we can compute the transition probabilities as follows: Define
a k-refresh as the condition that kn 6= kn−1, the situation where the system has
jumped to a new parameter value. Then the conditional probability that refresh
results in an “upper branch” (Case 2) behavior is given by

pu := P (kn > 1.283 | kn 6= kn−1), (4)

is independent of system state and is easily computed from the normal distribution
function. For the particular parameters described above, this yields pu ≈ 0.361.
The transition from ‘1’ to ‘1’ is due to either no refresh of parameter or a refresh,
but with new kn < 1.283, so that

p11 = (1− pc) + pc(1− pu) ≈ 0.979.

The other transition probabilities can be easily computed in a similar fashion.

5. Conclusion and discussion. In summary, we apply cubic smoothing spline
to the RR-intervals data to remove the HF component, and then we extract the
angles coordinate. A delay embedding of the data indicates that a low-dimensional
representation is reasonable, but analysis of structure in the time series indicates
that a better representation can be achieved by viewing the heart rate as driven
at a parameter point near a saddle node bifurcation. Stochastic fluctuations (with
persistence) cause the system to wander back and forth through that bifurcation. To
model this behavior which derives from combination of deterministic and stochastic
factors, we propose a stochastically perturbed modified circle map. The model
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Figure 7. The Modified Circle Map. (Left) For our modified cir-
cle map, we label 1 to the interval of φn when the model’s curve is
below the identical line; 2 to the interval when the model’s curve
is above the identical line and intersects it with two fixed points.
(Right) Cobweb representation of trajectory segments near the in-
tersection of the circle map and the identity line.

Figure 8. Transition relationship between Case 1 and Case 2 tra-
jectories in Modified Circle Map, with transition probabilities la-
beled.

shows qualitative agreement with the two-dimensional embedding of angles from
heart rate data in the sense of simulating the stochastic behaviors. We remark that
our choice to model the stochastic behavior of parameter k as piecewise constant
with Poisson arrival of jumps was based on the simplicity of the approach. It is
certainly reasonable to also consider the case where k experiences small fluctuations
(rather than constant behavior between jumps), in which case a standard jump-
diffusion model might be appropriate. However, our noisy data did not appear to
be sufficient to resolve that low level diffusion.

In this paper, we do not address the question why this modified circle is “good” to
model this heart rate data, leaving as open question the issues of what physiological
effects might generate such behavior. Moreover, the question of “goodness,” from a
mathematical framework, requires that we have some way to quantify deviation of
model and system. The degree to which a “toy model” might be representative of a
more complicated system is a fundamental issue from dynamical systems that is not
easily resolved. For example, comparisons between dynamical systems based on Lp
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spaces may fail to be a good judgment if the systems turn out to be chaotic. Mostly
Conjugacy [15] appears to be a promising method to address this problem, because
it compares dynamical systems in a way of judging the quality of “matching” by
looking at their topological difference (homeomorphic defect). Additionally, our
choice of specific model parameters was based primarily on a qualitative assessment.
Using tools from the theory of commuters [15], tailored to this stochastic setting,
may allow for a reasoned way to choose parameters to best match system dynamics.
Comparing the models and the heart rate data by using Mostly Conjugacy method
will be our next work on this topic. We suggest that applying these parameter
estimation techniques to data collected during regular physical examination of heart
could provide a new method for automated “change detection” with respect to
cardiac function, where one might hope that detection of such changes in dynamics
might have clinical relevance.

Acknowledgments. This work was accomplished with funding provided by Na-
tional Science Foundation grant DMS-0708083 . We would also like to acknowledge
recommendations of the reviewers which have significantly improved this manu-
script.

Appendix A. Test for determinism using surrogate data. A primary con-
cern when conducting analysis of processed data is that observed structures may be
an artifact of the processing, with no relevance to the true phenomena under study.
To show that the low dimensional structure of successive angles does not simply
result from the low-pass filtering, we compare our observations with surrogate data
created by linear Gaussian stochastic process which preserves both the spectrum
and the histogram of the empirical RR-interval data [16]. We process that surrogate
data using the same filtering methods, as described in Section 3. Figure 9 plots the
Angle map based on data from the experimentally measured data [10] compared
with processed surrogate data.
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Figure 9. Test for nonlinearity. (Left) Angle map based on data
[10] after low-pass filtering. (Right) Angle map based on surrogate
data using linear Gaussian stochastic process with the matching
amplitude spectrum and distribution as the data.



HEART RATE VARIABILITY AS DETERMINISM WITH PARAMETERS 1263

In the “eyeball” metric, treating the data as a cloud of points in R2, we observe
little qualitative difference between measured and surrogate data. However, as a
dynamic process, we see distinguishing features. As described in Section 4, in our
data, we observe that trajectories (in delay coordinates shown in Figure 9) that are
near the line φ(n) = φ(n+ 1) that either track upward (when above the diagonal)
or downward (when below) with trajectories only infrequently “crossing” the line.
Examining the surrogate data, generated from a Gaussian stochastic process with
the matching spectrum and distribution as the data, we find frequent crossings
of that main diagonal after processing the surrogate data, as represented by the
illustration in Figure 10 .

Figure 10. Data vs. Surrogate trajectories. Cartoon illustration
of (L) Data trajectories, and (C) Surrogate trajectories, illustrating
the difference in character. To build a test statistic, (R) we project
data onto the main diagonal, and compare distributions.

In particular, if focus on that portion of trajectories lying near the diagonal
(in delay space) where φn+1 = φn, and project data onto that line (as illustrated
Figure 10(R)). We test as follow: We take as null hypothesis that the time series of
RR-interval is generated by a linear stochastic process. Let sampled data c be the
projection of the selected (select the points around near the main diagonal in phase
space) onto the diagonal. We then generate 10 surrogate data sets {s1, s2, ...s10}
for the RR interval data, where we model as a guassian process with the same
power spectrum and distribution as the empirical RR-interval data, using method
iAAFT [17]. Let cc = [s1 s2 ... s10] bet the concatenation of all 10 surrogate data
sets. Then cc can be viewed as the “average” behavior of surrogate data sets. We
perform a Kolmogorov−Smirnov test on c and cc. The test results in the rejection
of the null hypothesis at the 5% significance level, with p− value = 3.4037e− 004.

Our test is meant to establish that the low dimensional structure of RR-interval
data does not come from a Gaussian stochastic process. In some sense, this test
seems to argue for greater structure to the underlying process, reasonably captured
by our model of deterministic transient behavior, though the formal result is simply
rejection of that null hypothesis.
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