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Abstract. This paper presents an optimal control problem formulation to

minimize the total number of infection cases during the spread of susceptible-

infected-recovered SIR epidemics in contact networks. In the new approach,
contact weighted are reduced among nodes and a global minimum contact

level is preserved in the network. In addition, the infection cost and the cost
associated with the contact reduction are linearly combined in a single ob-

jective function. Hence, the optimal control formulation addresses the trade-

off between minimization of total infection cases and minimization of contact
weights reduction. Using Pontryagin theorem, the obtained solution is a unique

candidate representing the dynamical weighted contact network. To find the

near-optimal solution in a decentralized way, we propose two heuristics based
on Bang-Bang control function and on a piecewise nonlinear control function,

respectively. We perform extensive simulations to evaluate the two heuristics
on different networks. Our results show that the piecewise nonlinear control
function outperforms the well-known Bang-Bang control function in minimizing

both the total number of infection cases and the reduction of contact weights.

Finally, our results show awareness of the infection level at which the mitigation
strategies are effectively applied to the contact weights.

1. Introduction. In the last decade, epidemic modeling has allowed heterogeneity
into models due to increasing computational capabilities. Correspondingly, complex
networks are amongst the primary mathematical tools used to express heterogene-
ity in epidemic models [31, 30], representing either the contact networks among
individuals or the movement networks among sub-populations. Moreover, epidemic
models have been developed at multiple spatial and temporal scales from the very
detailed agent-based simulations [4] to the global meta-population computational
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tools [9, 1]. Recent models take into account accurately the structure and the
statistical characteristics of the population, both in urban [13] and rural [38] ar-
eas. However, one of the most important applications of epidemic modeling is the
testing and evaluation of mitigation strategies and their costs [40]. For example,
consider the classical problem in epidemiology of optimal vaccination distribution
given limited resources. Such a problem is resolved through epidemic modeling
and numerical simulations. In this context, however, the still common assumption
that the contact network is static is very primitive, and it can produce inaccurate
modeling results. As a matter of fact, during an epidemic, contact patterns are
modified, and these modifications in turn modify the epidemic evolution [11]. The
two intertwined dynamic processes, the one related to the epidemic spreading and
the other related to the contact network adaptation, act together and impact the
epidemic size. Thus, mitigation strategies, which include social distancing, a reduc-
tion in the normal contact of individuals, cannot be represented correctly without
taking into account a time varying contact network. Moreover, in social distancing
intervention, some contacts are eliminated from the network to reduce the spread
of infection. However, what if the contacts have a lower bound that is greater than
0? In other words, individuals are not fully isolated during the wave of an epidemic
and sometimes do not comply with the announced interventions. Thus, how can
we model a weight reduction intervention that does not isolate individuals from the
network? If there is a cost accompanied with weight reduction, how to balance the
weight reduction cost and the infection cost?

In this paper, we answer these questions by engaging the optimal control theory
with the well-known susceptible-infected-recovered SIR compartmental model. We
assume a hypothetical SIR epidemic that spreads in a contact network composed
of nodes and links. Nodes represent individuals, while links represent contacts
among the individuals. We formulate a continuous time optimal control problem
in which total infection size is minimized due to the dynamic change in the contact
weights among nodes. To apply the optimal control theory, we consider the spread
of an SIR epidemic in the network as a dynamical system, and the total number of
infected cases as the state of the system, while the control function is the weight
reduction of the contact network leading to slow/reduce spread of the epidemic.
Therefore, the control function is the weight reduction, while the state variables
are the states of each node, namely susceptible, infected and recovered. Hence, the
main objective is to minimize both total infection size in the contact network and
weight reduction. Pontryagin theorem [32] is used to provide necessary conditions
of optimality. Thus, the obtained solution represents a unique candidate (extremal)
to give the optimal solution. Consequently, the candidate solution represents a
dynamical weighted network. To obtain near optimal decentralized solutions, which
can represent spontaneous behavioral responses, we propose two heuristics in which
two distinct control functions are defined based on the Bang-Bang controller and
a nonlinear piecewise controller, respectively. The optimal control formulation and
the heuristics are numerically evaluated on different contact network structures,
showing the effectiveness and implementability of the proposed methods.

We summarize our contribution in the following ways:

• Proposing an optimal control approach for mitigation strategies to SIR epi-
demics in contact networks

• Considering realistic scenarios in contact networks
• Proposing two heuristics to find near optimal solutions
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The paper is organized as follows: In Section 2, we review the literature and in
Section 3, we present the network-based SIR approach. The optimal control problem
is discussed in detail in Section 4, while in Section 5 we propose computational
heuristics to find decentralized solutions. Extensive numerical evaluations for the
computational heuristics using preferential attachment networks and a survey-based
contact network are presented in Section 6, followed by a discussion and a summary
in Sections 7 and 8, respectively. Finally we conclude and discuss future work in
Section 9.

2. Literature review. The work in [24] addressed the effect of quarantine strategy
on the spread of SIR epidemics. The quarantine strategy assumes that the suscepti-
ble nodes disconnect their contacts with the infected neighbors and reconnect with
other susceptible neighbors with a given probability. Using the rewiring approach,
the authors found a phase transition at a critical rewiring probability below which
a large number of nodes are infected. Our approach is different from that of [24]
since nodes do not terminate their daily contacts with the infected neighbors, and
they create new contacts with new nodes; however, susceptible nodes do reduce
their contact frequency with infected neighbors.

Gao and Ruan in [16] studied the effect of human movement on the spread of
infectious SIS epidemics, confirming the existence of reproductive number below
which a disease does not spread out.

Gross and Blasius highlighted the research in adaptive networks as shown in [18]
with two major lines. The first line is related to the dynamics of networks such that
a topology evolves over time revealing many indigenous characteristics. The second
line is that in the dynamics on networks, the states of the nodes in the network
change with time. Additionally, the relationship between the dynamics of networks
and the dynamics on networks was studied showing a feedback loop between the
state of the nodes and the topology. In addition, Gross et al.in [19] discussed the
spread of epidemics on networks, and how the network can become adaptive by
rewiring the links according to the state of the nodes. The authors concluded that
the local effect of rewiring suppresses the epidemic, while the topological effect
increases the chance of the epidemic spreading.

Jiang and Dong in [21] proposed an optimal concept of control measures to control
the spread of SARS outbreaks in minimum time. They found that the optimal
control is the Bang-Bang function when the objective is to minimize the lifetime
of an outbreak. However, they only focused on a subsystem of the compartmental
model, which only includes the exposed class and the infectious class.

V. Marceau et al. studied the coevolution of SIS disease and network topology
simultaneously in [26], introducing an adaptive rewiring rule through which the
topology changes with time. They found that during the initial phase of an epi-
demic, the number of links that connect susceptible nodes with infectious nodes
drops quickly, and hence the susceptible nodes compose a strong community con-
nected with very few infectious nodes. Eventually, the epidemic invades the well
connected susceptible community causing a sharp drop in the number of links in
the susceptible community.

Prakash et al. studied virus propagation in time-varying networks in [33]. They
divided the time unit into two periods with each period having its own network
adjacency matrix representing the binary contacts among the nodes. They found
that the epidemic threshold is the reciprocal of the maximum eigenvalue of the
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multiplication of the two system matrices representing the two periods. They also
extended the same concept to general alternative behaviors during the lifetime of
the virus. In addition, the authors proposed various mitigation strategies based on
topological characteristics of the networks. Bondes et al. [7] studied the relationship
between communicable diseases and the evolution of social systems. They proposed
a game theory approach to find the social behavior of a host during the life cycle of
communicable diseases. In addition, the authors presented the relationship between
the strength of the diseases and the contact rates of the hosts.

Reluga addressed the effect of social distancing on the spread of SIR epidemics
[36, 35]. For example, he used differential game theory to find the social distancing
pattern in population-based model [36, 35]. The solution represents the equilibrium
at which excess social distancing does not improve the solution.

The authors in [37] addressed the optimal control of SIS epidemics in two cou-
pled subpopulations and determined the optimal mitigation strategy when scarce
resources are available based on the Hamiltonian method. The authors also found
that the optimal solution represents the distribution of scarce resources in large sus-
ceptible subpopulation with the least infection cases to reduce the force of infection.

The work in [8] addressed the optimal vaccination strategy against the human
papillomavirus (HPV). The optimal strategy is to find the best target for vaccina-
tion. The authors found that the solution obtained using optimal control theory
is more efficient than the solution obtained from constant control strategy; this is
because the optimal solution leads to control the disease at steady state.

Volz and Meyers [41] addressed dynamic contacts among nodes during the out-
break of SIR epidemics, proposing a dynamic contact pattern such that every node
preserves a constant number of neighbors at any time. Each contact is temporary,
and it lasts a variable time duration, after which that contact is replaced by a new
neighbor.

Optimal control theory was used to evaluate the best policies to control the
spread of seasonal and novel A-H1N1 strains [34]. The controller is a function
of social distancing cost and the antiviral treatment policies cost. The authors
concluded that social distancing policies can reduce the infection size by more than
99%, which is theoretically possible when the population is isolated with scarce
resources althought it is unrealistic.

Fenichel et al. [14] studied adaptive human behavior during the spread of SIR
epidemics. In their models, contacts are classified based on population states, i.e.
contacts between susceptible and infected states, contact between susceptible and
recovered states and so on. The authors proposed a dynamic programming problem,
which addresses the tradeoff between the contact benefits and the infection cost.
An emperical study on the spread of epidemics in dynamical contact networks were
addressed in [39]. The authors collected data about the face-to-face contacts and
duration per contact between pair of individuals that are within a certain distance.
By establishing a contact network that changes with time, the authors studied
the spread of SEIR epidemics and they showed the importance of including the
heterogeneity of the contact duration. The authors in [12] studied the spread of
flu in small population by collecting data about the individuals’ daily symptoms.
The authors were able to fit the collected symptom data to SIS like -disease. Such
study gives insights about the relationship between the proximity of individuals
and the spread of flu. The authors in [20] studied the impact of the experiment
design in collecting contact data and the duration of the study on the outcome of
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an epidemic spreading process. The authors illustrated the correlation between the
dynamcis of empirical contact networks, the number of participants and the outcome
of simulation models. The authors in [25] addressed a practical intervention for
household contacts. The authors proposed that every infected individual will only
has a single contact with the care giver. The authors found that the overall infected
cases are reduced by a constant value for different transmissibility values. The
authors in [23] studied the contact tracing to isolate nodes with infectious contacts.
Through stochastic simulations, they investigated the effect of correlated networks
on the spread of epidemics and contact contact tracing efficacy. They found that
contact tracing has a better performance for assortative mixing with large epidemic
size and low tracing rate, while for disassortative networks, contact tracing performs
better at higher contact rates.

3. Network-based SIR approach. In the network-based approach, given a net-
work with N nodes and L links, each node can be either susceptible S, infected I,
or recovered R, with a given probability for each state. An infected node infects
a susceptible neighbor with infection rate β, and meanwhile the infected node be-
comes cured with cure rate δ. The new approach is inspired by the continuous-time
Markov chain SIR model, and it aims to decrease the complexity of the problem
from exponential O(3N ) to polynomial O(N). Therefore, instead of considering the
combinatorial states of the nodes in the network, we study each node specifically
[42, 29] by decomposing the infinitesimal Q3N×3N matrix to N infinitesimal matrices
qm(t) forall m ∈ N , each with three states as follows:

qm(t) =

 −β∑n am,n1[in(t)=1] β
∑
n am,n1[in(t)=1] 0

0 −δ δ
0 0 0

 m = 1, 2, . . . N

where am,n is the binary entry in the network adjacency matrix, representing
the existence of contact between node m and node n, and the indicator function
1[im(t)=1] = 1 represents the event that node m is infected and 0 otherwise. In this
approach, we replace the actual event of a node to be susceptible sm(t) = 1 with
its effective probability Sm(t) = p(sm(t) = 1), the event of a node to be infected
im(t) = 1 with its effective probability Im(t) = p(im(t) = 1), and the event of a
node to be recovered rm(t) = 1 with its effective probability Rm(t) = p(rm(t) = 1).
Replacing every event with its effective probability is basically a mean field ap-
proximation where E[im(t)] = p(im(t) = 1) = Im(t). Hence, the effective q̄m(t)
infinitesimal matrix is obtained and has the following expression:

q̄m(t) =

 −β∑n am,nIn(t) β
∑
n am,nIn(t) 0

0 −δ δ
0 0 0

 m = 1, 2, . . . N.

For every node m, we derive a system of differential equations using the effective
q̄m(t) infinitesimal matrix as follows:

dSTm(t)

dt
= STm(t)q̄m(t) (1)



1232 MINA YOUSSEF AND CATERINA SCOGLIO

where STm(t) = [Sm(t) Im(t) Rm(t)] is the vector of the state probabilities of node
m. The obtained differential equations are as follows:

dSm(t)

dt
= −Sm(t)β

N∑
n=1

am,nIn(t), (2)

dIm(t)

dt
= Sm(t)β

N∑
n=1

am,nIn(t)− δIm(t), (3)

dRm(t)

dt
= δIm(t) m = 1, 2, . . . N. (4)

At any time t, each node m is in any of the states with a total probability of 1
so that Sm(t) + Im(t) +Rm(t) = 1. In addition, the sum of rates of changes in the

state probabilities equals 0 so that dSm(t)
dt + dIm(t)

dt + dRm(t)
dt = 0. Therefore, we only

need to solve 2N simultaneous differential equations instead of 3N .

3.1. Weighted network-based model. Traditionally, any contact network is a
weighted graph representing the contact frequency and the proximity among the
nodes. We denote the contact weight between nodes m and n at time t wm,n(t)
such that 0 ≤ wm,n(t) ≤ 1. The spread of infectious disease takes place in contact
networks due to the contacts among susceptible and infected nodes. Therefore, the
actual infection rate from an infected node n towards a susceptible node m at time
t becomes βwm,n(t). Using the system of differential equations (2-4), we obtain the
following SIR epidemic approach for a weighted network:

dSm(t)

dt
= −Sm(t)β

N∑
n=1

wm,n(t)In(t), (5)

dIm(t)

dt
= Sm(t)β

N∑
n=1

wm,n(t)In(t)− δIm(t), (6)

dRm(t)

dt
= δIm(t) m = 1, 2, . . . N. (7)

Differential equations in (5 - 7) represent the system of equations in the optimal
control formulation to minimize both the total number of infected cases and the
reduction in contact weights.

4. Optimal dynamical weights. In this section, we formulate a continuous time
optimal control problem to minimize the total infection size by properly reducing
the contact weights among nodes within a finite time interval t ∈[0,Tf ]. Meanwhile,
our objective is to minimize the weight reduction with respect to original epidemic-
free contact weights (t = 0). Initially, we assume that there is no weight reduction
in the contact network at time t = 0; however, for t > 0, the contact network can
become a directed weighted graph in which wm,n(t) can be different from wn,m(t).
During the spread of an epidemic, t > 0, weights are reduced from their initial
epidemic-free values wn,m(0). In particular, we impose two bounds on each weight
(m,n): a) αwm,n(0) ≤ wm,n(t) and b) wm,n(t) ≤ wm,n(0), where α ∈ [0, 1] is
a minimum social level coefficient. These constraints have direct implications for
the network as follows: First, to preserve a minimum contact level among nodes
even during epidemics, and differently from the control constraint presented in
[6] where the lower bound equals 0, we introduce a positive lower bound for the
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Table 1. Definitions of the data inputs and the variables

Data input Definition

Tf Final time
β Infection rate
δ Cure rate
α Global minimum social contact coefficient

wm,n(0) Initial weight ∀ m,n ∈ N
Sm(0) Initial susceptible probability of node m
Im(0) Initial infection probability of node m

Variables Definition

wm,n(t) Link weight at time t
Sm(t) The susceptible probability of node m at time t
Im(t) The infection probability of node m at time t

weights, αwm,n(0) ≤ wm,n(t) where 0 < α < 1. Second, during an epidemic,
the level of contact between two nodes can not increase beyond the original level
(wm,n(0)). The value of α can be selected based on the type of applications. For
instance, if the contact network represents an aggregation of subpopulations, the
selection of α will be crucial because it controls the lower bound of the contact
frequency (travelling by airplane or commuting by ground transportation) between
two subpopulation. In this case, α can have heterogeneous values depending on the
subpopulations that are in contacts, and it becomes αm,n. Also, the value of α can
be set to 0 when a quarrantine scenario is proposed by decision makers like closing
schools and entertainment places. In such scenario, the contact within households
will be strengthened among the family members. Thus, another parameter can
be employed to consider the increase of contact strength within households. For
simplicity, we assume that α has a global value, and we only focus on the contact
weights reduction among individuals.

4.1. Optimal control formulation. For every node m, the infection probability
Im(t) as well as the susceptible probability Sm(t) are the state variables, while the
weight reduction (wm,n(0)− wm,n(t)) is the control function. The data inputs and
the variables are summarized in Table 1. The objective function is given by the
sum of a suitable cost function of the weight reduction, and the total infection size
as shown in the following equation:

Minimize

∫ Tf

0

( ∑
m,n∈N

[f(wm,n(0)− wm,n(t))]

+
∑
m∈N

βSm(t)
∑
n

In(t)wm,n(t)
)
dt (8)

The first term f(.) is a non-negative strictly convex function representing the
weight reduction cost, while the second term represents new infection cases at time
t. Moreover, the problem constraints are the differential equations (5) and (6) in
addition to the following weight constraint:

αwm,n(0) ≤ wm,n(t) ≤ wm,n(0) ∀ m,n ∈ N (9)
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The optimal control theory can be applied to any contact network having het-
erogeneous connectivity; however expensive numercial computation is required to
obtain the candidate (extremal) solutions of the control and the state functions.
Therefore, to highlight the dynamical properties of the optimal control function,
we analyze the candidate solution for homogeneously-mixing networks in which ev-
ery individual is in contact with all individuals in the network. The homogeneous
connectivity assumption simplifies the analysis of the optimal control problem as
shown below:

4.2. Case study: Homogeneously mixing population. Homogeneously mix-
ing population is used to model the spread of infectious diseases in large population
[2]. In addition, it is proposed to study within-household contact patterns [25, 5, 17]
such that every individual has the same number of contacts with other individu-
als within the household. Also the homogeneous mixing approach is a very strong
assumption having limited validity given the small-world nature of most human
contact networks. Such networks hold heterogeneous contact patterns. In addition,
the return on investment in the homogeneous mixing approach is low because the
return investment is equal for every individual. In the heterogeneous contact net-
works, the return of investment will depend on number of contacts per individual.
Further studies on the effect of heterogeneous contacts will be addressed in the
future work. Due to the homogeneous assumption, the spatial index m is dropped
from the susceptible probability, infection probability and the contact weight, and
these variables become S(t), I(t), and w(t), respectively. We denote the normal
contact weight wo instead of wm,n(0). It is worth noting that the optimization
problem is nonlinear and therefore it is not convex. The objective function becomes
as follows: Minimize the functional

J(S(t), I(t), w(t)) =

∫ Tf

0

(
f(wo − w(t)) + βS(t)I(t)w(t)

)
dt (10)

The function f(wo − w(t)) represents the weight reduction cost f(0) = 0. In
addition, we assume that f(wo − w(t)) is a strictly convex function. The second
term represents the fraction of new infection at time t. Therefore, the main objective
is to minimize a linear combination of the cost associated with the weight reduction
and the infection cost for all 0 < t ≤ Tf .For homogeneously mixing population, the
constraints become as follows:

dS(t)

dt
= −βS(t)I(t)w(t), (11)

dI(t)

dt
= βS(t)I(t)w(t)− δI(t), (12)

αwo ≤ w(t) ≤ wo. (13)

Hamiltonian methods and Pontryagin’s minimum principle [32] are applied to
different optimization problems for compartmental models [37, 8, 41, 14, 27, 28, 15]
to determine the explicit optimal control function and the optimal state variables.
Pontryagin theorem provides necessary conditions of optimality. Therefore, the
obtained solution is the unique candidate (extremal) to give the optimal solution.
We apply Pontryagin’s minimum principle and we derive the Hamiltonian function
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H as follows:

H(S(t), I(t), w(t), λI(t), λS(t)) = f(wo − w(t))

+βS(t)I(t)w(t)− δλI(t)I(t)

+(λI(t)− λS(t))βS(t)I(t)w(t). (14)

The co-state equations and the transversality conditions are as follows:

dλS(t)

dt
= − ∂H

∂S(t)
= −βI(t)w(t)− (λI − λS)βI(t)w(t), (15)

dλI(t)

dt
= − ∂H

∂I(t)
= −βS(t)w(t)− (λI − λS)βS(t)w(t) + λI(t)δ. (16)

λI(Tf ) = 0 (17)

λS(Tf ) = 0 (18)

Next, we proceed with the optimality condition as follows:

H(w∗(t), S∗(t), I∗(t), λ∗S(t), λ∗I(t)) ≤ H(w(t), S∗(t), I∗(t), λ∗S(t), λ∗I(t)) (19)

where w∗(t) is the candidate weight value at time t such that H(.) is minimized.
After substituting the Hamiltonian Eq. (14) in the optimality condition, we obtain
the following inequality:

f(wo − w∗(t)) + ψ∗(t)w∗(t) ≤ f(wo − w(t)) + ψ∗(t)w(t) ∀w(t) ∈ [αwo, wo]

where ψ(t) = βS(t)I(t)(1 + λI(t) − λS(t)). Let y(t) = wo − w(t) represents the

weight reduction such that 0 ≤ y(t) ≤ wo(1 − α) and d2f(y)
dy2 > 0. The inequality

becomes as follows:

f(y∗(t))− ψ∗(t)y∗(t) ≤ f(y(t))− ψ∗(t)y(t) ∀y(t) ∈ [0, wo(1− α)] (20)

Since y(t) = 0 is an admissible point and f(y(t) = 0) = 0, therefore, the following
inequality holds for all time t:

f(y∗(t))− ψ∗(t)y∗(t) ≤ 0. (21)

Since f(y(t)) ≥ 0 and 0 ≤ y(t) ≤ wo(1− α), then:

f(y∗(t)) ≤ ψ∗(t)y∗(t) (22)

showing that ψ∗(t) is a nonnegative function

ψ∗(t) = βS∗(t)I∗(t)(1 + λ∗I(t)− λ∗S(t)) ≥ 0. (23)

Since S∗(t) and I∗(t) > 0, then:

1 + λ∗I(t)− λ∗S(t) ≥ 0. (24)

Following the analysis in [22], we propose two lemmas that are used to show the
dynamic behavior of the weights in networks.

Lemma 4.1. The co-state variable λ∗I(t) is nonnegative, λ∗I(t) ≥ 0 for 0 ≤ t < Tf .

Proof. First, we apply the following function property: for any continuous and
differentiable function g(t) and g(t1) = x such that for any t > t1 we have g(t) > x,

then limt→t+1
g
′
(t) ≥ 0. Secondly, recall that λ∗I(Tf ) = λ∗S(Tf ) = 0 and λ∗

′

I (Tf ) =

−βS∗(Tf )w∗(Tf ), and λ∗
′

I (Tf ) < 0. Thirdly, we derive the proof by contradiction:
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Let ta be the time before Tf at which λ∗I(ta) < 0, and λ∗I(t) ≥ 0 for ta < t < Tf as
follows:

lim
t→t+a

λ∗
′

I (t) = lim
t→t+a

−βS∗w∗(1 + λ∗I − λ∗S) + λ∗Iδ (25)

Recall that 1 + λ∗I − λ∗S ≥ 0. Consequently, limt→t+a λ
∗′
I (t) is strictly negative,

which in turns contradicts the above property. Hence, ta does not exist. Therefore
λ∗I(t) ≥ 0 for 0 < t < Tf .

Lemma 4.2. The function ψ∗(t) is a nonnegative concave function in time.

Proof. The first derivative of ψ∗ is as follows:

ψ∗
′

= (λ∗
′

I − λ∗
′

S )βS∗I∗ + (1 + λ∗I − λ∗S)βS∗
′
I

+(1 + λ∗I − λ∗S)βS∗I∗
′

(26)

After rearrangement, it becomes as follows:

ψ∗
′

= −(1− λ∗S)βδS∗I∗. (27)

Equation (15) can be rewritten as λ∗
′

S (t) = −(1 + λ∗I − λ∗S)βI∗(t)w∗(t). Since

1 + λ∗I − λ∗S ≥ 0, λ∗S(Tf ) = 0 and λ∗
′

S (Tf ) < 0, the co-state variable λ∗S(t) is a
nonnegative decreasing function for time 0 < t < Tf . In addition, λ∗S(t) function
may equal 1 since 1 + λ∗I − λ∗S ≥ 0 and λ∗I ≥ 0. Therefore, the function −(1− λ∗S)
is a decreasing function in time with positive values (λ∗S > 1), then 0 (λ∗S = 1),
then negative values (λ∗S < 1). Also, the term βδS∗I∗ is positive, therefore, we

concluded that ψ∗
′

is a decreasing function in time from positive to negative values.
Consequently, ψ∗(t) is a nonnegative concave function with an inflection point in
time at λ∗S = 1.

Based on inequality (21), and the fact that ψ∗(t) is a concave function in time, we
state the following theorem, which shows the candidate dynamic weight reduction
in homogeneously mixing population.

Theorem 4.3. The candidate solution of the dynamic weight reduction y∗(t) during
the spread of an SIR epidemic in homogeneously mixing population is as follows:

y∗(t) =


0 if ∂f

∂y |y(t)=0 > ψ∗(t),

(∂f∂y )−1(ψ∗(t)) if ∂f
∂y |y(t)=0 ≤ ψ∗(t) ≤ ∂f

∂y |y(t)=(1−α)wo ,

(1− α)wo if ∂f
∂y |y(t)=(1−α)wo < ψ∗(t).

(28)

Proof. From Eq. (21), ∂(f(y(t))−ψ(t)y(t))
∂y(t) |y(t)=y∗(t) = 0 is evaluated to find the can-

didate weight reduction y∗(t). Therefore, we obtain y∗(t) as follows:

y∗(t) = (
∂f

∂y
)−1(ψ∗(t)) (29)

Since inequality (21) has to be preserved for all time t, Eq. (29) is applied if

and only if ∂f
∂y |y(t)=0 ≤ ψ(t) ≤ ∂f

∂y |y(t)=(1−α)wo is true. In addition, y∗(t) equals

its upper bound (1 − α)wo if ∂f
∂y |y(t)=(1−α)wo < ψ(t), Hence, Eq. (28) is obtained.

Consequently, candidate dynamical weight w∗(t) = wo − y∗(t) is obtained as well.
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Figure 1. Numerical evaluation of candidate dynamical weight
and candidate normalized infection size for a regular network given
different values of cure rate 0 ≤ δ ≤ 1 and constant infection rate
β = 1. The non-intervention policy represents the solution for a
constant control function w(t) = wo as shown in [10].

Figure (1(a)) shows the evaluation of the dynamical weights in time for a homo-
geneous network in which every node is in contact with two other nodes forming
a regular weighted graph. The simulation settings are as follows: 1) initial weight
wo equals 0.5, 2) infection rate β equals 1, 3) the weight reduction cost function is
convex with the form f(z) = z2, and 4) α = 0.1, S(0) = 0.8 and I(0) = 0.2. We se-
lect the value of β to be 1

λ1
where λ1 is the maximum eigenvalue of the undirected

weighted network (in our case λ1 = dregwo = 1 where dreg = 2 is the degree of
the regular weighted graph). Every curve in the figure represents the evaluation of
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the optimal control problem for a given cure rate δ value (0 ≤ δ ≤ 1). Thus, the
Figure shows that the amount of weight reduction increases (wo − w(t) increases)
for 0 ≤ δ ≤ 0.4, and then the weight reduction decreases (wo − w(t) decreases)
for 0.5 ≤ δ ≤ 1. In addition, Figure (1(b)) shows the numerical evaluations for
the total fraction of infection cases given different cure rate values 0 ≤ δ ≤ 1 and
a constant infection rate β = 1 for both the non-intervention policy and candi-
date solution. The non-intervention policy represents the solution when the contact
weight is constant w(t) = wo, and the normalized infection size is given by the

solution of the equation 1 − s(0)e
−(1−s∞)β

δ as reported by Daley and Gani in [10]
where s∞ and s(0) represent the final and initial fraction of susceptible population
in homogeneous networks, respectively. Ultimately, the candidate solution has a
lower fraction of infection than the non-intervention policy. We also notice that
for small and large values of cure rate, the candidate solutions coincide with the
corresponding non-intervention solutions. To clarify, two factors tend to reduce the
total infection size, the cure rate and the weight reduction. Meanwhile, there is
a tradeoff between their roles in reducing the infection size. In fact, a large cure
rate leads to reduced number of infections, and hence the weight reduction becomes
less effective; however, a very small cure rate leads to a large number of infections,
because the infection process is stronger than the cure process. Hence, the weight
reduction becomes less effective. For intermediate values of cure rates, we find that
the weight reduction is very effective. Overall, both the weight reduction and the
cure process together minimize the total infection size. The same effect is observed
for large value of infection rate, which decreases the effective cure rate, and for small
values of infection rate, which increases the effective cure rate. For example, for a
given cure rate in Figure (1(a)), the dynamical behavior of the weight is described
as follows: During the early phase of the epidemic spreading in the population, few
nodes are infected, and hence the weight reduction is not effective; however, when
the infection size increases, the weight reduction becomes more effective. When the
infection process becomes less dominant, the weight reduction decreases due to the
exponential decay of infection size, which is a property of the SIR model. Such
behavior of the dynamical weight is expected due to the concavity of ψ(t) in Eq.
(28).

5. Computational heuristics. The candidate solution, obtained through the
centralized optimal control framework, requires the global knowledge of the proba-
bility of infection for each node and the amount of contact reduction of each link.
From implementation point of view, the candidate solution requires large efforts.
Therefore, we introduce two heuristics, which require local knowledge of infection
to reduce the contact weights with the infectious neighbors. Each heuristic has a
distinct control function reflecting a behavioral response to the spread of epidemics.
Before we delve into the structure of each heuristic, we define the infection level
between every pair of nodes who are in contact, Inm(t), as the probability that node
m becomes infected because of being in contact with an infected neighbor n

dInm(t)

dt
= βSm(t)wm,n(t)In(t)− δInm(t). (30)

Also, we define the infection threshold Ī as an infection level that if the infection
level between infected neighbor node n and node m, Inm(t), is greater than Ī
(Inm(t) > Ī), the control function is triggered resulting in reduction of contact
weight wm,n(t) ≤ wo. Based on the definition of the infection level Inm(t) and
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Table 2. Proposed Bang-Bang controller heuristic

Weight equation Condition

wm,n(t) = wm,n(0) if Ī ≥ Inm(t), t ≤ Tb
wm,n(t) = αwo if Ī < Inm(t), Tb ≤ t ≤ Te
wm,n(t) = wo if Ī ≥ Inm(t), t ≥ Te

the infection threshold Ī, we define the structure of each heuristic in the following
subsections:

5.1. Bang-Bang controller heuristic. In this heuristic, once the infection prob-
ability of node m due to infection from neighbor n, Inm(t), exceeds the predefined
infection threshold Ī, the initial weight wm,n(0) reduces to the minimum social
level αwm,n(0) during the time period [Tb, Te] in which Inm(t) > Ī. As long as
Inm(t) ≤ Ī, the contact weight from node m to node n wm,n(t) does not change
from its normal value wm,n(0). Figure 2(a) and Table 2 shows mechanism of the
Bang-Bang controller heuristic. The Bang-Bang controller reflects the node’s im-
mediate response that once a node receives the infection from one or more infected
neighbors, the node reduces its contact weight with the infected neighbors to the
minimum social level. This heuristic also represents a type of homogeneous mitiga-
tion strategy in which the mitigation function (weight reduction profile) is the same
among all the nodes; however, every pair of nodes decides the start time and the
duration during which the contact weight is sharply reduced to its minimum level.

5.2. Piecewise nonlinear controller heuristic. The proposed control function
is inspired by the candidate dynamical contact weight for homogeneous networks
that is obtained using the optimal control theory. As shown in Section 4.2, during
the early phase of epidemic, the candidate contact weight is the normal weight wo,
and later when number of infected cases increases, contact weight is reduced non-
linearly. When number of infected decreases, normal contact weight wo is retrieved
nonlinearly. Therefore, we attempt to emulate the candidate weight reduction be-
havior such that each node reduces its contact weight with the infect neighbor in
a decentralized way. In addition, unlike to hte sharp contact weight transition
in Bang-Bang control function, piecewise nonlinear control function represents a
continuous weight transition. Consequently, the proposed contact weight is a non-
linearly decreasing function in time followed by a nonlinearly increasing function.
The nonlinear decreasing contact weight function depends on the infection rate β.
The normal contact weight wo between node m and infected neighbor n is contin-
uously reduced during the time period [Tb, Te] in which the infection level Inm(t)
is greater than the infection threshold Ī. When the infection level Inm(t) becomes
smaller than the infection threshold Ī, the normal contact weight wo is retrieved
continuously through a nonlinear increasing function. The node decreases and re-
trieves the contact weight with its infected neighbor(s) according to the rate of

change controller differential equations
dwm,n(t)

dt presented in table 3.
The motivation to propose this specific nonlinear weight controller is as follows:

- During the early phase of the spread of an epidemic, the infection size is very

small, and therefore, nodes do not change their contact levels
dwm,n(t)

dt = 0⇒
wm,n(t) = wm,n(0).



1240 MINA YOUSSEF AND CATERINA SCOGLIO

Time
 

 

Infection threshold Ī
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Figure 2. Demonstration of the heuristics mechanism. In Bang-
Bang heuristic, when the infection between two neighbor nodes
Inm(t) increases above the infection threshold Ī (t = Tb), the
contact weight is reduced from its normal value wo to the mini-
mum value αwo. When the infection decreases below the infection
threshold at time t = Te, the normal weight is retrieved w(t) = wo.
In piecewise nonlinear heuristic, the contact reduction follows a
nonlinear function in the time interval [Tb, Te] as shown in table 3
. If the reduced contact weight reaches the minimum level αwo at
time t < Te, the reduce contact weight becomes constant w(t) = wo
as shown in Figure 2(b). When the infection decreases below the
infection threshold at time t = Te, the normal weight is retrieved
nonlinearly as shown in table 3.
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Table 3. Proposed piecewise nonlinear controller heuristic

weight rate equation Condition
dwm,n(t)

dt = 0, wm,n(t) = wm,n(0) if Ī ≥ Inm(t), t ≤ Tb
dwm,n(t)

dt = −β2(wm,n(0)(1− α))(eβ(t−Tb)) if Ī < Inm(t), Tb ≤ t ≤ Te
dwm,n(t)

dt = 0 if Ī < Inm(t), Tb < t ≤ Te,
wm,n(t) = αwm,n(0)

dwm,n(t)
dt = (wm,n(0)− wm,n(t))(1− e−δ(t−Te)) if Ī ≥ Inm(t), t ≥ Te

- Due to a large susceptible population, the spread of the epidemic strengthens,
and the infection size starts to increase. Consequently, every node m decreases
contact level with each neighbor n according to the infection level Inm(t).

- If a neighbor n is persistently highly infected(Ī < Inm(t)) and meanwhile
the contact weight wm,n(t) reaches its minimum level αwm,n(0), the contact

weight remains constant (
dwm,n(t)

dt = 0 ⇒ wm,n(t) = αwm,n(0)) until the
infection level Inm(t) becomes lower than the infection threshold.

- When the mitigation time ends (t > Te), nodes recover their contacts following
a nonlinear increasing function, which is proportional to the cure rate δ until
their initial contact levels are retrieved (wm,n(0)).

Why these heuristics are proposed? We know that the candidate solution requires
global knowledge of the infection probabilities of the nodes and the amount of
weight reduction of the links, while each heuristic requires the local knowledge of
the infection probability of the neighbor(s). Bang-Bang heuristic represents a trivial
behavioral response that each node reduces its contact with the infected neighbor(s)
to the lowest contact level. The simplicity of Bang-Bang heuristic comes at the
expense of large weight reduction cost as we show in Section 6 that Bang-Bang
heuristic incures highest weight reduction cost. Piecewise nonlinear heuristic has a
more intelligent weight reduction strategy, which aims to reduce both the infection
cost and the weight reduction cost; However, due to continuously reducing the
contact weights, the efforts required to implement the piecewise nonlinear heuristic
is larger than the efforts required to implement Bang-Bang heuristic. Therefore,
the two heuristics have a tradeoff between the overall cost and the implementation
efforts.

6. Numerical evaluation. We performed extensive simulations on three types of
networks to evaluate the proposed heuristics. The first type is a small 5-node net-
work to evaluate the performance of the heuristics with respect to the candidate
solution. The small network size is suitable to obtain the candidate solution in rea-
sonable running time. On the other hand, it is hard to obtain the candidate solution
for large networks in polynomial running time. The second type is preferential at-
tachment networks, [3], and the third type is a survey-based contact network [38].
In addition, we briefly discuss the differences between our approaches and static
social distancing mitigation methods.

6.1. Candidate and heuristic solutions. To justify the performance of the
heuristics with respect to the candidate solution, the optimization problem and
the heuristics were applied to a small network with five nodes with initial contact
rate wm,n(0) equals 0.5 as shown in Figure 3. The candidate solution and the heuris-
tic solutions were found given different cure rates (0.1 ≤ δ ≤ 0.9). In Figure 4, we
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Figure 3. A 5-node network

report the total cost, the weight reduction cost and the normalized infection size.
The total cost for the candidate solution represents a lower bound while Bang-Bang
heuristic has the maximum total cost. For a large range of cure rate, the total cost
provided by the heuristics are close to the candidate solutions except for a small
cure rate (δ = 0.1), where the total cost of the heuristic solutions diverge from
the candidate solution. The infection size for the piecewise nonlinear heuristic is
lower than the infection size provided by the optimization problem and Bang-Bang
heuristic. However, the weight reduction has the lowest cost in the candidate so-
lution compared to the weight reduction cost from the two heuristics. Therefore,
we conclude that the optimal control approach balances the infection cost and the
weight reduction cost. In Figure 4, we also report the best infection threshold Ībest

at which the infection reduction has the lowest value for both the Bang-Bang and
piecewise nonlinear heuristics given different cure rates. We notice that the best
infection threshold is inversely proportional to the cure rate, and we make the same
observation for large networks as shown in Section 6.2.
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Figure 4. The numerical evaluation of the candidate and heuristic
solutions for a 5-node network given different cure rate δ.

6.2. Preferential attachment networks. Next, the proposed heuristics were ap-
plied to preferential attachment networks. Different cure rates δ, and infection
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Figure 5. Numerical evaluation of the normalized infection size
for both the Bang-Bang controller heuristic and the piecewise non-
linear controller heuristic given preferential attachment networks,
different cure rate 0.4 ≤ δ ≤ 0.9 and different infection threshold
Ī. The numerical evaluation is averaged over 20 runs. The best Ī
is the value at which the normalized infection size is minimal.
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Figure 6. Numerical evaluation of the weight reduction cost for
both the Bang-Bang controller heuristic and the piecewise non-
linear controller heuristic given preferential attachment networks,
different cure rate 0.4 ≤ δ ≤ 0.9 and different infection threshold
Ī(Ithreshold). The numerical evaluation is averaged over 20 runs.

threshold Ī were used with every heuristic, while the infection rate β was set
to be equal to the reciprocal of the epidemic threshold 1

λ1
[42], where λ1 is the

maximum eigenvalue of the original weighted contact network. Figures 5(a) and
5(b) show the normalized infection size for different infection thresholds Ī and cure
rates 0.4 ≤ δ ≤ 0.9 for Bang-Bang and piecewise nonlinear controller heuristics,
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respectively. All results were averaged over 20 different preferential attachment
networks, and each network has 104 nodes with initial contact weight value equals
wm,n(0) = 0.5 and minimum contact weight equals αwm,n(0) = 0.05. For Bang-
Bang control function, as shown in Figure 5(a), for a given δ and small Ī, the
infection size decreases until it reaches a minimum value, and it increases for higher
values of Ī until it reaches its highest value at which the mitigation strategy is no
longer effective. Therefore, small values as well as high values of Ī are not effective
to reduce infection cases. In addition, as shown in Figure 6(a), small values as well
as high values of Ī incur extreme high and low weight reduction costs, respectively.
Hence, for a given δ, there is a best Ībest value at which the infection size has
the lowest value as shown in Figure 5(a) with a moderate weight reduction cost as
shown in Figure 6(a). The above observations correlate with the finding by Bondes
et al. [7] that the optimal immunization investment is maximized for intermediate
values of infection probabilities, while the immunization investment is less effective
for low and high infection probabilities values. For instance, for δ = 0.9, the weight
reduction cost is 0 (not shown on the log scale) for any Ī ≥ 10−3 values. The same
observations were obtained for the piecewise nonlinear controller heuristic as shown
in Figures 5(b) and 6(b).

Below, we summarize the numerical evaluation obtained from testing both heuris-
tics as follows:

• As the cure rate δ increases, the best infection threshold Ībest decreases. To
clarify, high cure rate represents short infection time, and hence the proba-
bility that a susceptible node receives the infection from an infected neighbor
decreases. Therefore, smaller values of Ī for the mitigation strategy to be
effective are required.

• The normalized infection size for the piecewise nonlinear controller heuristic is
smaller than the normalized infection size for Bang-Bang controller heuristic
at every cure rate. Furthermore, the incurred weight reduction cost from the
piecewise nonlinear controller heuristic is lower than the incurred cost from
the Bang-Bang controller heuristic as shown in Figures 6(a) and 6(b). There-
fore, the piecewise nonlinear controller heuristic outperforms the well-known
Bang-Bang controller in both the infection size and weight cost. However,
every heuristic has different applications. For example, in Bang-Bang control
function, nodes simply change their activities to the minimum level with nodes
who are suspected to have the infection. In the piecewise nonlinear control
function, nodes prefer to maintain their contacts to levels that not only allow
them to interact with other nodes in the community, but that also keep them
to be cautious about receiving the infection from their infected neighbors.

6.3. Survey-based weighted contact network. We applied both Bang-Bang
and piecewise nonlinear heuristics to a survey-based contact network to study the
effect of the mitigation strategies on total infection size. The contact network
was created through a survey to study the spread of epidemics in rural regions
[38]. The survey was conducted in Clay Center, the county seat of Clay County
in the State of Kansas, and the network was created based on the responses of
Clay Center residents. The survey included questions about the number of times
that the respondents visit three main places, {R,W,G}, and questions about three
levels of contact that each respondent i makes per day. The three levels of contact
were defined as follows. 1) Proximity contact wPX,i,j , which happens when another



1246 MINA YOUSSEF AND CATERINA SCOGLIO

10
−5

10
−4

10
−3

10
−2

10
−1

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Infection threshold Ithreshold

F
ra

c
ti
o

n
 o

f 
in

fe
c
ti
o

n
 s

iz
e

 

 

Bang−Bang controller: Direct High contact

Bang−Bang controller: Direct Low contact

Piecewise nonlinear controller: Direct High contact

Piecewise nonlinear controller: Direct Low contact

Proximity contact

Figure 7. Numerical evaluation of the Bang-Bang and the piece-
wise nonlinear heuristics for the three types of contacts in the
survey-based contact network given the infection rate β = 0.36,
and the cure rate δ = 0.4.

person is passing within five feet, 2) Direct Low contact wDL,i,j , which happens
when a person is directly touching another person for a short time period, and
3) Direct High contact wDH,i,j , which happens when a person is directly touching
another person for a long time period. We used the survey responses to create a
weighted contact network with 138 nodes (respondents) and 9222 links (contacts).
Based on the responses of the residents, we formulated the link weights, which are
functions of the common locations that the nodes visit, and the frequency of daily
contacts and proximity. The weight between node i and node j is the average of
the three contact levels. For contact type x, we proposed the following equation:

wx,i,j = (1− (1− µi,jπx)nx,i)(1− (1− µi,jπx)nx,j ) (31)

where πx is a constant that depends on the level of contact x, nx,i is the frequency
of contact level x of respondent i, and µi,j quantifies the location responses for both
respondents i and j as follows:

µi,j =
1 + li,j
1 + d

(32)

where d is the total number of locations, and li,j represents the number of common
locations that respondents i and j used to visit. The total contact rate between
nodes i and j is as follows:

wPX,i,j + wDL,i,j + wDH,i,j
3

.

For more details about the survey questions and the link weights, we refer the reader
to the work in [38].

Bang-Bang and piecewise nonlinear heuristics were applied to every type of con-
tact between nodes i and j. For every heuristic applied to a certain type of contact,
say wx,i,j , the minimum contact level is αwx,i,j . For example, when Bang-Bang
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heuristic was applied to proximity contact, only the proximity contact rate was re-
duced. Similarly, the mitigation strategy was applied to the direct-low and direct-
high contacts. The same mitigation strategy process was used with the piecewise
nonlinear controller. For different values of infection thresholds, Figure 7 shows
that the mitigation of every type of contact has a different impact on the total
size of infection. To clarify, when the mitigation strategy is applied to direct high
contacts, the largest impact on the total infection size is obtained; however, the mit-
igation strategy has no impact on the proximity contact. In addition, the piecewise
nonlinear heuristic is more effective on the direct high contact than the Bang-Bang
heuristic.

6.4. Static social distancing. We discuss the differences between the proposed
heuristic approaches and static social distancing mitigation strategy. Consider that
the normal contact weights among nodes have the same value, say wo. In static
social distancing, the contact weight is reduced to its lowest level αw0 all the time.
In this case, the epidemic threshold increases from 1

woλ1
to 1

αwoλ1
, which in turn re-

duces the number of infection cases for any effective infection rate β
δ greater than the

epidemic threshold. Therefore, static social distancing mitigation strategy reduces
the number of infection cases; however, it incurs the maximum weight reduction
cost. On the other hand, in the proposed approaches, the contact weight dynami-
cally changes between its maximum and minimum values wo and αwo, respectively.
Hence, the contact network does not incur the maximum weight reduction cost
value, yet the number of infection cases is reduced. Therefore, our approaches out-
perform the static social distancing mitigation strategy in balancing minimization
of the number of infection cases and minimization of weight reduction cost.

7. Discussion. This study aims to integrate the optimal control theory with the
SIR compartmental model to minimize the total infection and the weight reduction
cost in a contact network during the spread of an epidemic. Differently from the
quarrantine scenario, we assume that the weight reduction is bounded from below
by a minimum contact level αwo that is greater than 0. The optimal control theory
provides a candidate solution for the state of each node and the amount of weight
reduction cost for every contact. It shows that every contact is reduced nonlinearly
when the infection risk is high, and then the original contact weight is retrieved
nonlinearly when the infection risk becomes low. This solution proves that even
if the contact weights are not set to 0 during the wave of an epidemic (as in the
quarrantine scenario), the infection is minimized and the contact weights are re-
duced intelligently to minimize the weight reduction cost. The candidate solution
is obtained through a centralized method, which requires the global knowledge of
the infection state of each individual in the contact network such that a contact
reduction decision is made based on minimization the overall cost. The contact
reduction between a pair of nodes takes place based on not only the infection state
of that pair of nodes but also on the infection state of all nodes and the amount
of overall contact reduction in the network. Therefore, the effort to implement the
candidate solution is high. On the other hand, the proposed heuristics aim to avoid
the requirement of global knowledge of the infection state of all nodes in the contact
network. Each heuristic provides a solution in a decentralized way that only requires
local knowledge of the infection state of the node’s neighbors. The two heuristics
present two different dynamical responses to the spread of epidemics. In Bang-
Bang heuristic, each node reduces its contact(s) with the infectious neighbor(s) to
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the minimum αwo if the infection level increases above the predefined threshold Ī.
The amount of effort that is required by every individual is less than the amount of
efforts to obtain a candidate solution using the optimal control theory. This heuris-
tic reflects the human response during the wave of an epidemic. The piecewise
nonlinear heuristic represents another human response which requires high efforts
to continuously observing the infection state of the neighbor(s) and to continuously
reducing the contact weights. Therefore, the candidate solution requires the highest
efforts in observing the infection states of all the nodes, followed by the piecewise
nonlinear heuristic solution which requires observing the infection state of the local
neighbor(s) and gradient contact reduction with the local neighbor(s), and finally
the Bang-Bang heuristic solution requires the least efforts because a nodes has to
observe the infection state of the local neighbor(s) and reducing the contact weights
to a constant value during the period of time of high infection risk.

The optimal control theory and the heuristics influence the outcomes of the
epidemic for moderate values of infection rates and cure rates. For extreme values
of infection rates and cure rates, the optimal control theory and the heuristics have
no effect on reducing the total infected cases in the contact network.

8. Summary. Below, we summarize our findings as follows:

• In homogeneous networks, the candidate contact weights are adaptive: To
balance minimization of the weight reduction cost and number of infection
cases, weights decrease nonlinearly from their normal values when the epi-
demic spreading process overwhelms the network, and then the normal contact
weight values are retrieved when the curing process overcomes the infection
process

• The optimal control problem addresses the relationship between the effective
cure rate and the optimal control function: For intermediate values of effective
cure rate, the values of weights are reduced dramatically from their normal
values.

• The piecewise nonlinear controller outperforms the Bang-Bang controller: The
number of infected cases and the incurred weight reduction cost obtained
by the nonlinear heuristic are lower than those obtained by the Bang-Bang
controller.

• The most effective strategy is the mitigation of direct-high contact: With a
nonlinear controller, the mitigation strategy of the direct-high contact is the
most effective strategy compared to the proximity and direct-low contacts.

9. Conclusions and future work. In this paper, we presented the adaptive con-
tact weighted networks, which minimize a linear combination of the total number
of infection cases and the weight reduction cost when an epidemic spreads in a
social contact network. We briefly presented the network-based SIR approach for
weighted networks, and we applied the optimal control theory to find the candi-
date adaptive network. In addition, we analytically found the candidate adaptive
homogeneous weighted networks, and we discussed the role of effective cure rate
and weight reduction to minimize both the amount of weight reduction and the
total number of infection cases. Moreover, we proposed two different heuristics to
find near-optimal solutions in a decentralized way. The two heuristics are based
on Bang-Bang control function, and piecewise nonlinear control function, respec-
tively. To evaluate the heuristics, we performed extensive numerical simulations
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on weighted preferential attachment networks and a survey-based contact network.
The results suggested that the piecewise nonlinear controller heuristic is more ef-
fective than the well-known Bang-Bang controller in minimizing both the infection
cases and the weight reduction cost.

Future work will focus on applying the optimal control theory to contact networks
in which the overall contact strength of every node will be adapted to minimize the
total infection size. In addition, we will study the effect of the global minimum
social level coefficient on the spread of epidemics in contact networks. In addition,
we will provide an optimal control approach that addresses the tradeoff between the
reward of strengthening the contact within households when a quarrantine scenario
is taking place in the contact network, and the cost that may be inquired due
to the awareness of every individual within the household. Also, we will apply
different numerical optimization methods to minimize a linear combination of the
final infection sizes and the weight reductions for every pair of nodes and the total
contact weight for every node.
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