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Abstract. We describe a necessary condition for zero-eigenvalue Turing in-

stability, i.e., Turing instability arising from a real eigenvalue changing sign
from negative to positive, for general chemical reaction networks modeled with

mass-action kinetics. The reaction mechanisms are represented by the species-
reaction graph (SR graph), which is a bipartite graph with different nodes

representing species and reactions. If the SR graph satisfies certain condi-

tions, similar to the conditions for ruling out multiple equilibria in spatially ho-
mogeneous differential equations systems, then the corresponding mass-action

reaction-diffusion system cannot exhibit zero-eigenvalue Turing instability for

any parameter values. On the other hand, if the graph-theoretic condition for
ruling out zero-eigenvalue Turing instability is not satisfied, then the corre-

sponding model may display zero-eigenvalue Turing instability for some pa-

rameter values. The technique is illustrated with a model of a bifunctional
enzyme.

1. Introduction. Spatially homogeneous concentrations of chemical species are
assumed in many dynamic models from cell biology. However, spatial diffusion
processes are important for the proper functioning of a cell; for example, for the
development, polarity and the formation of biological patterns referred to as mor-
phogenesis [20]. Therefore, cells can be viewed as reactors that are not well stirred,
where chemical species diffuse within and between the different compartments of a
cell.

Graph-theoretic methods are useful in biological applications since parameters
such as rate constants and diffusion coefficients are not entirely known for complex
chemical reaction networks. The relationship between the network’s structure and
different types of behavior such as multistability, oscillations or Turing instabili-
ties is crucial for understanding the properties of reaction mechanisms. Realistic
chemical reaction networks involve a large number of substances (genes, proteins,

2010 Mathematics Subject Classification. Primary: 92C15; Secondary: 80A30.
Key words and phrases. Chemical reaction networks, SR graph, reaction-diffusion systems,

Turing instability.
The second author is supported by NIH grant R01GM086881.

1207

http://dx.doi.org/10.3934/mbe.2013.10.1207


1208 MAYA MINCHEVA AND GHEORGHE CRACIUN

metabolites, signaling molecules) and reactions, creating large chemical (genetic,
metabolic, signaling) networks [25]. Therefore, it is necessary to develop graph-
theoretic methods applicable to complex chemical reaction networks.

Studying Turing instabilities in biochemical models involves the analysis of a
nonlinear system of reaction-diffusion equations. The first mathematical model
for pattern formation that uses a reaction-diffusion system was proposed by Alan
Turing in 1952. It was shown that patterns develop when an asymptotically stable
spatially homogeneous equilibrium in the absence of diffusion, becomes unstable in
the presence of diffusion [26]. In this work, the diffusion-driven instability is referred
to as zero-eigenvalue Turing instability, because it is due to a real eigenvalue crossing
the imaginary axis from left to right.

In the absence of diffusion, a chemical reaction network with mass action kinetics
gives rise to an ordinary differential equation (ODE) model where the rate constants
associated with the network are the parameters. A chemical reaction network with
species outflows or degradations is said to be injective if its ODE model has a neg-
ative Jacobian whose determinant is positive for all parameter values. If a chemical
reaction network is injective, then it does not have the capacity for multistability,
or, the existence of multiple positive equilibria [5]. We define principal subnet-
works (Definition 3.1) of a chemical reaction network, where the injectivity of a
principal subnetwork is defined similarly as for a reaction network. We show that if
there exists a non-injective principal subnetwork whose species set does not include
all species, then the corresponding reaction-diffusion model (defined in Section 6)
taken with mass action kinetics can exhibit zero-eigenvalue Turing instability for
some parameter values (rate constants and diffusion coefficients).

Chemical reaction networks are often represented by various types of graphs
[7, 9, 17, 18, 24]. The mass-action kinetics reaction network studied here is rep-
resented by a bipartite graph with different types of nodes for the species and the
reactions, and is referred to as the species-reaction (SR) graph [6]. The bipar-
tite graph representation is especially convenient for multi-molecular mass-action
networks, since it allows for different paths between the same species nodes going
through different reaction nodes. An inspection of the SR graph shows if the corre-
sponding reaction-diffusion model can exhibit zero-eigenvalue Turing instability for
some values of the parameters.

The ordinary differential equation counterpart to this problem has been studied
elsewhere [5, 6, 18, 27] and many of the results therein are essential for understanding
the theory in this paper. Similar graph-theoretic conditions for zero-eigenvalue
Turing instability have been obtain in [19, 27].

In Section 2 some preliminaries about the ordinary differential equation model
relevant to the corresponding reaction-diffusion system are explained. Principal sub-
networks of a chemical reaction network are defined in Section 3 and the conditions
for their injectivity are given in Section 4. In Section 5 the main ideas of the graph-
theoretic analysis are introduced. In Section 6 the corresponding reaction-diffusion
model of a reaction network and the graph-theoretic condition for zero-eigenvalue
Turing instability are presented. A model of a bifunctional enzyme is analyzed for
zero-eigenvalue Turing instability using the graph-theoretic condition in Section 6.

2. Reaction networks. We give a definition of a reaction network in terms of
the set of species, the set of complexes, and the set of reactions. Then we define
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the corresponding ordinary differential equations model with general mass action
kinetics.

Let R denote the set of real numbers, R+ the set of positive numbers, and R̄+

the set of nonnegative numbers. Given a set I, RI denotes the vector space of linear
combinations

∑
i∈I λii, generated by the elements of i ∈ I, with coefficients λi ∈ R.

By R̄I+ we denote the set of members of RI with λi ≥ 0 for all i ∈ I. By RI+ we

denote set of the members of RI with λi > 0 for all i ∈ I. The support of an element
x ∈ RI+ forms the set supp(x) = {i ∈ I : xi 6= 0}.

The complexes of a reaction network are to be understood as the objects at
the head or tail of reaction arrows. For example, the complexes of the reaction
A+B → C are A+B and C.

Definition 2.1. ([10, 11]) A chemical reaction network N = (S ,C ,R) consists of
three finite sets:
(i) a set S of species of the network,
(ii) a set C ⊂ R̄S

+ of complexes of the network,
(iii) a set R ⊂ C × C of reactions, with the following properties:

(a) (y, y) /∈ R for any y ∈ C ,
(b) for each y ∈ C there exists y′ ∈ C such that (y, y′) ∈ R or such that

(y′, y) ∈ R.

We write for each each complex y =
∑
s∈S yss where ys ≥ 0 if s ∈ S . We will

write y → y′ in place of (y, y′) when (y, y′) is a member of R. Also, if {y → y′, y′ →
y} ⊂ R we will denote the set {y → y′, y′ → y} by y 
 y′ and will say that y 
 y′

is a reversible reaction. If y → y′ ∈ R and y′ → y /∈ R, we say that y → y′ is an
irreversible reaction. For example, consider the reaction network

A+B 
 C, A→ 2B. (1)

In this case S = {A,B,C}, C = {A + B,C,A, 2B}, R = {A + B → C,C →
A+B,A→ 2B}. The first reaction in (1) is reversible and the second is irreversible.

Let c ∈ R̄S
+ denote the vector of species concentrations from S . Given a reaction

network N next we define some special classes of dynamical systems associated with
N .

Definition 2.2. A kinetics K for a reaction network N = (S ,C ,R) is an assign-
ment to each reaction y → y′ ∈ R of a rate function Ky→y′ : R̄S

+ → R̄+.

Definition 2.3. A kinetic system (S ,C ,R,K ) is a reaction network (S ,C ,R)
taken together with a kinetics K for the network.

In the next definition we use the following notation: for two vectors in R̄S
+ ,

u =
∑
s∈S

uss and v =
∑
s∈S

vss, we denote by uv the product
∏
s∈S

(us)
vs with the

assumption that 00 = 1.
Next we define a special type of kinetics referred to as a general mass action

kinetics. Similar generalizations of mass action kinetics have been discussed in
[15, 23, 29].

Definition 2.4. A kinetics K for a reaction network (S ,C ,R) is general mass
action if for each reaction y → y′ ∈ R there is a nonempty finite set Vy→y′ ⊆ RS

such that
Ky→y′(c) =

∑
v∈Vy→y′

kv,y→y′c
v, (2)
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where kv,y→y′ ∈ R+ for all v ∈ Vy→y′ . The elements v of the set Vy→y′ are called
kinetic orders of y → y′ and the constants kv,y→y′ ∈ R+ are called reaction rate
constants.

If the set Vy→y′ = {y} for all y → y′ ∈ R, then the rate functions Ky→y′(c) =
ky,y→y′c

y and K is called mass action kinetics [10]. In this case we denote ky→y′ =
ky,y→y′ , and we say that a rate function Ky→y′(c) = ky→y′c

y is of mass action type.
For example, the rate function Ky→y′ = kA+B→CcAcB corresponding to the first
reaction in example (6) is of mass action type. If instead of y = (1, 1, 0) the kinetic
order v = (1, 0, 0) is used, then the rate function becomes Ky→y′ = kA+B→CcA.

When the use of mass action kinetics is not suitable in applications, various
generalizations may be used [15, 29]. We will use general mass action kinetics to
define the kinetics of special reaction subnetworks (see Definition 3.1 below) of a
reaction network N with mass action kinetics.

Definition 2.5. A general mass action system (S ,C ,R,K ) is a reaction network
(S ,C ,R) taken together with general mass action kinetics K for the network.

Given a general mass action system, the differential equation system that governs
the evolution of the species concentration vector c ∈ R̄S

+ is defined next.

Definition 2.6. For a general mass action system (S ,C ,R,K ) the associated
differential equation system is

ċ =
∑

y→y′∈R

Ky→y′(c)(y
′ − y) =

∑
y→y′∈R

∑
v∈Vy→y′

kv,y→y′c
v(y′ − y). (3)

We will denote the right-hand side of the system (3) with general mass action
kinetics by

r(c) =
∑

y→y′∈R

∑
v∈Vy→y′

kv,y→y′c
v(y′ − y). (4)

In the case of mass action kinetics, the associated differential equation system (3)
in vector form becomes

ċ = r(c) =
∑

y→y′∈R

ky→y′c
y(y′ − y). (5)

for some vector k ∈ RR
+ of rate constants ky→y′ .

Definition 2.7. If c∗ ∈ RS
+ satisfies r(c∗) = 0 of a general mass-action system (3),

then c∗ is a positive equilibrium of (3).

Let 0 be the zero complex, which is understood to be the zero vector of R̄S
+ . As

explained in [5], outflow reactions such as A → 0 model the contributions of the
outflow stream or species degradation, while feed reactions such as 0 → A model
the contributions of the feed stream or species production.

Similarly to [5], in this paper we study the “augmented network” that contains
feed and outflow reactions (also called flow reactions) for all species. For example,
the augmented network of (1) is

A+B 
 C,A→ 2B, 0→ A→ 0, 0→ B → 0, 0→ C → 0. (6)



GRAPH-THEORETIC CONDITIONS 1211

The differential equations system with mass action associated with the network
(6) is

ċA = −kA+B→CcAcB − kA→2BcA + kC→A+BcC − kA→0cA + k0→A (7)

ċB = −kA+B→CcAcB + kC→A+BcC + 2kA→2BcA − kB→0cB + k0→B

ċC = kA+B→CcAcB − kC→A+BcC − kC→0cC + k0→C .

Assumption. From now on, it will be assumed that the reaction network (S ,C ,R)
is the augmented network with flow reactions for each species s ∈ S . Then, the set
of reaction R includes the set of true reactions Rt, the set of outflow reactions Ro

and the set of feed reactions Rf , i.e., R = Rt ∪Ro ∪Rf .

3. Principal subnetworks. In this section we define a special type of subnetworks
of a reaction network N , referred to as principal subnetworks. We will show in
Section 6 that the existence of a non-injective principal subnetwork (injectivity is
defined in Section 4) in the SR graph of a chemical reaction network is a necessary
condition for zero-eigenvalue Turing instability.

In order to form a principal subnetwork we consider a chemical reaction network
such as (6) and eliminate some of the species from the true reactions by changing
their corresponding coefficients from positive to zero. For example, if species A is
eliminated from reaction (6) then the principal subnetwork is

B 
 C, 0→ 2B, 0→ A→ 0, 0→ B → 0, 0→ C → 0. (8)

Note that the flow reactions in (8) remain the same. Therefore, the species set
of a principal subnetwork will be the same as the species set of the corresponding
reaction network N . However, only a subset of species from S will participate in
the true reactions, while all species will take part in the flow reactions. For the
reaction network (6) and its principal subnetwork (8), species B and C take part
in the true reactions, while species A takes part only in the flow reactions.

The complexes of a principal subnetwork will be defined in the same way as
the complexes of the original reaction network. For example, the complexes of the
reaction B → C from (8) are B and C, and in vector form (0, 1, 0) and (0, 0, 1),
respectively.

The true reactions of the original network N will be kept formally as such for a
principal subnetwork, even if they take the form of a flow reaction or the reaction
0→ 0. For example, the reaction 0→ 2B in (8) is considered a true reaction of the
subnetwork (8).

Next we give a formal definition of a principal subnetwork of a reaction network
N .

Definition 3.1. Consider a network N = (S ,C ,R) with species set S = {s1, s2,
. . . , sn}. Let αl = {i1, . . . , il} ⊆ {1, 2, . . . , n} and the set Sαl = {si1 , si2 , . . . , sil},
and denote its complement by S c

αl
. A principal subnetwork Nαl = (S̄ , C̄ , R̄)

consists of:
(i) the set of species S̄ = S ,
(ii) the set of complexes C̄ which consists of all complexes of flow reactions and
all complexes obtained by projecting on the span of Sαl the complexes in C that
appear in true reactions from Rt,
(iii) the set R̄ which consists of all flow reactions and all the projections on the
span of Sαl of true reactions from Rt.
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If a complex y ∈ C , then we denote its projection on Sαl by ȳ ∈ C̄ . If y → y′ is a
reaction in Rt we denote the projected reaction by ȳ → ȳ′ ∈ R̄t. We will use general
mass action kinetics (Definition 2.4) in order to define the kinetics associated with
a principal subnetwork Nαl . This is because we would like the differential equations
for the concentrations of the species s ∈ Sαl to be the same as the corresponding
mass action equations (5) for the original reaction network N . Therefore, the rate
function of a projected true reaction ȳ → ȳ′ ∈ R̄t needs to be the same as for
the corresponding reaction y → y′ ∈ Rt. Let p be the projection map for all true
reactions from Rt on the span of Sαl and the identity map for all flow reactions.
We will denote the forward map by p(y → y′) = ȳ → ȳ′ and the inverse map by
p−1(ȳ → ȳ′) = {y → y′ ∈ R | p(y → y′) = ȳ → ȳ′}. Then, the rate function of a
reaction ȳ → ȳ′ from Nαl using general mass action kinetics (2) is

Kȳ→ȳ′(c) =
∑

y→y′∈p−1(ȳ→ȳ′)

ky→y′c
y, (9)

where the sum is indexed by reactions y → y′ such that ȳ → ȳ′ is the projection
of reactions y → y′ on the span of Sαl . The sum in (9) is necessary since different
true reactions from Rt can project onto the same reaction from R̄t (see Example
3.2. below).

Therefore, the general mass action system of a principal subnetwork Nαl is

ċ =
∑

ȳ→ȳ′∈R̄

Kȳ→ȳ′(c)(ȳ
′ − ȳ)

=
∑

ȳ→ȳ′∈R̄

∑
(y→y′)∈p−1(ȳ→ȳ′)

ky→y′c
y(ȳ′ − ȳ)

=
∑

y→y′∈R

ky→y′c
y(ȳ′ − ȳ).

(10)

Equations in (10) that correspond to a species s ∈ S c
αl

have the simple form ċs =
−ks→0cs + k0→s since s participates in flow reactions only. Equations in (10) that
correspond to a species s ∈ Sαl have the form ċs =

∑
y→y′∈R ky→y′c

y(y′s − ys),
which is exactly the same equation as the corresponding equation in (5) for the
original reaction network N .

Example 3.1. Consider the reaction network from (6) and suppose that α2 =
{1, 2}. Then Sα2

= {A,B} and the corresponding principal reaction subnetwork is

A+B 
 0, A→ 2B, 0→ A→ 0, 0→ B → 0, 0→ C → 0. (11)

The set of complexes of (11) is C̄ = {A+ B,A, 2B, 0} and the set of its true reac-
tions is R̄t = {A + B → 0, 0 → A + B,A → 2B}. We choose the rate constants
for the projected reactions from (11) to be the same as for the corresponding re-
actions from (6). Mass action kinetics rate functions are used, except for the rate
function of 0→ A+B where general mass action kinetics is used with kinetic order
set V0→A+B = {(0, 0, 1)} leading to the rate function kC→A+BcC . Therefore, the
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system of differential equations of the principal subnetwork (11) in vector form is

ċ = kA+B→Cc
(1,1,0)

 −1
−1
0

 + kA→2Bc
(1,0,0)

 −1
2
0

 + kC→A+Bc
(0,0,1)

 1
1
0

+

k0→Ac
(0,0,0)

 1
0
0

 + kA→0c
(1,0,0)

 −1
0
0

 + kB→0c
(0,1,0)

 0
−1
0

+

k0→Bc
(0,0,0)

 0
1
0

 + kC→0c
(0,0,1)

 0
0
−1

 + k0→Cc
(0,0,0)

 0
0
1

 .

and componentwise is

ċA = −kA+B→CcAcB − kA→2BcA + kC→A+BcC − kA→0cA + k0→A (12)

ċB = −kA+B→CcAcB + kC→A+BcC + 2kA→2BcA − kB→0cB + k0→B

ċC = −kC→0cC + k0→C .

Example 3.2. Consider the reaction network (6) and now suppose that α1 = {1}.
Then Sα1

= {A}, and the corresponding principal subnetwork Nα1
is

A
 0, A→ 0, 0→ A→ 0, 0→ B → 0, 0→ C → 0. (13)

The set of complexes of (13) is {A, 0} and the set of its true reactions is R̄t = {A→
0, 0 → A}. The rate constants for the projected reactions from (13) are chosen
to be the same as for the corresponding reactions from (6), except for the true
reactions A+B → C and A→ 2B that project to A→ 0. Let the kinetic order set
VA→0 = {(1, 1, 0), (1, 0, 0)}. Then the rate constant for the kinetic order v = (1, 0, 0)
is kA→2B + kA→0 and the rate function is (kA→2B + kA→0)cA since A → 2B also
projects to A → 0. Also, for the kinetic order v = (1, 1, 0) the rate function is
kA+B→CcAcB . Similarly, for the kinetic order set V0→A = {(0, 0, 1), (0, 0, 0)}, the
corresponding rate function is kC→A+BcC + k0→A.

Let c = (cA, cB , cC)T , and by (9), we have

ċ = kA+B→Cc
(1,1,0)

 −1
0
0

 + (kA→2B + kA→0)c(1,0,0)

 −1
0
0

+

kC→A+Bc
(0,0,1)

 1
0
0

 + k0→Ac
(0,0,0)

 1
0
0

 + kB→0c
(0,1,0)

 0
−1
0

+

k0→Bc
(0,0,0)

 0
1
0

 + kC→0c
(0,0,1)

 0
0
−1

 + k0→Cc
(0,0,0)

 0
0
1

 .

The same system of differential equations, written componentwise, is

ċA = −kA+B→CcAcB − kA→2BcA + kC→A+BcC − kA→0cA + k0→A (14)

ċB = −kB→0cB + k0→B

ċC = −kC→0cC + k0→C .
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4. Injective principal subnetworks. In this section we will use properties of the
Jacobian matrix of the right-hand side r(c, k) of the ODE system (5) to introduce
chemical reaction networks referred to as injective networks [5]. Then we will define
injective principal subnetworks in a similar way. In Section 6 we will show that in-
jective networks cannot exhibit zero-eigenvalue Turing instability for any parameter
values.

Let {e1, . . . , en} be the canonical basis in Rn. Then, as described in [5], the
Jacobian matrix associated with the system (5) can be written as

J(c, k) =

 ∑
y→y′∈R

ky→y′c
y(y ∗ e1)(y′ − y), . . . ,

∑
y→y′∈R

ky→y′c
y(y ∗ en)(y′ − y)


(15)

where

y ∗ ei =
∑
k

ykeki
ci

=
yi
ci
, ci > 0

is a weighted scalar product. We will deal often with the negative Jacobian (15)

J−(c, k) =

 ∑
y→y′∈R

ky→y′c
y(y ∗ e1)(y − y′), . . . ,

∑
y→y′∈R

ky→y′c
y(y ∗ en)(y − y′)

 .
(16)

For example, the negative Jacobian matrix of the chemical network (6) with ODE
model (7) is

J−(c, k) (17)

=

kA+B→CcB + kA→2B + kA→0 kA+B→CcA −kC→A+B

kA+B→CcB − 2kA→2B kA+B→CcA + kB→0 −kC→A+B

−kA+B→CcB −kA+B→CcA kC→A+B + kC→0

 .

The notion of injective network was introduced in [5]. One of several equivalent
characterizations of injectivity described in [5] is given in the following definition.

Definition 4.1. A reaction network N = (S ,C ,R) with n species is injective if

det(J(c, k)) 6= 0 (18)

for all values of the rate constants k ∈ RR
+ and the concentrations c ∈ RS

+ .

Equivalently, it follows by Definition 4.1 that a reaction network is injective if
det(J−(c, k)) 6= 0.

Injective networks cannot have multiple positive equilibria, i.e., cannot exhibit
multistability, for any values of the reaction rate parameters k ∈ RR

+ [5]. It is shown
in [5] that any coefficient in the expansion of the determinant of the negative Jaco-
bian (16) equals the product of two determinants det(y1, .., yn) det(y1−y′1, .., yn−y′n)
for some choice of n reactions y1 → y′1, .., yn → y′n, and that a reaction network is
injective if and only if all such products of determinants are non-negative. In other
words, another characterization of the injectivity property of a reaction network is
given in the following theorem.

Theorem 4.1. ([5, Theorems 3.2, 3.3]) A reaction network N = (S ,C ,R) with n
species is injective if and only if

det(y1, .., yn) det(y1 − y′1, .., yn − y′n) ≥ 0 (19)
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for all choices of n reactions (some of which could be flow reactions) y1 → y′1, ..., yn
→ y′n in R.

By (16) it follows that, the determinant of the negative Jacobian det(J−(c, k))
is a polynomial over the variables given by the rate constants kyi→y′i ∈ R+ and the

concentrations cj ∈ R+ (see also (17)). In particular, since there is at least one
coefficient (19) in the expansion of det(J−(c, k)) which is strictly positive (obtained
by choosing all reactions that appear in (19) to be outflow reactions), it follows that
if the hypothesis of Theorem 4.1 holds, then det(J−(c, k)) > 0 for any k ∈ RR

+ and

c ∈ RS
+ .

The negative Jacobian matrix of the general mass action model (10) of a principal
subnetwork Nαl can be obtained similarly to (16) and equals

J−αl(c, k) =

 ∑
y→y′∈R

ky→y′c
y(y ∗ e1)(ȳ − ȳ′), . . . ,

∑
y→y′∈R

ky→y′c
y(y ∗ en)(ȳ − ȳ′)

 .
(20)

Since species s ∈ S c
αl

participate only in flow reactions, and ċs = −ks→0cs + k0→s,
it follows that (n − l) rows of the negative Jacobian (20) corresponding to species
s ∈ S c

αl
have non-zero entries ks→0 > 0 only on the diagonal.

Recall the definition of a principal subnetwork Nαl given in Definition 3.1.

Theorem 4.2. Consider a reaction network N = (S ,C ,R) with n species and
a principal subnetwork Nαl for some αl ⊆ {1, . . . n}, l = 1, . . . , n. Then, each
coefficient in the expansion of det(J−αl(c, k)) is equal to

det([y1, .., yn]) det([ȳ1 − ȳ′1, .., ȳn − ȳ′n])

for some choice of n reactions yi → y′i, = 1, . . . , n from R (some of which can be
flow reactions) projected on corresponding reactions ȳi → ȳ′i from R̄.

Proof. Since [5, Theorem 3.2] holds for any matrix M of the form

M(c, k) =

 ∑
y→y′∈R

ky→y′c
y(y ∗ e1)wy,y→y′ , . . . ,

∑
y→y′∈R

ky→y′c
y(y ∗ en)wy,y→y′

,
(21)

where the constant vectors wy,y→y′ are arbitrary, replacing wy,y→y′ = y − y′ by
ȳ − ȳ′ proves the theorem.

We define an injective principal subnetwork Nαl , similarly to an injective network
N . If the determinant of its Jacobian, or equivalently its negative Jacobian (20),

does not vanish for all values of the rate constants k ∈ RR̄
+ and the concentrations

c ∈ RS
+ , then Nαl is injective.

The next corollary gives an alternative definition for injectivity of principal sub-
networks. The proof follows the proof of [5, Theorem 3.3].

Corollary 4.3. Consider some network N and let Nαl for some αl ⊆ {1, . . . n},
l = 1, . . . , n be a principal subnetwork. Then Nαl is injective if and only if

det([y1, .., yn]) det([ȳ1 − ȳ′1, .., ȳn − ȳ′n]) ≥ 0

for all choices of n reactions y1 → y′1, . . . , yn → y′n from R and corresponding
projections ȳ1 → ȳ′1, . . ., ȳn → ȳ′n from R̄. Moreover, det(J−αl(c, k)) > 0 for all

values of rate constants k ∈ RR
+ and concentrations c ∈ RS

+ .
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Recall that if A is an (n × n) matrix and A[αl] denotes the submatrix of A
with rows and columns indices αl ⊆ {1, . . . , n}, l = 1, . . . , n, then det(A[αl]) is the
corresponding principal minor of order l [12]. Next we show that the determinant
of the negative Jacobian (20) for a principal subnetwork Nαl is a positive multiple
of the corresponding principal minor det(−J [αl]) of the negative Jacobian (16).

Lemma 4.4. Let αl be an arbitrary subset of {1, . . . , n} for some l ∈ {1, . . . , n}.
Any principal minor of the negative Jacobian (16) can be written as

det(J−[αl](c, k)) =
det(J−αl(c, k))∏
s∈S c

αl

ks→0
, (22)

where J−αl(c, k) is the negative Jacobian (20) associated with the model system (10)
of a principal subnetwork Nαl .

Proof. Let αl be an arbitrary subset of {1, . . . , n} for some l ∈ {1, . . . , n} and
det(J−[αl])(c, k) be the corresponding principal minor of the negative Jacobian
(16). Consider the negative Jacobian (20) and suppose that after row and col-
umn reordering the first l rows and l columns are occupied by rows and columns
with indices from the set αl (this requires an even number of switches of rows and
columns, so it produces no change of sign ). The remaining (n− l) rows of J−αl(c, k)
have a non-zero entry only on the diagonal, J−αl(c, k)[i, i] = ks, where s ∈ S c

αl

and i ∈ {n − l + 1, . . . , n}. Thus the matrix J−αl(c, k) has a block structure that
implies that its determinant equals the product of the determinants of its two diag-
onal blocks, where its (l × l) block is exactly J−[αl](c, k). Therefore equality (22)
holds.

Recall that if an (n× n) matrix A has positive principal minors, det(A[αl]) > 0,
for all subsets αl ⊆ {1, 2, . . . , n}, l = 1, . . . , n, then A is called a P -matrix [16].

Theorem 4.5. Consider some reaction network N = (S ,C ,R). Then, the fol-
lowing three conditions are equivalent:

(i) N is injective,
(ii) the principal subnetworks Nαl are injective for all αl ⊆ {1, . . . n}, l =

1, . . . , n,
(iii) the negative Jacobian matrix J−(c, k) is a P -matrix for all values of the rate

constants k ∈ RR
+ and all concentrations c ∈ RS

+ .

Proof. (i)⇒ (ii):
Consider some αl ⊆ {1, . . . , n}, and n reactions y1 → y′1, . . . , yn → y′n ∈ R with

corresponding projections ȳ1 → ȳ′1, . . ., ȳn → ȳ′n such that

det([ȳ1 − ȳ′1, .., ȳn − ȳ′n]) 6= 0. (23)

Then after possibly renaming the species, we can assume that the last n−l reactions
must be flow reactions (otherwise some column of the matrix above would be zero).
Therefore, by using linear combinations of these last n− l columns, we obtain

det([ȳ1 − ȳ′1, .., ȳn − ȳ′n]) = det([y1 − y′1, .., yn − y′n]). (24)

Since N is injective, we have

det([y1, . . . , yn]) det([y1 − y′1, .., yn − y′n]) ≥ 0 (25)

which implies

det([y1, .., yn]) det([ȳ1 − ȳ′1, .., ȳn − ȳ′n]) ≥ 0. (26)
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A→ 2B A+B 
 C

A

B

C
C

2B

A A+B

A+B

Figure 1. The SR graph of the reaction networks (1) and (6).

Therefore the principal subnetwork Nαl is injective.
(ii)⇒ (iii):
This follows from Lemma 4.4 and Corollary 4.3.
(iii)⇒ (i):
If J−(c, k) is a P -matrix, then det(J−(c, k)) > 0 which implies det(J(c, k)) 6= 0,

so N is injective.

5. The SR graph of a principal subnetwork. The SR graph (species-reaction
graph) of a reaction network N was first defined in [4, 6] and is a bipartite graph
where the nodes represent either species or reactions, and the edges encode informa-
tion about which species participate in which reactions. We modify the definition
of a SR graph for a principal subnetwork Nαl , αl ⊆ {1, . . . , l}, l ∈ {1, . . . , n}.

Definition 5.1. Consider some principal reaction subnetwork Nαl = (S̄ , C̄ , R̄),
αl ⊆ {1, . . . , l}, l ∈ {1, . . . , n}. The SR graph ΓNαl of Nαl is an unoriented graph
where each node of ΓNαl is either a species node or a reaction node. There is one
species node for each species in Sαl , there is one reaction node for each reversible
reaction in the set of true reactions R̄t, and there is one reaction node for each
irreversible reaction in R̄t. Each edge of the graph ΓNαl connects a species node to
a reaction node, as follows. Consider a species node s and a reaction node r given
by ȳ → ȳ′ or ȳ 
 ȳ′. If s ∈ supp(ȳ) then there is an edge between s and r and we
label it with the complex ȳ. Similarly, if s ∈ supp(ȳ′) then there is an edge between
s and r and we label it with the complex ȳ′.

Remark 5.1. (a.) If a species s is contained in both supp(ȳ) and supp(ȳ′) (as in
A + B → 2A), then the two edges joining the species node s to the reaction node
ȳ → ȳ′ are labeled with ȳ and ȳ′, respectively.
(b.) If l = n, then Nαn = N and its SR graph is the SR graph of the reaction
network ΓN as defined in [4, 6].

The SR graph of the reaction network (6) is shown in Figure 1.
Chemical reaction network properties, such as multistability, depend on the pres-

ence of configurations of edges and cycles in the SR graph that are especially im-
portant, and they are described in the definition below.

Definition 5.2. Consider the SR graph ΓNαl of some principal reaction subnetwork
Nαl . A pair of edges in ΓNαl that meet at a reaction node and have the same
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complex label is called a c-pair. A cycle that contains an odd number of c-pairs
is called an o-cycle. A cycle that contains an even number of c-pairs is called an
e-cycle. The stoichiometric coefficient of an edge is the coefficient of the species
adjacent to that edge in the complex label of the edge. An s-cycle is one for which,
if we alternately multiply and divide the stoichiometric coefficients of edges along
the cycle we obtain for the final result 1. An S-to-R chain in an SR graph is a
simple path from a species node to a reaction node. We say that two cycles in ΓNαl
have an S-to-R intersection if their common edges constitute an S-to-R chain or a
disjoint union of two or more S-to-R chains.

The SR graph ΓNαl of a principal subnetwork Nαl can be obtained from the SR
graph ΓN of the corresponding reaction network N by first removing all species
s ∈ S c

αl
and the edges connected to them, and then removing all isolated reaction

nodes. The reaction nodes of a principal subnetwork are relabeled to include only
species s ∈ Sαl . Similarly, the complexes over the edges are relabeled so that
they include only species s ∈ Sαl . For example, the SR graph of the principal
subnetwork (11) can be obtained from the SR graph of the reaction network (6)
shown in Figure 1 by removing the species node C and the edge attached to it, and
then relabeling the reaction node A+B 
 C by A+B 
 0.

The main result in [6, Theorem 6.1] describes a sufficient condition for injectivity
in terms of the SR graph. The statement of the theorem below is a modification
for a principal subnetwork of a reaction network. The proof follows the proof of [6,
Theorem 6.1].

Theorem 5.1. Consider some principal reaction subnetwork Nαl , αl ⊆ {1, . . . , n},
l = 1, . . . , n of a reaction network N , such that in its SR graph ΓNαl all cycles
are o-cycles or s-cycles, and no two e-cycles have an S-to-R intersection. Then the
principal reaction subnetwork Nαl is injective.

The next corollary follows from Theorem 4.5.

Corollary 5.2. Consider some reaction network N such that in its SR graph ΓN
all cycles are o-cycles or s-cycles, and no two e-cycles have an S-to-R intersection.
Then all of its principal subnetworks Nαl , αl ⊆ {1, . . . , n}, l = 1, . . . , n are injective.

In the next section we will show that the graph-theoretic condition described in
Theorem 5.1 and Corollary 5.2 is also related to the capacity of a reaction network
to exhibit zero-eigenvalue Turing instability.

6. Zero-eigenvalue Turing instability. In this section we show how the theory
from Section 4 and Section 5 can be applied to the corresponding reaction-diffusion
model of the system (5). We are particularly interested in a graph-theoretic condi-
tion that rules out zero-eigenvalue Turing instability which can arise when diffusion
is included in the model. On the other hand, if the graph-theoretic condition is
violated, we can infer that zero-eigenvalue Turing instability can occur for some
values of the parameters.

If the concentration vector c = c(x, t) contains spatially non-homogeneous func-
tions, the corresponding reaction-diffusion system to (5) with initial condition and
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no-flux boundary condition is

∂c

∂t
= D∆c+

∑
y→y′∈R

ky→y′c
y(y′ − y) , x ∈ Ω, 0 < t < T ; (27a)

c(x, 0) = c(0)(x) , x ∈ Ω; (27b)

∂c

∂ν
(x, t) = 0, x ∈ ∂Ω, 0 < t < T ; (27c)

where D = diag(d1, . . . , dn) is the diagonal matrix of diffusion coefficients di > 0,
i = 1, . . . , n and ∆ denotes the Laplacian in (27a). The directional derivative
normal to the boundary ∂Ω is denoted by ∂/∂ν in (27c). The set Ω ⊆ Rn is
bounded, open and connected with twice continuously differentiable boundary ∂Ω.
The initial condition functions satisfy c(0)(x) ≥ 0 for all x ∈ Ω, since they represent
concentrations.

The no-flux boundary condition (27c) is considered standard for systems studied
for Turing instabilities [20]. However, in order to observe a Turing pattern in a
chemical system, it is necessary for the system to be open to mass flow. Therefore,
it is assumed that the mass flow enters through the top or bottom boundary and
not through the side boundary.

We say that Turing instability occurs for the system (27a) with no-flux boundary
condition (27c) if a spatially homogeneous equilibrium c∗(k) > 0 is linearly asymp-
totically stable as a solution of the ordinary differential equation system (5) and
unstable as a solution of the corresponding reaction-diffusion system [3]. If, in ad-
dition, this instability occurs as a result of a real eigenvalue crossing the imaginary
axis from left to right, then we say that zero-eigenvalue Turing instability occurs.

Let the characteristic polynomial of the Jacobian matrix (15) be

det(λI − J(c, k)) = λn + ā1(c, k)λn−1 + . . .+ ān(c, k) (28)

where the solutions λi(c, k), i = 1, 2, . . . , n of det(λI − J(c, k)) = 0 are the eigenva-
lues of J(c, k).

The following proposition and corollary are standard in textbooks on advanced
linear algebra and can be found, for example, in [12, 16].

Proposition 6.1. The coefficients āl(c, k), l = 1, . . . , n, of (28) are sums of all
principal minors of order l of the negative Jacobian (16),

āl(c, k) =
∑

αl⊆{1,...,n}

det(J−[αl](c, k)).

If the Jacobian matrix J(c, k) has only eigenvalues with negative real parts, then
J(c, k) is said to be stable. If J(c, k) has at least one eigenvalue with a positive real
part, then J(c, k) is unstable.

The next corollary is a necessary condition for a stable matrix and its proof can
be found in [12].

Corollary 6.2. If the Jacobian J(c, k) is stable, then all coefficients of (28) are
positive, āl(c, k) > 0, l = 1, . . . , n.

The problem of Turing instability is related to the problem of stability of the
matrix J(c, k)−µjD, where µj ≥ 0, j ∈ N is an eigenvalue of the negative Laplacian
[19]. The eigenvalues µj , j ∈ N depend on the set Ω and form an increasing
sequence {µj} where µ1 = 0 and µj+1 > µj for j > 1. For convenience we let
µ = µj > 0 and µ will be treated as a continuous variable. If for µ = 0, the matrix
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J(c, k)−µD is stable and for some eigenvalue of the negative Laplacian µ = µj > 0,
the matrix J(c, k)− µD becomes unstable, as a single real eigenvalue changes sign
from negative to positive, then zero-eigenvalue Turing instability occurs [3]. For
large µ � 0, assuming the diffusion coefficients dj , j = 1, . . . , n are kept fixed, it
follows by Geršgorin’s theorem [16] that the matrix J(c, k)− µD is also stable.

It follows by the assumption for zero-eigenvalue Turing instability that the Jaco-
bian J(c, k) is stable for some equilibrium c = c∗(k) ∈ RS

+ and some values of the

rate constants k ∈ RR
+ . We can also assume that the diffusion coefficients dj > 0,

j = 1, . . . , n are arbitrary but fixed, since this will not alter the results presented
below. Therefore, we can assume that the only parameter involved in the matrix
J(c, k)− µD is µ > 0.

Let the characteristic polynomial of the matrix J(c, k)− µD be

P (λ) = det(λI − J(c, k) + µD) = λn + a1(µ)λn−1 + . . .+ an(µ), (29)

where the coefficients am = am(µ), m = 1, . . . , n.
The next proposition will be used in the proof of Theorem 6.4 below.

Proposition 6.3. (i) If a zero-eigenvalue Turing instability exists, then the ma-
trix J(c, k)−µD has a zero eigenvalue for some value of µ > 0, and an(µ) = 0
in (29).

(ii) If an(µ) = 0 for some value of µ > 0, then µ is an eigenvalue of J(c, k)D−1.
(iii) If J(c, k)D−1 has a positive eigenvalue µ > 0, then J−(c, k)D−1 is not a

P -matrix.
(iv) The matrix J−(c, k) is a P -matrix if and only if J−(c, k)D−1 is a P -matrix.

Proof. (i) This follows by the definition of zero-eigenvalue Turing instability and
an(µ) = det(µD − J(c, k)) = 0 for some µ > 0.

(ii) Since an(µ) = det(µD − J(c, k)) = 0 and det(µD − J(c, k)) = 0 if and only if
det(µI−J(c, k)D−1) = 0, it follows that µ > 0 is an eigenvalue of J(c, k)D−1.

(iii) Suppose the opposite, µ > 0 is an eigenvalue of J(c, k)D−1 and J−(c, k)D−1

is a P -matrix. Then µ is a root of the characteristic polynomial

p(µ) = det(µI − J(c, k)D−1) = µn + b1(c, k)µn−1 + . . .+ bn(c, k) = 0. (30)

By Proposition 6.1 any coefficient bm(c, k) is a sum of positive principal minors
of order m of the matrix J−(c, k)D−1. Since J−(c, k)D−1 is a P -matrix, it
follows that bm(c, k) > 0 for m = 1, . . . , n. Therefore, p(µ) > 0 which is a
contradiction.

(iv) By (16) it follows that

J−(c, k)D−1 =

 ∑
y→y′∈R

ky→y′c
y y ∗ e1

d1
(y − y′), . . . ,

∑
y→y′∈R

ky→y′c
y y ∗ en

dn
(y − y′)

 .
Then all principal minors of J−(c, k)D−1 are a positive multiple of the prin-
cipal minors of J−(c, k). Therefore, J−(c, k)D−1 is a P -matrix if and only if
J−(c, k) is a P -matrix.

We say that a reaction network N has the capacity for zero-eigenvalue Turing
instability, if the reaction-diffusion model (27a)–(27c) can display zero-eigenvalue
Turing instability for some parameter values of µ > 0.
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Theorem 6.4. If a reaction network N is injective, then N does not have the
capacity for zero-eigenvalue Turing instability.

Proof. Suppose that N is injective. Then by Theorem 4.5 the negative Jacobian
J−(c, k) defined in (16) is a P -matrix for all values of the rate constants k ∈ RR

+

and the concentrations c ∈ RS
+ . By Proposition 6.3 (iv), J−(c, k)D−1 is a P -

matrix since J−(c, k) is a P -matrix. By Proposition 6.3 (iii), the matrix J(c, k)D−1

does not have a positive eigenvalue µ > 0. By Proposition 6.3 (ii), the coefficient
an(µ) = det(µD − J(c, k)) 6= 0 of (29) for any µ > 0. By Proposition 6.3 (i),
zero-eigenvalue Turing instability does not exists for any µ > 0 including the values
of the eigenvalues of the negative Laplacian µj , j = 1, 2, . . .

The next corollary follows by Theorem 5.1 and Theorem 6.4.

Corollary 6.5. Consider some reaction network N such that in its SR graph ΓN
all cycles are o-cycles or s-cycles, and no two e-cycles have an S-to-R intersection.
Then the reaction network N does not have the capacity for zero-eigenvalue Turing
instability.

By Theorem 6.4 and Theorem 4.5 it follows that if a reaction network N has
the capacity for zero-eigenvalue Turing instability, then there exists a principal
subnetwork Nαl , αl ⊆ {1, . . . , n}, l ∈ {1, . . . , n} that is not injective. Moreover, we
show below that such a principal subnetwork satisfies the condition l < n.

Proposition 6.6. If a reaction network N has the capacity for zero-eigenvalue
Turing instability, then N contains a principal subnetwork Nαl , αl ⊆ {1, . . . , n},
l ∈ {1, . . . , n− 1} that is not injective.

Proof. If zero-eigenvalue Turing instability exists for some parameter values of µ,
then the polynomial (30) has a root µ > 0. Then, there should exist a coeffi-
cient of (30) such that bl(c, k) < 0 for some l ∈ {1, . . . , n − 1}, since bn(c, k) =
det(J−(c, k))/det(D) > 0. Therefore, a negative principal minor det(J−(c, k))[αl],
αl ⊆ {1, . . . , n}, l < n exists (at the same time the coefficient of (28), āl(c, k) > 0
by Corollary 6.2). By Lemma 4.4, it follows that det(J−αl(c, k)) < 0 and therefore
its expansion contains a negative summand. It follows by Corollary 4.3 that there
exists a principal subnetwork Nαl , l ∈ {1, . . . , n− 1} that is not injective.

A consequence of Proposition 6.6 is that, if a reaction network N has the capacity
for zero-eigenvalue Turing instability, then there exists a principal subnetwork Nαl ,
l < n whose SR graph does not satisfy the conditions of Theorem 5.1.

Remark 6.1. (a.) If zero-eigenvalue Turing instability exists for some µ > 0 and
if we assume that all of the diffusion coefficients are equal, i.e., if dm = d > 0
∀m, then J(c, k) − µdI has a positive eigenvalue λ̄ > 0. Therefore, J(c, k)
has a positive eigenvalue λ̄ + µd > 0 which is a contradiction since J(c, k) is
stable. Therefore different diffusion coefficients are a necessary condition for
zero-eigenvalue Turing instability, which is a well-known condition for two-
dimensional models.

(b.) If zero-eigenvalue Turing instability exists for some µ > 0, then a negative
coefficient bl(µ) < 0, l < n of (30) exists. Therefore a negative principal
minor det(J−(c, k))[αl]D

−1, αl = {i1, . . . , il}, l < n exists, since bl(µ), l < n
of (30) is a sum of all principal minors of J−(c, k)D−1 by Proposition 6.1.
The diffusion coefficients in the product di1di2 . . . dil where αl = {i1, . . . , il}
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A4 +A6 → A1 +A2

A1 +A2 → A1 +A4A1

A4 A2

A6

A1 +A5 → A5 +A6 A5 A2 +A5 
 A7

A7

A3A4 +A5 
 A3

A1 +A2

A4 +A6

A1 +A2

A1 +A2

A1 +A4
A1 +A4

A4 +A5

A4 +A5

A2 +A5

A7

A3
A4 +A6

A5 +A6
A5 +A6

A1 +A5

A2 +A5

A1 +A5

A1 +A2

Figure 2. The SR graph of the reaction network (31).

have to be chosen small (so that |det(J−(c, k)D−1)[αl]| is large) and the
remaining diffusion coefficients have to be chosen large (making the positive
principal minors in bl(µ) small) so that bl(µ) < 0. This condition is another
generalization of the condition for two-species systems that the ratio of the
diffusion coefficients should be much larger than one [28].

Example 6.1. A model for the bifunctional enzyme phosphofructo-2-kinase:fruc-
tose-2,6-bisphosphatase which is involved in the glycolysis (gluconeogenesis) switch
[13, 14] was studied in [19] for zero-eigenvalue Turing instability. We show here
that the chemical reaction network given in (31) below has the capacity for zero-
eigenvalue Turing instability using the graph-theoretic condition from Corollary
6.5. By Proposition 6.6 it follows that if the reaction network has the capacity for
zero-eigenvalue Turing instability, then a non-injective principal subnetwork that
does not include all species exists. By Theorem 5.1 the SR graph of a non-injective
principal subnetwork contains either an e-cycle that is not an s-cycle or contains
e-cycles with a S-to-R intersection.

We write the augmented chemical network of the bifunctional enzyme with flow
reactions using the notation in this article:

A1 + A2 → A1 + A4, (31a)

A4 + A6 → A1 + A2, (31b)

A1 + A5 → A5 + A6, (31c)

A4 + A5 
 A3, (31d)

A2 + A5 
 A7, (31e)

0→ Ai → 0 i = 1, . . . , 7. (31f)
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The SR graph of the chemical reaction network (31) is shown in Figure 2.
The mass-action kinetics reaction-diffusion system taken with nonnegative initial

condition and no-flux boundary condition is

∂cA1

∂t
=d1∆cA1

+ kA4+A6→A1+A2
cA4

cA6
− kA1+A5→A5+A6

cA1
cA5

(32a)

− kA1→0cA1
+ k0→A1

,

∂cA2

∂t
=d2∆cA2

− kA1+A2→A1+A4
cA1

cA2
+ kA4+A6→A2+A1

cA4
cA6

(32b)

− kA2+A5→A7cA2cA5 + kA7→A2+A5cA7 + k0→A2 − kA2→0cA2 ,

∂cA3

∂t
=d3∆cA3

+ kA4+A5→A3
cA4

cA5
− kA3→A4+A5

cA3
+ k0→A3

− kA3→0cA3
,

(32c)

∂cA4

∂t
=d4∆cA4

+ kA1+A2→A4+A1
cA1

cA2
− kA4+A6→A2+A1

cA4
cA6

(32d)

− kA4+A5→A3cA4cA5 + kA3→A4+A5cA3 − kA4→0cA4 + k0→A4 ,

∂cA5

∂t
=d5∆cA5 − kA4+A5→A3cA4cA5 + kA3→A4+A5cA3 − kA2+A5→A7cA2cA5 (32e)

+ kA7→A2+A5
cA7
− kA5→0cA5

+ k0→A5
,

∂cA6

∂t
=d6∆cA6

− kA4+A6→A1+A2
cA4

cA6
+ kA1+A5→A5+A6

cA1
cA5

(32f)

− kA6→0cA6 + k0→A6 ,

∂cA7

∂t
=d7∆cA7 + kA2+A5→A7cA2cA5 − kA7→A2+A5cA7 − kA7→0cA7 + k0→A7 .

(32g)

The SR graph of the reaction network (31) contains e-cycles with S-to-R inter-
sections. For example, the e-cycle through species nodes A1 and A4 and reaction
nodes A4 + A6 → A1 + A2 and A1 + A2 → A1 + A4, and the e-cycle through the
species node A1 and the reaction node A1 + A2 → A1 + A4 intersect at the edge
starting at species node A1 and ending at reaction node A1 +A2 → A1 +A4. There-
fore, by Corollary 6.5, the reaction network (31) can display zero-eigenvalue Turing
instability for some parameter values. Moreover, Proposition 6.6 tells us that the
reaction network (31) should contain at least one non-injective principal subnetwork
that does not include all seven species, if zero-eigenvalue Turing instability exists
for some parameter values. Two non-injective principal subnetworks that can lead
to zero-eigenvalue Turing instability in the reaction-diffusion model of (31) are

A1 → A1 +A4, A4 → A1, 0→ Ai → 0, i = 1, 4, (33a)

A4 +A6 → 0, A4 +A5 
 0, A5 → A5 +A6, 0→ Ai → 0, i = 4, 5, 6. (33b)

The SR graphs of the principal subnetworks (33) are shown in Figure 3. Clearly,
the principal subnetworks from (33) contain a S-to-R intersection between e-cycles,
and thus are not injective.

Turing patterns are obtained as a result of a zero-eigenvalue Turing instability
for some values of the parameters in [19]. Also, note the similarity between the prin-
cipal subnetworks in Figure 3 and the subnetworks referred to as critical fragments
in Figure 3 in [19], given as the structural reason for the zero-eigenvalue Turing
instability.
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A4 → A1

A4 +A6 → 0

A1 → A1 +A4A1

A4

A4

A6

A5 → A5 +A6 A5

A4 +A5 
 0

A4

A4 +A6

A1

A1

A1 +A4

A1 +A4

A4 +A5

A4 +A5

A4 +A6

A5 +A6

A5 +A6

A5

Figure 3. The SR graphs of the principal subnetworks (33) of the
reaction network (31).

7. Discussion. In this article we have obtained a necessary graph-theoretic con-
dition for zero-eigenvalue Turing instability in reaction-diffusion models of mass
action kinetics networks. This graph-theoretic condition is easy to use and applies
to general reaction networks with any number of species. Related algebraic condi-
tions for Turing instabilities in larger reaction-diffusion models are discussed, for
example, in [21, 22]. Using the obtained graph-theoretic condition, we are able to
find specific structures in the SR graph of a reaction network, referred to as non-
injective principal subnetworks (see Corollary 4.3 and the definition above it), that
are necessary for the existence of zero-eigenvalue Turing instability.

The graph-theoretic criterion obtained in this article is related to the graph-
theoretic condition for zero-eigenvalue Turing instability in [19, 27], but is easier to
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apply in practice. This criterion relies on showing that the negative Jacobian of the
reaction rate function is a P-matrix. Other methods for showing that the negative
Jacobian is a P-matrix are discussed in [1, 2, 8], and may apply for reaction networks
whose dynamics is not necessary mass action, or even for dynamical systems that
are not derived from reaction networks.

Time delay systems are often used in genetic modeling with the delays represent-
ing transcription and translation times. In future work we plan to obtain similar
graph-theoretic condition for delay-induced instability in terms of cycles in the SR
graph of a mass-action reaction network.
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