
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2013.10.1173
AND ENGINEERING
Volume 10, Number 4, August 2013 pp. 1173–1205

THE IMPACT OF AN IMPERFECT VACCINE AND PAP

CYTOLOGY SCREENING ON THE TRANSMISSION OF

HUMAN PAPILLOMAVIRUS AND OCCURRENCE OF

ASSOCIATED CERVICAL DYSPLASIA AND CANCER

Tufail Malik

Department of Applied Mathematics and Sciences

Khalifa University of Science, Technology and Research
PO Box 127788, Abu Dhabi, UAE

and

Department of Mathematics, University of Manitoba
Winnipeg, Manitoba, R3T 2N2, Canada

Jody Reimer

Mathematical Institute, University of Oxford

24-29 St Giles’, Oxford OX1 3LB, UK

Abba Gumel

Department of Mathematics, University of Manitoba

Winnipeg, Manitoba, R3T 2N2, Canada

Elamin Elbasha

Merck Research Laboratories, UG1C-60, PO Box 1000

North Wales, PA 19454-1099, USA

Salaheddin Mahmud

Community Health Sciences
University of Manitoba, Winnipeg, Manitoba, Canada

and

Winnipeg Regional Health Authority
Winnipeg, Manitoba, Canada

(Communicated by Christopher M. Kribs-Zaleta)

Dedicated to Carlos Castillo-Chavez on the Occasion of his 60th Birthday

2010 Mathematics Subject Classification. Primary: 92D30; Secondary: 37N25.
Key words and phrases. Human papillomavirus, cervical cancer, Pap cytology screening, vac-

cine, backward bifurcation, endemic equilibrium.

1173

http://dx.doi.org/10.3934/mbe.2013.10.1173


1174 T. MALIK, J. REIMER, A. GUMEL, E. ELBASHA AND S. MAHMUD

Abstract. A mathematical model for the natural history of human papillo-
mavirus (HPV) is designed and used to assess the impact of a hypothetical

anti-HPV vaccine and Pap cytology screening on the transmission dynamics of

HPV in a population. Rigorous qualitative analysis of the model reveals that
it undergoes the phenomenon of backward bifurcation. It is shown that the

backward bifurcation is caused by the imperfect nature of the HPV vaccine or

the HPV-induced and cancer-induced mortality in females. For the case when
the disease-induced and cancer-induced mortality is negligible, it is shown that

the disease-free equilibrium (i.e., equilibrium in the absence of HPV and associ-

ated dysplasia) is globally-asymptotically stable if the associated reproduction
number is less than unity. The model has a unique endemic equilibrium when

the reproduction threshold exceeds unity. The unique endemic equilibrium is

globally-asymptotically stable for a special case, where the associated HPV-
induced and cancer-induced mortality is negligible. Numerical simulations of

the model, using a reasonable set of parameter values, support the recent rec-
ommendations by some medical agencies and organizations in the USA to offer

Pap screening on a 3-year basis (rather than annually).

1. Introduction. Cervical cancer, the second most frequent form of cancer among
women worldwide, is an important global public health problem [18]. In 2002, an
estimated 529,000 new cases of cervical cancer occurred worldwide, representing
nearly 10% of all cases of cancer among women [18]. An estimated 1,300 Canadian
women were diagnosed with invasive cervical cancer in 2009, corresponding to an
annual incidence rate of 7 per 100,000 women [6].

There is overwhelming epidemiologic and experimental evidence that cervical
infection with certain “high-risk” types of the human papillomavirus (HPV) is re-
sponsible for virtually all cervical cancer cases [20, 54]. Genital HPV infection is
the most common sexually-transmitted disease in the US and Canada [20]. It is
estimated that up to 75% of women may eventually become infected in their life-
time [29] (some other studies, such as those reported in [31, 41, 44], show that up
to 70% of sexually-active men and women acquire HPV infection at least once in
their lifetime). The HPV infection is prevalent among younger women, with evi-
dence of infection found in 5-40% of asymptomatic women in the reproductive age
group. Fortunately, most of these infections are transient (last less than a year) and
asymptomatic. However, persistent infection with thirteen or so high-risk (onco-
genic) HPV (HR-HPV) types could lead to cancer [37].

The natural history of cervical cancer is perhaps the best understood of all ma-
lignancies. Cervical carcinogenesis is a complex stepwise process characterized by
slow progression over a continuum of increasingly more severe precancerous changes
known collectively as cervical intraepithelial neoplasia (CIN) [20]. Depending on
the extent and severity of dysplastic features, the spectrum of CIN is traditionally
divided into three histopathological categories, namely: CIN1, CIN2 and CIN3. In
CIN1, cells with malignant changes are limited to the superficial layer of the cervical
epithelium. Most CIN1 lesions are likely to disappear without treatment. However,
a small percentage may progress to high-grade CIN (CIN2 and CIN3). This (high)
grade CIN is characterized by more severe dysplastic changes and higher degree of
epithelial basal cell involvement. The risk of progression to invasive cervical cancer
increases significantly with worsening CIN grades [29].

In most developed countries, Pap cytology screening for the early detection of
cervical neoplasia has been successful in reducing cervical cancer incidence and mor-
tality, especially in jurisdictions with organized screening programs [10]. However,
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Pap cytology, as a primary screening tool, has important limitations. A single Pap
smear has both low sensitivity (approximately 51% [35]) and poor specificity which
necessitates repeated screening at regular intervals throughout adulthood. In many
countries, women are screened annually starting at the initiation of sexual activity
[47]. The present policy in the Canadian province of Manitoba requires all women
18 years or older to undergo annual screening with conventional Pap cytology if
they have ever been sexually-active. After 3 consecutive normal smears, screening
is continued at 2-year intervals [43]. This policy could result in a woman undergoing
27 routine smears in her lifetime assuming full compliance and no abnormal results.
Some countries offer Pap screening at a less frequent interval (see, for instance,
[25, 30] for the screening guidelines in Norway). Furthermore, some agencies in
the USA (such as American Cancer Society, American Society for Colposcopy and
Cervical Pathology, and American Society for Clinical Pathology [46]) have recently
recommended Pap screening to be carried out every three years.

The recent introduction of effective vaccines against HPV is expected to reduce
the burden of cervical cancer substantially [23]. However, screening for cervical
cancer will still be needed because about 30% of cervical cancers are caused by
types other than the two high-risk HPV (HR-HPV) types targeted by the current
vaccines (Types 16 and 18) [38], and because women who are already infected will
continue to develop cervical cancer [19]. In the future, the cost-effectiveness of
Pap screening may be significantly reduced because as the prevalence of cervical
neoplasia decreases, the positive predictive value of the Pap test will also decrease,
and as a result, more women will be referred for unnecessary diagnostic procedures
and follow-up [19].

Mathematical modeling is a useful tool for assessing the potential impact of
intervention strategies against HPV infection (and the associated cervical cancer),
such as mass vaccination and Pap screening. A number of authors have reported on
the use of such modeling to evaluate the impact of HPV vaccine [1, 2, 4, 9, 13, 16].
In particular, Al-arydah [2] developed a two-sex, age-structured model to describe
the vaccination program for an HPV vaccine in childhood (under 13 years) and
adult stages. It is shown that vaccinating a single age cohort in one gender can
result in eventual control of HPV across all age groups. Furthermore, Elbasha and
Galvani [13] showed that for the case of synergistic interaction between HPV types,
the use of mass vaccination may reduce the prevalence of HPV types that are not
included in the currently available HPV vaccines. Models for the combined impact
of HPV vaccination and Pap screening have also been published in the literature
(see, for instance, [15, 17, 24, 39, 40]). Myers et al. [39] proposed a model for the
natural history of HPV infection and cervical carcinogenesis.

The purpose of the current study is to extend some of the aforementioned studies
by designing a new and comprehensive sex-structured (male and female) model for
the natural history of cervical cancer, and use the model to assess the public health
impact of mass vaccination and Pap screening of sexually-active females. Although
there are many oncogenic HPV types, this theoretical study only considers the
dynamics and control of the two vaccine-targeted oncogenic types (Types 16 and
18). Furthermore, the only modality of screening considered in this study is Pap
screening (and not HPV DNA testing). The model is formulated in Section 2 and
analysed in Section 3. The impact of vaccination and screening are assessed in
Section 4.



1176 T. MALIK, J. REIMER, A. GUMEL, E. ELBASHA AND S. MAHMUD

2. Model formulation. The model is formulated as follows. The total sexually-
active female population at time t, denoted byNf (t), is split into the sub-populations
of unvaccinated susceptible (Sf (t)), susceptible individuals vaccinated against the
relevant vaccine-targeted types (V (t)), HPV-infected (If (t)), HPV-infected with
persistent infection (P (t)), HPV-infected individuals with undetected CIN (three
grades, Qi(t); i = 1, 2, 3, representing low-, medium- and high-grade squamous in-
traepithelial lesions, respectively), infected individuals with detected CIN (three
grades, Qid; i = 1, 2, 3), those with undetected cancer (C(t)), those with detected
cancer (Cd(t)), those who recovered from infection or the CIN without developing
cancer (Rf (t)) and those who recovered from cancer (Rc(t)), so that

Nf (t) = Sf (t) + V (t) + If (t) + P (t) +

3∑
i=1

Qi(t)

+

3∑
i=1

Qid(t) + C(t) + Cd(t) +Rf (t) +Rc(t).

The total sexually-active male population, denoted by Nm(t), is sub-divided into
susceptible (Sm(t)), infected (Im(t)) and recovered (Rm(t)) males. Hence,

Nm(t) = Sm(t) + Im(t) +Rm(t).

The population of unvaccinated susceptible females (Sf ) is generated by the
recruitment of new sexually-active females (at a rate πf ; a fraction, φ, of which is
vaccinated). Although this study does not explicitly model the various HPV types,
it is assumed that the theoretical vaccine targets some HPV types. The vaccines
currently in the market are GSK’s bivalent Cervarix (which targets HPV Types 16
and 18) and Merck’s quadrivalent Gardasil (which targets HPV Types 6, 11, 16,
18). These vaccines, which have been approved for use in a number of countries,
including Canada [44], have 90-100% efficacy against infection with Types 16 and
18 [22, 53].

The unvaccinated susceptible female population is decreased by the acquisition
of HPV infection, following effective contact with infected males, at a rate λm, given
by

λm =
βmcfIm
Nm

,

where βm is the proportion of potentially infectious contacts which result in the
transmission of infection from males to females and cf is the average number of
contacts per female per unit time. It is also decreased due to natural death (at a
rate µf ; females in all compartments suffer natural death at this rate, µf ).

The class of vaccinated susceptible females (V ) is populated by the vaccination
of new sexually-active females (at the aforementioned rate πfφ). It is decreased
by HPV infection (at a reduced rate (1 − εv)λm, where 0 < εv ≤ 1 represents the
vaccine efficacy against HPV infection) and natural death. It is assumed that the
vaccine does not wane during the period under consideration [16]. The population
of infected females (If ) is generated by the infection of unvaccinated and vacci-
nated susceptible females. It is assumed that a fraction, r1, of the infected female
population recovers (at a rate σfr1), while the remaining fraction, 1− r1, develops
persistent infection (and moves to the class P at the rate σf (1− r1)). It is assumed
that recovery confers permanent immunity against re-infection with HPV. It should
be mentioned that although re-infection (especially with a different HPV strain) is
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possible in HPV dynamics, the model (3) does not incorporate re-infection. The
reader is referred to [13] for a discussion of immunity against HPV. The class of
infected females is further reduced by natural death and infection-induced death
(at a rate δf ).

The population of infected females with persistent infection (P ) is generated
by the fraction (1 − r1) of infected females in the If class that develop persistent
infection (at the rate (1 − r1)σf ). It is decreased by progression to Grade 1 of
undetected CIN (at a rate κp), recovery (at a rate ψ0) and natural death. The
population of infected females in Grade 1 of undetected CIN (CIN1) is populated
by females with persistent infection (at the rate κp) and those regressing from CIN
Grade 2 (at a rate κq), and is diminished by recovery (at a rate ψ1), progression to
undetected CIN Grade 2 (at a rate ζ1), detection (at a rate α1) and natural death.
The class of infected females in Grade 2 of undetected CIN (CIN2) is generated by
progression from CIN Grade 1 (at the rate ζ1), and is decreased by remission to CIN
Grade 1 (at a rate κq), recovery (at a rate ψ2), progression to Grade 3 (at a rate
ζ2), detection (at a rate α2) and natural death. Similarly, the population of those
in undetected CIN Grade 3 (CIN3) is generated at the rate ζ2, and is diminished
by recovery (at a rate ψ3), development of cervical cancer (at a rate ζ3), detection
(at a rate α3) and natural death.

The population of females with detected CIN Grade 1 (Q1d) is populated by the
detection of undetected infected females in class Q1 (at the rate α1) and by the
regression of those in Q2d class (at a rate κd). It is decreased by progression to
detected CIN Grade 2 (at the rate ζ1), recovery (at a rate ρ1) and natural death.
The class of detected CIN Grade 2 (Q2d) is generated by the detection of infected
individuals in the Q2 class (at the rate α2) and by progression of those in the Q1d

class (at the rate ζ1). It is decreased by remission to Q1d class (at the rate κd),
progression to Grade 3 (at the rate ζ2), recovery (at a rate ρ2) and natural death.
Similarly, the population of those in detected CIN Grade 3 class (Q3d) is generated
at the rates α3 (for those in Q3 class) and ζ2 (for those females progressing from
Q2d class), and is decreased by recovery (at a rate ρ3) and natural death.

The detection rate, αi i = 1, 2, 3, is an aggregate parameter that depends on the
proportion of sexually-active females screened for cervical dysplasia (χ - henceforth
referred to as ‘proportion screened’), the screening sensitivity of the Pap test in
the respective CIN grade (εi, i = 1, 2, 3) and the screening frequency per year (∇).
Thus for the present model, it is defined as

αi = χεi∇, i = 1, 2, 3

Van de Velde et al. [52] assume the Pap test to be 60% sensitive for the detection
of CIN Grade 1 and 78% sensitive for Grades 2 and 3. They assume the proportion
screened (χ) to range from a low 7% (in the age group 70-100) to 32% (in the age
group 20-29) per year. The proportions screened vary from 37% in the Canadian
provinces of British Columbia and Ontario to 44% in Nova Scotia [26]. As the
base-case Pap test assumption, the current model assumes χ = 0.32. Due to the
wide range of values reported in the literature, the sensitivity of the model to the
proportion screened (χ) is examined in Section 4.4.

The population of individuals with cervical cancer (C) is generated by individuals
in the Q3 class who develop cancer (at the rate ζ3). It is decreased by cancer
detection (at a rate αc). If undetected, the population of individuals with cervical
cancer suffers an additional cancer-related mortality (at a rate δc). The population



1178 T. MALIK, J. REIMER, A. GUMEL, E. ELBASHA AND S. MAHMUD

of females with detected cervical cancer (Cd) is populated by the detection of females
in the cancer class (at the rate αc) and decreased by recovery (at a rate γ), natural
death, and cancer-related death (at a rate δcd).

The population of infected females who recovered from cervical cancer (Rc) is
generated by the recovery of females with detected cancer (at the rate γ) and is
decreased by natural death. Similarly, the population of those who recovered from
HPV infection and CIN (Rf ) is generated by the recovery of infected individuals
in the If , P, Q1d, Q2d, Q3d, Q1, Q2 and Q3 classes, and is decreased by natural
death.

The population of susceptible males (Sm) is generated by the recruitment of
new sexually-active males (at a rate πm). It is decreased by infection, following
effective contact with infected females (it is assumed that only infected females in
the compartments If and P can transmit infection to males) at a rate λf , given by

λf =
βfcm(If + θP )

Nf
,

where βf is the proportion of potentially infectious contacts which result in the
transmission of infection from females to males and cm is the average number of
contacts per male per unit time.

The modification parameter θ, 0 < θ ≤ 1, accounts for the variability in the
transmission probability of individuals in the P class in relation to those in the If
class. It is assumed that infected females with CINi (i = 1, 2, 3) are not infectious.
Males in all epidemiological compartments suffer natural death at a rate µm. The
population of infected males is generated at the rate λf , and diminished by recovery
(at a rate σm) and natural death. No persistent infection or disease-related mortality
is assumed in males.

Furthermore, the following conservation law (for number of sexual contacts made
by males balancing those made by females) [16] is assumed to hold:

cmNm(t) = cfNf (t). (1)

Male sexual partners are assumed to be abundant, so that females can always have
enough number of sexual partners per unit time. Hence, it is assumed that cf is

constant, and cm is calculated from the relation cm(Nm, Nf ) =
cfNf

Nm
. Using (1),

the infection rates λm and λf are given by

λm =
βmcfIm
Nm

, λf =
βfcf (If + θP )

Nm
. (2)

Based on the above formulations and assumptions, and using the conservation law
(1), it follows that the model for the natural history of HPV, in the presence of an
imperfect vaccine and Pap cytology screening, is given by the following deterministic
system of non-linear differential equations (a flow diagram of the model is depicted
in Figure 1, and the associated variables and parameters of the model are described
in Tables 1 and 2, respectively):

dSf
dt

= πf (1− φ)− λmSf − µfSf ,

dV

dt
= πfφ− (1− εv)λmV − µfV,
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dIf
dt

= λm[Sf + (1− εv)V ]− (σf + µf + δf )If ,

dP

dt
= σf (1− r1)If − (κp + ψ0 + µf )P,

dQ1

dt
= κpP + κqQ2 − (ψ1 + ζ1 + α1 + µf )Q1,

dQ2

dt
= ζ1Q1 − (κq + ψ2 + ζ2 + α2 + µf )Q2,

dQ3

dt
= ζ2Q2 − (ψ3 + ζ3 + α3 + µf )Q3,

dQ1d

dt
= α1Q1 + κdQ2d − (ζ1 + ρ1 + µf )Q1d,

dQ2d

dt
= α2Q2 + ζ1Q1d − (κd + ζ2 + ρ2 + µf )Q2d,

dQ3d

dt
= α3Q3 + ζ2Q2d − (ρ3 + µf )Q3d,

dC

dt
= ζ3Q3 − (αc + µf + δc)C,

dCd
dt

= αcC − (γ + µf + δcd)Cd,

dRc
dt

= γCd − µfRc,

dRf
dt

= σfr1If + ψ0P +

3∑
i=1

ψiQi +

3∑
i=1

ρiQid − µfRf ,

dSm
dt

= πm − λfSm − µmSm,

dIm
dt

= λfSm − (σm + µm)Im,

dRm
dt

= σmIm − µmRm.

(3)

The model (3) is a deterministic model for the natural history of the cervical
cancer, inspired by the Markov model in [39], incorporating sex structure (the dy-
namics of sexually-active males and females) as well as a mass vaccination program
(against some vaccine-targeted HPV types). Furthermore, it extends the model
in [13] by incorporating sex structure and by accounting for persistent HPV infec-
tions, cervical dysplasia and cancer, and Pap screening cytology. It also extends
the models in [16, 28] by incorporating the dynamics of individuals with persistent
infection.

The model (3) will now be qualitatively analysed to gain insight into its dynamical
features. It should be further emphasized that the model (3) only considers the
vaccine-targeted HPV types.

3. Analysis of the model.

3.1. Basic properties. The basic dynamical features of the model (3), subject to
the conservation law (1), will now be explored.

Lemma 3.1. The closed set

D = {(Sf , V, If , P,Q1, Q2, Q3, Q1d, Q2d, Q3d, Rf , C, Cd, Rc, Sm, Im, Rm) ∈ R17
+ :
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Variable Description
Sf Population of unvaccinated susceptible females
V Population of vaccinated susceptible females
If Population of infected females
P Population of females with persistent HPV infection
Qi; i = 1, 2, 3 Population of infected females in Grade i of undetected CIN
Qid; i = 1, 2, 3 Population of infected females in Grade i of detected CIN
C Population of infected females with undetected cervical cancer
Cd Population of infected females with detected cervical cancer
Rc Population of infected females who recovered from cancer
Rf Population of infected females who recovered from HPV

infection without developing cancer
Nf Total female population
Sm Population of susceptible males
Im Population of infected males
Rm Population of recovered males
Nm Total male population

Table 1. Description of state variables of the model (3).

Nf ≤ πf/µf , Nm ≤ πm/µm}.
is positively-invariant and attracting with respect to the model (3).

Proof. Adding the first 14 equations of the model (3) gives

dNf
dt

= πf − µfNf − δfIf − δcC − δcdCd ≤ πf − µfNf . (4)

Since Nf (t) ≥ 0, it follows using a standard comparison theorem [33] that

Nf (t) ≤ Nf (0)e−µf t +
πf
µf

(1− e−µf t).

Therefore, Nf (t) ≤ πf/µf if Nf (0) ≤ πf/µf .
Similarly, adding the last three equations of the model (3) gives:

dNm
dt

= πm − µmNm, (5)

so that,

Nm(t) = Nm(0)e−µmt +
πm
µm

(1− e−µmt).

Hence Nm(t) ≤ πm/µm if Nm(0) ≤ πm/µm. Thus, the positive invariance of D has
been proved.

To prove that D is attracting, it is clear from (4) and (5) that (for i = m, f),
dNi
dt

< 0, whenever Ni(t) > πi/µi. Thus, either the solution enters D in finite time,

or Ni(t) approaches πi/µi, and the variables denoting infected classes approach
zero. Hence, D is attracting and all solutions in R17

+ eventually enter D.

Since the region D is is positively-invariant and attracting, the usual existence,
uniqueness, continuation results hold for the system, and the system (3) is math-
ematically and epidemiologically well-posed in D [27]. Therefore, it is sufficient to
consider the dynamics of the flow generated by the model (3) in D.
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Description Nominal Value Ref

πf , πm Recruitment rate of new sexually-active fe-
males and males

10000/year [42]

1/µm(1/µf )Average duration of sexual activity for
males (females)

65 years [64-69] [5]

βm(βf ) Proportion of potentially infectious con-
tacts resulting in transmission of infection
from males to females (females to males)
per contact

0.8(0.7)/contact [13]

cf Average number of sexual contacts per fe-
male

2 contacts/year [42]

cm Average number of sexual contacts per
male

Variable (cm = cf
Nf

Nm
)

φ Fraction of new sexually-active females
vaccinated (cohort vaccination)

0.7 [15]

εv Vaccine efficacy 0.9 [17]
r1 Fraction of infectious females who recover

naturally (and do not develop persistent
infection)

0.99 [0.5-1] [39]

σfr1 Recovery rate of infected females 0.495/year (σf = 0.5) [13]
σf (1−r1) Rate of development of persistent infection 0.005/year (σf = 0.5) [13]
σm Recovery rate of infected males 0.9/year [13]
κp Progression rate from HPV to CIN1 0.1 [0.05-0.1]/year [15]
γ Recovery rate of individuals with cancer 0.76/year [15]
ψ1 Natural recovery rate for undetected CIN1 0.05 [0.05-0.13]/year [39]
ψ2 Natural recovery rate for undetected CIN2 0.05 [0.05-0.13]/year [39]
ψ3 Natural recovery rate for undetected CIN3 0.05 [0.05-0.13]/year A
ζ1, ζ2 Progression rate from CIN1 to CIN2 and

CIN2 to CIN3
0.02, 0.04 [0.02-.08]/year [15]

ζ3 Progression rate from CIN3 to cancer 0.08 [0.05-.08]/year [15]
κq Regression rate from undetected CIN2 to

CIN1
0.08 [0.05-0.08]/year [39]

κd Regression rate from detected CIN2 to
CIN1

0.08 [0.05-0.08]/year [39]

α1, α2, α3 Detection rate for CIN1, CIN2, CIN3 [0, 1]/year D
αc Detection rate for cervical cancer [0, 1]/year A
ε1, ε2, ε3 Sensitivity of Pap screening for CIN1,

CIN2, CIN3
0.6, 0.78, 0.78 [52]

χ Proportion of sexually-active females
screened

[7%-44%] [26]

∇ Screening frequency 1
∇ = 1, 2, 3 years A

θ Modification parameter for the infectious-
ness of individuals with persistent infection
relative to those in the If class

0.9 A

δf HPV infection-induced mortality rate in
females

0.001/year A

δc Cancer-induced mortality rate for unde-
tected individuals

0.01/year A

δcd Cancer-induced mortality rate for detected
individuals

0.001/year A

ψ0 Recovery rate of individuals with persis-
tent infection

0.01/year A

ρ1, ρ2, ρ3 Recovery rate of detected CIN individuals 0.13 [0.05-0.13]/year [39]

Table 2. Description of the parameters of the model (3).
A: Assumed. D: Derived.
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3.2. Disease-free (infection- and cancer-free) equilibrium (DFE). The mo-
del (3) has a DFE given by

E0 = (S∗f , V
∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, S∗m, 0, 0),

where,

S∗f =
πf (1− φ)

µf
, V ∗ =

πf
µf
φ, S∗m =

πm
µm

. (6)

The next generation operator method [11, 51] will be used to explore the local
stability of E0. The matrices G (for the new infection terms) and H (of the transition
terms) are given, respectively, by

G =



0 0 0 0 0 0 0 0 0 0 βmcm
N∗

f
[S∗f + (1− εv)V ∗]

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

βfcf θβfcf 0 0 0 0 0 0 0 0 0


,

and,
H =

g1 0 0 0 0 0 0 0 0 0 0
−σf (1− r1) g2 0 0 0 0 0 0 0 0 0

0 −κp g3 −κq 0 0 0 0 0 0 0
0 0 −ζ1 g4 0 0 0 0 0 0 0
0 0 0 −ζ2 g5 0 0 0 0 0 0
0 0 −α1 0 0 g6 −κd 0 0 0 0
0 0 0 −α2 0 −ζ1 g7 0 0 0 0
0 0 0 0 −α3 0 −ζ2 g8 0 0 0
0 0 0 0 −ζ3 0 0 0 g9 0 0
0 0 0 0 0 0 0 0 −αc g10 0
0 0 0 0 0 0 0 0 0 0 g11


,

where, g1 = σf +µf + δf , g2 = κp+ψ0 +µf , g3 = ψ1 + ζ1 +α1 +µf , g4 = κq +ψ2 +
ζ2 +α2 +µf , g5 = ψ3 + ζ3 +α3 +µf , g6 = ζ1 +ρ1 +µf , g7 = κd+ ζ2 +ρ2 +µf , g8 =
ρ3 + µf , g9 = αc + µf + δc, g10 = γ + µf + δdc , g11 = σm + µm.

It follows that the reproduction number (Rv), associated with the model (3), is
given by (where ρ is the spectral radius)

Rv = ρ(GH−1) =
√
RvmRvf , (7)

with,

Rvm =
βmcf
g11

, Rvf =
βfcfπfµm
µfπmg1

[
1 +

θσf (1− r1)

g2

]
(1− εvφ) .

The threshold quantity, Rv, measures the average number of new infections gen-
erated by a typical infected individual in a population where some susceptible fe-
males are vaccinated (and also screened). The result below follows from Theorem
2 of [51].
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Lemma 3.2. The DFE, E0, of the model (3), is locally-asymptotically stable (LAS)
if Rv < 1, and unstable if Rv > 1.

Lemma 3.2 implies that the combined use of Pap screening and an HPV vaccine
can lead to the effective control of the disease in the population if the thresh-
old quantity (Rv) can be brought to (and maintained at) a value less than unity.
Mathematically-speaking, the result implies that the vaccine-targeted HPV types
can be eliminated from the population (when Rv < 1) if the initial sizes of the
sub-populations of the model (3) are in the basin of attraction of the DFE (E0).

3.3. Existence of endemic equilibrium point (EEP). Let

E1 := (S∗∗f , V
∗∗, I∗∗f , P ∗∗, Q∗∗1 , Q

∗∗
2 , Q

∗∗
3 , Q

∗∗
1d, Q

∗∗
2d, Q

∗∗
3d,

C∗∗, C∗∗d , R
∗∗
c , R

∗∗
f , S

∗∗
m , I

∗∗
m , R∗∗m )

represents an arbitrary endemic equilibrium of the model (3) (i.e., equilibria for
which at least one of the infected components of the model (3) is non-zero). Fur-
thermore, let

λ∗∗m =
βmcfI

∗∗
m

N∗∗m
and λ∗∗f =

βfcf (I∗∗f + θP ∗∗)

N∗∗m
, (8)

be the forces of infection for males and females at steady-state, respectively.
Solving the equations of the model (3) at steady-state gives:

S∗∗f =
πf (1− φ)

λ∗∗m + µf
, V ∗∗ =

πfφ

[(1− εv)λ∗∗m + µf ]
,

I∗∗f =
λ∗∗mπf [(1− εv)λ∗∗m + (1− εvφ)µf ]

g1[(1− εv)λ∗∗m + µf ](λ∗∗m + µf )
,

P ∗∗ =
σf (1− r1)I∗∗f

g2
, Q∗∗1 =

g4κpσf (1− r1)λ∗∗mπf [(1− εv)λ∗∗m + (1− εvφ)µf ]

g1g2(g3g4 − ζ1κq)[(1− εv)λ∗∗m + µf ](λ∗∗m + µf )
,

Q∗∗2 =
ζ1Q

∗∗
1

g4
, Q∗∗3 =

ζ2Q
∗∗
2

g5
,

Q∗∗1d =
κpσf (1− r1)λ∗∗mπf [(1− εv)λ∗∗m + (1− εvφ)µf ](α1g4g7 + α2ζ1κd)

g1g2(g3g4 − ζ1κq)(g6g7 − ζ1κd)(λ∗∗m + µf )[(1− εv)λ∗∗m + µf ]
,

Q∗∗2d =
α2Q

∗∗
2 + ζ1Q

∗∗
1d

g7
, Q∗∗3d =

α3Q
∗∗
3 + ζ2Q

∗∗
2d

g8
,

C∗∗ =
ζ3Q

∗∗
3

g9
, C∗∗d =

αcC
∗∗

g10
, R∗∗c =

γC∗∗d
µf

,

R∗∗f =

σfr1I
∗∗
f (λ∗∗m ) + ψ0P

∗∗(λ∗∗m ) +

3∑
i=1

ψiQ
∗∗
i (λ∗∗m ) +

3∑
i=1

ρiQ
∗∗
id (λ∗∗m )

µf
,

S∗∗m =
πm

λ∗∗f + µm
, I∗∗m =

πmλ
∗∗
f

g11(λ∗∗f + µm)
, R∗∗m =

σmπmλ
∗∗
f

g11µm(λ∗∗f + µm)
.

(9)

Substituting (9) in (8), and simplifying, gives, respectively,

λ∗∗m =
µmλ

∗∗
f cfβm

g11(λ∗∗f + µm)
, (10)
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and,

λ∗∗f =
βfcfλ

∗∗
mπf [(1− εv)λ∗∗m + (1− εvφ)µf ][g2 + θσf (1− r1)]µm

g1g2πm[(1− εv)λ∗∗m + µf ](λ∗∗m + µf )
. (11)

It follows, by substituting (11) into (10), that the positive (endemic) equilibria of
the model (3) satisfy the following quadratic (in terms of λ∗∗m ):

a0(λ∗∗m )2 + b0λ
∗∗
m + c0 = 0, (12)

where,

a0 =g11(1− εv) {g1g2πm + πfcfβf [g2 + θσf (1− r1)]} ,
b0 =2g1g2g11µfπm(1− εv) + βfcfπf [g2 + θσf (1− r1)]

{g11(1− εvφ)µf − (1− εv)µmβmcf},
c0 =g1g2g11µmµ

2
f [1− (Rv)

2].

The components of the positive endemic equilibria of the model (3) are then ob-
tained by solving the quadratic (12) for λ∗∗m and substituting the results in (9) and
(11). It should be observed that (11) gives λ∗∗f as a rational function of λ∗∗m , so that
a fixed value of λ∗∗m corresponds to a unique value of λ∗∗f . Clearly, the coefficient a0
of (12) is always positive (since 0 < εv ≤ 1), and c0 is positive (negative) if Rv is
less than (greater than) unity. Thus, the following result is established.

Theorem 3.3. The model (3) has:

1. a unique endemic equilibrium if c0 < 0⇔ Rv > 1;
2. a unique endemic equilibrium if b0 < 0, and c = 0 or b20 − 4a0c0 = 0;
3. two endemic equilibria if c0 > 0, b0 < 0 and b20 − 4a0c0 > 0;
4. no endemic equilibrium otherwise.

It is clear from Case 1 of Theorem 3.3 that the model has a unique endemic
equilibrium whenever Rv > 1. Numerical simulation results, depicted in Figure
2, show convergence of solutions to this EEP when Rv > 1 suggesting that the
EEP is asymptotically-stable when it exists. Furthermore, Case 3 indicates the
possibility of backward bifurcation (where the locally-asymptotically stable DFE
co-exists with a locally-asymptotically stable endemic equilibrium when Rv < 1
[3, 14, 32, 48]). The existence of backward bifurcation in vaccination models, such
as (3), has been established in a number of epidemiological settings (see, for instance,
[3, 12, 14, 21, 36, 48, 49]). We claim the following (the proof, based on using Centre
Manifold Theory [7, 8, 51], is given in Appendix A).

Theorem 3.4. The model (3) undergoes a backward bifurcation at Rv = 1 whenever
the inequality in (24) is satisfied.

The epidemiological implication of the backward bifurcation phenomenon of the
model (3) is that having Rv < 1 is not sufficient (albeit necessary) to effectively
control the spread of HPV and the associated dysplasia in the population. In other
words, the combined use of mass vaccination and Pap cytology screening may fail
to lead to effective control of HPV and the associated dysplasia even when Rv < 1
(due to the phenomenon of backward bifurcation). In such a backward bifurcation
scenario, effective disease control, when Rv < 1, is dependent on the initial sizes
of the populations of the model. Clearly, this (backward bifurcation) phenomenon
makes effective control of HPV and the associated dysplasia difficult. It is worth
stating that with the realistic parameter values in Table 2, the associated backward
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bifurcation parameter, a, is given by a = −1.14 × 10−5 < 0 (so that backward
bifurcation cannot occur). In other words, this study shows that the phenomenon
of backward bifurcation is not feasible in HPV dynamics using a realistic set of
parameter values.

It is worth noting that for the case when the vaccine is perfect (i.e., εv = 1), the
coefficient a0 of the quadratic (12) is zero, and b0 > 0. Hence, the quadratic (12)
has a unique root, given by λ∗∗m = −c0/b0, with c0 ≤ 0. The case c0 = 0 implies
λ∗∗m = 0, which corresponds to the DFE. On the other hand, c0 < 0 corresponds to
Case 1 of Theorem 3.3, which shows the existence of a unique endemic equilibrium,
only when Rv > 1.

Corollary 1. The model (3) with perfect vaccine (εv = 1) does not undergo a
backward bifurcation at Rv = 1.

Thus, this study shows that the imperfect nature of the HPV vaccine (0 < εv < 1)
causes the phenomenon of backward bifurcation in the model (3).

3.4. Global stability of equilibria: Special case. Consider the model (3) with
the associated disease-induced and cancer-induced mortality set to zero (i.e., δ :=
δf = δc = δcd = 0). When δ = 0, it follows from (4) and (5) that dNf/dt = π−µfNf
and dNm/dt = π − µmNm, so that Nf → πf/µf as t → ∞ and Nm → πm/µm as
t→∞.

Let β0 =
βmcfµm
πm

, β1 =
βfcmµf
πf

and β2 =
βfcmµfθ

πf
. Hence,

λm = β0Im and λf = β1If + β2P.

It is convenient to write

W = Q1 +Q2 +Q3 +Q1d +Q2d +Q3d + C + Cd +Rc +Rf .

Thus the system (3) can now be re-written as:

dSf
dt

= πf (1− φ)− β0ImSf − µfSf ,

dV

dt
= πfφ− (1− εv)β0ImV − µfV,

dIf
dt

= β0Im[Sf + (1− εv)V ]− g̃1If ,

dP

dt
= σf (1− r1)If − g2P,

dW

dt
= (κp + ψ0)P + σfr1If − µfW,

dSm
dt

= πm − (β1If + β2P )Sm − µmSm,

dIm
dt

= (β1If + β2P )Sm − g11Im,

dRm
dt

= σmIm − µmRm,

(13)

where, g̃1 = g1|δ=0 = σf + µf .
Since the variable W does not feature in any of the other equations of the model

(13), it is removed from the analysis. The invariant region of the reduced system
(13) is

D̃ = {(Sf , V, If , P,W, Sm, Im, Rm) ∈ R8
+ : Nf ≤ πf/µf , Nm ≤ πm/µm},
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and the associated DFE is given by

Ẽ0 = (S∗f , V
∗, 0, 0, 0, S∗m, 0, 0),

where, S∗f , V
∗ and S∗m are given by (6). Furthermore, the reproduction number of

the reduced model (13) is

R̃v = Rv|δ=0 =

√
βmβfc2fπfµm

πmµf g̃1g11

[
1 +

θσf (1− r1)

g2

]
(1− εvφ). (14)

It is worth noting that the associated backward bifurcation parameter, a, for the
reduced model (13) is given by

a =−
2βfβ

2
mc

3
fµ

3
mv7w

2
7S
∗
m[α+muf + θσf (1− r1)]

π3
m(σf + µf )(α+ µf )

{
S∗f + (1− εv)2V ∗

µf

+
[S∗f + (1− εv)2V ∗]2

πm(σf + µf )
+
θσf (1− r1)cf [S∗f + (1− εv)V ∗]

πm(σf + µf )(α+ µf )

}
< 0,

so that the reduced model (13) will not undergo backward bifurcation (by Theorem
4.1 of [8]). To further confirm the absence of backward bifurcation in the reduced
model (13), a global-asymptotic stability proof is given below for the DFE of the
model (13).

3.4.1. Global stability of DFE.

Theorem 3.5. The DFE, Ẽ0, of the reduced model (13), is GAS in D̃ whenever

R̃v < 1.

Proof. Consider the non-linear Lyapunov function

F = Sf − S∗f − S∗f ln
Sf
S∗f

+ V − V ∗ − V ∗ ln
V

V ∗
+ If +

β2g̃1
β1g2 + β2σf (1− r1)

P

+
g̃1g2

β1g2 + β2σf (1− r1)

(
Sm − S∗m − S∗m ln

Sm
S∗m

+ Im

)
,

with the Lyapunov derivative given by (where the prime denotes differentiation with
respect to t)

F ′ =

(
1−

S∗f
Sf

)
S′f +

(
1− V ∗

V

)
V ′ + I ′f +

β2g̃1
β1g2 + β2σf (1− r1)

P ′

+
g̃1g2

β1g2 + β2σf (1− r1)

[(
1− S∗m

Sm

)
S′m + I ′m

]

=

(
1−

S∗f
Sf

)
[µfS

∗
f − β0ImSf − µfSf ]

+

(
1− V ∗

V

)
[µfV

∗ − (1− εv)β0ImV − µfV ]

+ β0Im[Sf + (1− εv)V ]− g̃1If +
β2g̃1

β1g2 + β2σf (1− r1)
[σf (1− r1)If − g2P ]

+
g̃1g2

β1g2 + β2σf (1− r1)

{(
1− S∗m

Sm

)
[µmS

∗
m − (β1If + β2P )Sm − µmSm]

+(β1If + β2P )Sm − g11Im
}
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= µfS
∗
f

(
2−

S∗f
Sf
− Sf
S∗f

)
− β0ImSf + β0ImS

∗
f + µfV

∗
(

2− V ∗

V
− V

V ∗

)
− (1− εv)β0ImV + (1− εv)β0ImV ∗ + β0Im[Sf + (1− εv)V ]− g̃1If

+
β2g̃1

β1g2 + β2σf (1− r1)
[σf (1− r1)If − g2P ] +

g̃1g2
β1g2S∗m + β2σf (1− r1)S∗∗m[

µmS
∗
m

(
2− S∗m

Sm
− Sm
S∗m

)
− (β1If + β2P )Sm + (β1If + β2P )S∗m

+(β1If + β2P )Sm − g11Im
]

= µfS
∗
f

(
2−

S∗f
Sf
− Sf
S∗f

)
+ µfV

∗
(

2− V ∗

V
− V

V ∗

)
+ µmS

∗
m

(
2− S∗m

Sm
− Sm
S∗m

)
+

[
−g̃1 +

β2g̃1σf (1− r1)

β1g2 + β2σf (1− r1)
+

β1g̃1g2
β1g2 + β2σf (1− r1)

]
If

+

[
− β2g̃1g2
β1g2 + β2σf (1− r1)

+
β2g̃1g2

β1g2 + β1σf (1− r1)

]
P

+

{
β0[S∗f + (1− εv)V ∗]−

g̃1g2g11
β1g2S∗m + β1σf (1− r1)S∗m

}
Im,

= µfS
∗
f

(
2−

S∗f
Sf
− Sf
S∗f

)
+ µfV

∗
(

2− V ∗

V
− V

V ∗

)
+ µmS

∗
m

(
2− S∗m

Sm
− Sm
S∗m

)
+

g̃1g2g11µm
[β1g2 + β2σf (1− r1)]πm

[(R̃v)2 − 1]Im.

In the above calculations, the following DFE relations (obtained from (13) at E0)
have been used:

πf (1− φ) = µfS
∗
f , πfφ = µfV

∗, πm = µmS
∗
m.

Since the arithmetic mean exceeds the geometric mean (that is, a1+a2+· · ·+an ≥
n n
√
a1 · a2 · · · an for ai ≥ 0, i = 1, . . . , n), it follows that

2−
S∗f
Sf
− Sf
S∗f
≤ 0, 2− V ∗

V
− V

V ∗
≤ 0, 2− S∗m

Sm
− Sm
S∗m
≤ 0.

Therefore, F ′ ≤ 0 if R̃v ≤ 1. The equality F ′ = 0 holds only (a) at the DFE Ẽ0 or

(b) when R̃v = 1 and Sf = S∗f , V = V ∗ and Sm = S∗m. In case (b),

πf
µf

+
πm
µm
≥ Sf + V + If + P +W + Sm + Im +Rm

= S∗f + V ∗ + If + P +W + S∗m + Im +Rm

=
πf
µf

+
πm
µm

+ If + P +W + Im +Rm,

so that If +P +Im+Rm ≤ 0. This implies that If = P = Im = Rm = 0. Therefore

the largest compact invariant set in {(Sf , V, If , P, Sm, Im, Rm) ∈ D̃ : F ′ = 0}
is the singleton {Ẽ0}. It follows from the LaSalle’s Invariance Principle [34] that

every solution of the system (13) with initial conditions in D̃ converges to the

DFE Ẽ0 as t → ∞. That is, (If (t), P (t), Im(t)) → (0, 0, 0) as t → ∞. Substituting
If = P = Im = 0 in the equations for the susceptible females and males of the
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model (13) gives Sf (t) → S∗f and Sm(t) → S∗m as t → ∞. Similarly, it is easy

to see that (when (If , P, Im) = (0, 0, 0)) the variable W (t) → 0 as t → ∞. Thus,

(Sf (t), V (t), If (t), P (t),W (t), Im(t))→ Ẽ0, as t→∞ for R̃v < 1. Hence, the DFE

Ẽ0, of the model (13), is GAS in D̃ if R̃v < 1.

The above analyses clearly show that the backward bifurcation property of the
model (3) can be removed if the associated disease-induced and cancer-induced
mortality is set to zero. The epidemiological implication of Theorem 3.5 is that for
this special case (of the model (3) with δ = 0), the vaccine-targeted HPV types
and associated dysplasia will be eliminated from the community if the combined
use of (cohort) vaccination and Pap screening can make R̃v < 1 (i.e., R̃v < 1 is
necessary and sufficient for the elimination of the relevant HPV types). Figure 3
depicts solution profiles of the model (3) with δ = 0, for various initial conditions,

showing convergence to the DFE (Ẽ0) for R̃v < 1 (in line with Theorem 3.5).
The following result can be shown using the approach in Section 3.3.

Theorem 3.6. The reduced model (13) has an EEP of the form

E1 := (S̃∗∗f , Ṽ
∗∗, Ĩ∗∗f , P̃ ∗∗, W̃ ∗∗, S̃∗∗m , Ĩ

∗∗
m , R̃∗∗m ),

whenever R̃v > 1, where

S̃∗∗f = S∗∗f |δ=0, Ṽ
∗∗ = V ∗∗|δ=0, Ĩ

∗∗
f = I∗∗f |δ=0, P̃

∗∗ = P ∗∗|δ=0,

S̃∗∗m = S∗∗m |δ=0, Ĩ
∗∗
m = I∗∗m |δ=0, R̃

∗∗
m = R∗∗m |δ=0,

and,

W̃ ∗∗ =
(κp + ψ0)P̃ ∗∗ + σfr1Ĩ

∗∗
f

µf
.

3.4.2. Global stability of EEP. In this section, the global stability of the EEP of the
reduced model (13) is established. Define:

D0 = {(Sf , V, If , P,W, Sm, Im, Rm) ∈ D̃ : If = P = W = Im = Rm = 0}.

Theorem 3.7. The EEP, Ẽ1, of the reduced model (13), is GAS in D̃\D0 whenever

R̃v > 1.

Proof. Let R̃v > 1, so that the unique EEP of the model (13), Ẽ1, exists (Theorem
3.6). Here, too, the variable W of the model (13) is not included in the analysis.

Consider the non-linear Lyapunov function

F = Sf − S̃∗∗f − S̃∗∗f ln
Sf

S̃∗∗f
+ V − Ṽ ∗∗ − Ṽ ∗∗ ln

V

Ṽ ∗∗
+ If − Ĩ∗∗f − Ĩ∗∗f ln

If

Ĩ∗∗f

+
β0Ĩ
∗∗
m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
β1Ĩ∗∗f + β2P̃ ∗∗

[
β2P̃

∗∗

σf (1− r1)Ĩ∗∗f

(
P − P̃ ∗∗ − P̃ ∗∗ ln

P

P̃ ∗∗

)
+

1

S̃∗∗m

(
Sm − S̃∗∗m − S̃∗∗m ln

Sm

S̃∗∗m
+ Im − Ĩ∗∗m − Ĩ∗∗m ln

Im

Ĩ∗∗m

)]
,

with Lyapunov derivative

F ′ =

(
1−

S̃∗∗f
Sf

)
S′f +

(
1− Ṽ ∗∗

V

)
V ′ +

(
1−

Ĩ∗∗f
If

)
I ′f
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+
β0Ĩ
∗∗
m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
β1Ĩ∗∗f + β2P̃ ∗∗

{
β2P̃

∗∗

σf (1− r1)Ĩ∗∗f

(
1− P̃ ∗∗

P

)
P ′

+
1

S̃∗∗m

[(
1− S̃∗∗m

Sm

)
S′m +

(
1− Ĩ∗∗m

Im

)
I ′m

]}

=

(
1−

S̃∗∗f
Sf

)
[πf (1− φ)− β0ImSf − µfSf ]

+

(
1− Ṽ ∗∗

V

)
[πfφ− (1− εv)β0ImV − µfV ]

+

(
1−

Ĩ∗∗f
If

)
{β0Im[Sf + (1− εv)V ]− g̃1If}

+
β0Ĩ
∗∗
m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
β1Ĩ∗∗f + β2P̃ ∗∗

{
β2P̃

∗∗

σf (1− r1)Ĩ∗∗f

(
1− P̃ ∗∗

P

)
[σf (1− r1)If − g2P ]

+
1

S̃∗∗m

{(
1− S̃∗∗m

Sm

)
[πm − (β1If + β2P )Sm − µmSm]

+

(
1− Ĩ∗∗m

Im

)
[(β1If + β2P )Sm − g11Im]

}}
.

The above can be simplified using the following endemic equilibrium conditions

πf (1− φ) = β0Ĩ
∗∗
m S̃∗∗f + µf S̃

∗∗
f , πfφ = (1− εv)β0Ĩ∗∗m Ṽ ∗∗ + µf Ṽ

∗∗,

g̃1Ĩ
∗∗
f = β0Ĩ

∗∗
m [S̃∗∗f + (1− εv)Ṽ ∗∗], g2P̃ ∗∗ = σf (1− r1)Ĩ∗∗f ,

πm = (β1Ĩ
∗∗
f + β2P̃

∗∗)S̃∗∗m + µmS̃
∗∗
m , g11Ĩ

∗∗
m = (β1Ĩ

∗∗
f + β2P̃

∗∗)S̃∗∗m .

This gives:

F ′ =

(
1−

S̃∗∗f
Sf

)[
β0Ĩ
∗∗
m S̃∗∗f + µf S̃

∗∗
f − β0ImSf − µfSf

]
+

(
1− Ṽ ∗∗

V

)[
(1− εv)β0Ĩ∗∗m Ṽ ∗∗ + µf Ṽ

∗∗ − (1− εv)β0ImV − µfV
]

+

(
1−

Ĩ∗∗f
If

){
β0Im [Sf + (1− εv)V ]− β0Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

] If
Ĩ∗∗f

}

+
β0Ĩ
∗∗
m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
β1Ĩ∗∗f + β2P̃ ∗∗{

β2P̃
∗∗

σf (1− r1)Ĩ∗∗f

(
1− P̃ ∗∗

P

)[
σf (1− r1)If − σf (1− r1)

Ĩ∗∗f

P̃ ∗∗

]

+
1

S̃∗∗m

{(
1− S̃∗∗m

Sm

)[(
β1Ĩ
∗∗
f + β2P̃

∗∗
)
S̃∗∗m + µmS̃

∗∗
m
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−(β1If + β2P )Sm − µmSm
]

+

(
1− Ĩ∗∗m

Im

)[
(β1If + β2P )Sm −

(
β1Ĩ
∗∗
f + β2P̃

∗∗
)
S̃∗∗m

Im

Ĩ∗∗m

]}}

= µf

(
2−

S̃∗∗f
Sf
− Sf

S̃∗∗f

)
+ β0

[
Ĩ∗∗m S̃∗∗f − ImSf − Ĩ∗∗m

(S̃∗∗f )2

Sf
+ ImS̃

∗∗
f

]

+ (1− εv)µf

(
2− Ṽ ∗∗

V
− V

Ṽ ∗∗

)

+ (1− εv)β0

[
Ĩ∗∗m Ṽ ∗∗ − ImV − Ĩ∗∗m

(Ṽ ∗∗)2

V
+ ImṼ

∗∗

]

+ β0

{
Im[Sf + (1− εv)V ]− Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

] If
Ĩ∗∗f

−Im[Sf + (1− εv)V ]
Ĩ∗∗f
If

+ Ĩ∗∗f

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]}

+
β0Ĩ
∗∗
m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
β1Ĩ∗∗f + β2P̃ ∗∗

{
β2P̃

∗∗

Ĩ∗∗f

(
If − Ĩ∗∗f

P

P̃ ∗∗
− If

P̃ ∗∗

P
+ Ĩ∗∗f

)

+
1

S̃∗∗m

[(
β1Ĩ
∗∗
f + β2P̃

∗∗
)
S̃∗∗m − (β1If + β2P )Sm

−
(
β1Ĩ
∗∗
f + β2P̃

∗∗
) (S̃∗∗m )2

Sm
+ (β1If + β2P )S̃∗∗m

+ (β1If + β2P )Sm −
(
β1Ĩ
∗∗
f + β2P̃

∗∗
)
S̃∗∗m

Im

Ĩ∗∗m

−(β1If + β2P )Sm
Ĩ∗∗m
Im

+
(
β1Ĩ
∗∗
f + β2P̃

∗∗
)
S̃∗∗m

]}
.

(15)

It follows, using Proposition 1 (Appendix B) in (15), that

F ′ ≤ µf

(
2−

S̃∗∗f
Sf
− Sf

S̃∗∗f

)
+ β0

{
Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]

−Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]2
[Sf + (1− εv)V ]

+ Im

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
+ (1− εv)µf

(
2− Ṽ ∗∗

V
− V

Ṽ ∗∗

)
+ β0

{
−Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

] If
Ĩ∗∗f

−Im[Sf + (1− εv)V ]
Ĩ∗∗f
If

+ Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]}

+
β0Ĩ
∗∗
m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
β1Ĩ∗∗f + β2P̃ ∗∗

{
β2P̃

∗∗

Ĩ∗∗f

(
If − Ĩ∗∗f

P

P̃ ∗∗
− If

P̃ ∗∗

P
+ Ĩ∗∗f

)
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+
1

S̃∗∗m

[(
β1Ĩ
∗∗
f + β2P̃

∗∗
)
S̃∗∗m −

(
β1Ĩ
∗∗
f + β2P̃

∗∗
) (S̃∗∗m )2

Sm
+ (β1If + β2P )S̃∗∗m

−
(
β1Ĩ
∗∗
f + β2P̃

∗∗
)
S̃∗∗m

Im

Ĩ∗∗m
− (β1If + β2P )Sm

Ĩ∗∗m
Im

+
(
β1Ĩ
∗∗
f + β2P̃

∗∗
)
S̃∗∗m

]}

= µf

(
2−

S̃∗∗f
Sf
− Sf

S̃∗∗f

)
+ (1− εv)µf

(
2− Ṽ ∗∗

V
− V

Ṽ ∗∗

)
+ β0Ĩ

∗∗
m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]

2−

S̃∗∗f + (1− εv)Ṽ ∗∗

Sf + (1− εv)V
+
Im

Ĩ∗∗m
− If

Ĩ∗∗f
−

Im[Sf + (1− εv)V ]Ĩ∗∗f

Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
If


+

1

β1Ĩ∗∗f + β2P̃ ∗∗

[
β2P

∗∗

(
3 +

If

Ĩ∗∗f
− If P̃

∗∗

Ĩ∗∗f P
− S̃∗∗m
Sm
− Im

Ĩ∗∗m
− PSmĨ

∗∗
m

P̃ ∗∗S̃∗∗m Im

)

+ β1Ĩ
∗∗
f

(
2− S̃∗∗m

Sm
+

If

Ĩ∗∗f
− Im

Ĩ∗∗m
− IfSmĨ

∗∗
m

Ĩ∗∗f S̃∗∗m Im

)]}

= µf

(
2−

S̃∗∗f
Sf
− Sf

S̃∗∗f

)
+ (1− εv)µf

(
2− Ṽ ∗∗

V
− V

Ṽ ∗∗

)

+
β0Ĩ
∗∗
m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
β1Ĩ∗∗f + β2P̃ ∗∗β1Ĩ∗∗f
2−

S̃∗∗f + (1− εv)Ṽ ∗∗

Sf + (1− εv)V
−

Im[Sf + (1− εv)V ]Ĩ∗∗f

Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
If


+ β2P̃

∗∗

2−
S̃∗∗f + (1− εv)Ṽ ∗∗

Sf + (1− εv)V
−

Im[Sf + (1− εv)V ]Ĩ∗∗f

Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
If


+ β1Ĩ

∗∗
f

(
2− S̃∗∗m

Sm
− IfSmĨ

∗∗
m

Ĩ∗∗f S̃∗∗m Im

)
+ β2P̃

∗∗

(
3− If P̃

∗∗

Ĩ∗∗f P
− S̃∗∗m
Sm
− PSmĨ

∗∗
m

P̃ ∗∗S̃∗∗m Im

)}

= µf

(
2−

S̃∗∗f
Sf
− Sf

S̃∗∗f

)
+ (1− εv)µf

(
2− Ṽ ∗∗

V
− V

Ṽ ∗∗

)

+
β0Ĩ
∗∗
m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
β1Ĩ∗∗f + β2P̃ ∗∗

{
β1Ĩ
∗∗
f

{
4−

S̃∗∗f + (1− εv)Ṽ ∗∗

Sf + (1− εv)V
− S̃∗∗m
Sm

−
Im[Sf + (1− εv)V ]Ĩ∗∗f

Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
If
− IfSmĨ

∗∗
m

Ĩ∗∗f S̃∗∗m Im


+ β2P̃

∗∗

{
5−

S̃∗∗f + (1− εv)Ṽ ∗∗

Sf + (1− εv)V
− S̃∗∗m
Sm
− If P̃

∗∗

Ĩ∗∗f P
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−
Im[Sf + (1− εv)V ]Ĩ∗∗f

Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
If
− PSmĨ

∗∗
m

P̃ ∗∗S̃∗∗m Im

} .

Since the arithmetic mean exceeds the geometric mean, the following inequalities
hold:

2−
S̃∗∗f
Sf
− Sf

S̃∗∗f
≤ 0, 2− Ṽ ∗∗

V
− V

Ṽ ∗∗
≤ 0,

4−
S̃∗∗f + (1− εv)Ṽ ∗∗

Sf + (1− εv)V
− S̃∗∗m
Sm
−

Im[Sf + (1− εv)V ]Ĩ∗∗f

Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
If
− IfSmĨ

∗∗
m

Ĩ∗∗f S̃∗∗m Im
≤ 0,

5−
S̃∗∗f + (1− εv)Ṽ ∗∗

Sf + (1− εv)V
− S̃∗∗m
Sm
− If P̃

∗∗

Ĩ∗∗f P
−

Im[Sf + (1− εv)V ]Ĩ∗∗f

Ĩ∗∗m

[
S̃∗∗f + (1− εv)Ṽ ∗∗

]
If

− PSmĨ
∗∗
m

P̃ ∗∗S̃∗∗m Im
≤ 0.

(16)

Hence F ′ ≤ 0, with equality if and only if equality holds in each of the inequalities
in (16). Thus, (Sf , V, If , P, Sm, Im) → (S̃∗∗f , Ṽ

∗∗, Ĩ∗∗f , P̃ ∗∗, S̃∗∗m , Ĩ
∗∗
m ). Substituting

these (endemic equilibrium) values in the equation for W in (13) shows that W →
W̃ ∗∗ as t → ∞. Hence, (Sf , V, If , P,W, Sm, Im) → (S̃∗∗f , Ṽ

∗∗, Ĩ∗∗f , P̃ ∗∗, W̃ ∗∗, S̃∗∗m ,

Ĩ∗∗m ), so that the EEP (Ẽ1) of (13) is GAS in D̃ \ D0.

4. Assessment of vaccine and screening impact. In this section, the commun-
ity-wide impact of mass vaccination and Pap cytology screening will be assessed
using the model (3) with δ = 0 (or, equivalently, (13)).

4.1. Vaccine impact. Let x = V ∗/N∗f represents the fraction of females vacci-

nated at the disease-free steady state. It follows from (14) that

R̃v = R0

√
1− εvx, (17)

where,

R0 = R̃v|φ=0 =

√
βmβfc2fπfµm

πmµf g̃1g11

[
1 +

θσf (1− r1)

g2

]
. (18)

is the basic reproduction number (the average number of new HPV cases generated
by a typical infected individual in a completely susceptible population) associated
with the model (3).

Considering R̃v as a function of x (i.e., R̃v = R̃v(x)), it can be shown that

∂R̃v
∂x

= − R0εv
2
√

1− εvx
.

Since 0 < εv < 1, it follows that ∂R̃v

∂x < 0 for 0 ≤ x < 1. Thus, R̃v is a decreasing
function of x. Since, in general, a reduction in the reproduction number signifies
a reduction in disease burden (measured in terms of number of infections, HPV-
related morbidity, hospitalization, mortality etc.), the above analysis shows that an
imperfect HPV vaccine will have a positive impact (in reducing HPV burden) for
any x > 0 and εv > 0 (that is, for a given vaccine efficacy, εv > 0, vaccinating
any fraction of susceptible females at steady-state will result in a decrease in HPV
burden).
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Furthermore, there is a unique xc such that R̃v(x) = 1, given by

xc =
1

εv

(
1− 1

R0

)
.

Lemma 4.1. The DFE of the reduced model (13), Ẽ0, is GAS in D̃ if x > xc.

Proof. Since R̃v is a decreasing function of x, it follows that R̃v < 1 whenever
x > xc. Thus, it follows from Theorem 3.5 that the DFE of the model (13) is GAS

in D̃ in this case (with x > xc).

The above result implies that if the fraction of vaccinated susceptible females
exceeds the threshold level xc, then the DFE of the model (3) with δ = 0 is GAS
(and the vaccine-targeted types will be eliminated from the community). A contour

plot of R̃v as a function of vaccine efficacy and coverage rate, depicted in Figure 4,
shows that with the assumed vaccine efficacy of 90%, the relevant HPV types can
be eliminated from the community if at least 88% of the susceptible females are
vaccinated at steady-state (it should be recalled from Theorem 3.5 that the disease

dies out when R̃v < 1).
It should be noted that the above analyses also hold for the case where only

(cohort) vaccination is used (i.e., for the case where Pap screening is not also used
in the community). In other words, the singular use of a vaccination program
can lead to the elimination of the relevant (vaccine-targeted) HPV types from the
community if the vaccine efficacy and coverage rate are high enough. Figure 5
shows that the prevalence of the vaccine-targeted HPV types can be reduced by
about 97.14% in 50 years.

4.2. Screening impact. To assess the singular impact of Pap cytology screening,
the model (3) is simulated in the absence of vaccination (φ = 0) and no disease-
induced and cancer-induced mortality (δ = 0). Thus, this case models the situation
where Pap cytology screening is the only intervention strategy adopted. Figure 6
depicts the cumulative number of females detected with cervical cancer or CIN (in
the absence of vaccination) using various screening intervals (1, 2, and 3 years). It
is evident from Figure 6 that the use of annual screening results in the detection
of about 534 cases of females with cancer or CIN over 10 years. Furthermore, this
figure shows that extending the screening interval from 2 to 3 years has marginal
impact on the cumulative number of cases detected (while 2-year screening detects
about 320 cases over 10 years, 3-year screening leads to the detection of about 228
cases over the same time period).

4.3. Combined impact of vaccination and screening. The combined impact
of Pap screening and mass vaccination is assessed by simulating the model (3) using
the parameter values in Table 2 with δ = 0. It is shown that, unlike in the case
of the vaccine-only control strategy (which reduces the prevalence of the vaccine-
targeted HPV types and dysplasia by 97.14% in 50 years) (Figure 5), the combined
vaccination-screening strategy (with 2-year or 3-year screening interval) achieved
the same reduction in about 35 years (Figure 7). It is worth noting from Figure
7 that the 2-year and 3-year screening strategies resulted in essentially the same
reduction (over the same time period).
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4.4. Model sensitivity to the proportion screened. As noted, a wide range
of values of the proportion screened (χ) are cited in the literature (7% to 44%).
Therefore the sensitivity of the model to this parameter is analyzed in this section.
Under the base-case Pap test assumptions (with χ = 32%), the model predicts
a total of 534, 320 and 228 cases in 10 years with the annual, 2-year and 3-year
screening (Figure 6). Low proportion (7%) screened results in 157, 82 and 56 cases,
respectively (Figure 6 top inset) and the high proportion (44%) screened results in
650, 410 and 298 cases detected, respectively (Figure 6 bottom inset). Whereas χ is
an influential parameter in determining the number of detected cumulative cervical
cancer and CIN cases, a comparison of the cumulative number of cases under annual
and the 2-year screening respectively, relative to the 3-year screening reveals that
the model is not much sensitive to the proportion screened; while the base-case value
of the proportion screened (χ) results in the detection of 2.4 and 1.4 times more
cases respectively relative to the 3-year screening, low proportion screened results
in the detection of 2.8 and 1.5 times more cases with annual and 2-year screening
respectively and the high proportion screened results in the detection of 2.2 and 1.4
times more cases. The comparison also signifies that (i) 3-year (rather than 2-year)
screening is reasonable, and (ii) with low proportions screened, a higher screening
frequency is more desirable.

Comparing the reduction in the prevalence of HPV infection and associated dys-
plasia leads to similar conclusions. The base-case value of the proportion screened
results in 97.14% reduction in 35 years (Figure 7). The same reduction takes 41
years with a low proportion screened (Figure 7 top inset) and 33 years with a high
proportion screened (Figure 7 bottom inset). As under the base-case scenario, the
annual, 2-year and 3-year screening with low or high proportions screened makes
no significant difference in providing the same amount of reduction in prevalence
(hence the solid, dashed and dotted lines are indistinguishable in the inset figures).

Conclusions. A two-sex deterministic model is designed and used to study the
transmission dynamics of HPV in the presence of Pap cytology screening and mass
vaccination against some vaccine-targeted HPV types. The main theoretical results
shown are summarized below:

(i) The model exhibits the phenomenon of backward bifurcation where the stable
disease-free equilibrium coexists with two endemic equilibria (one of which is
suggested to be stable, by numerical simulations) when the associated repro-
duction number (Rv) is less than unity. The epidemiological implication of
this result is that having the reproduction number less than unity, while nec-
essary, is no longer sufficient for eliminating the HPV-infection and associated
dysplasia from the community;

(ii) The backward bifurcation phenomenon of the model is caused by any of the
following mechanisms:
(a) imperfect nature of the vaccine in preventing infection (0 < εv < 1)
(b) HPV- and cancer-induced mortality in the female population (δf > 0,

δc > 0 or δcd > 0);
(iii) For the case when the HPV-induced and cancer-induced mortality is negligible

(δ = 0), it is shown that the disease-free (HPV-infection- and dysplasia-free)
equilibrium of the model is globally-asymptotically stable when the associated
reproduction number (R̃v) is less than unity;
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(iv) The model has a unique endemic equilibrium when the reproduction number
(Rv) exceeds unity. This equilibrium is shown to be globally-asymptotically
stable for the special case when the HPV-induced and cancer-induced mortal-
ity is negligible.

Numerical simulations of the model suggest the following:

(v) Pap screening every three years is reasonable. This result is consistent with
the empirical findings [45, 46];

(vi) The use of mass vaccination alone (with a vaccine efficacy of 90%) can lead to
the elimination of the vaccine-targeted HPV types and associated dysplasia
from the community if at least 88% of the susceptible female population is
vaccinated at steady-state;

(vii) Mass vaccination alone (without Pap screening) could result in 97.14% reduc-
tion in the prevalence of the vaccine-targeted HPV types and the associated
dysplasia in about 50 years;

(viii) If Pap screening (2-year or 3-year) is implemented in addition to mass vac-
cination, the time required to achieve the same amount of reduction in the
prevalence of HPV infection and the associated dysplasia is reduced to about
35 years.
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Appendix A: Proof of Theorem 3.4.

Proof. It is convenient to use the change of variables:

Sf = x1, V = x2, If = x3, P = x4, Q1 = x5, Q2 = x6, Q3 = x7, Q1d = x8, Q2d = x9,

Q3d = x10, C = x11, Cd = x12, Rc = x13, Rf = x14, Sm = x15, Im = x16, Rm = x17.
(19)

Let f̂ = [f1, · · · , f17] denote the vector field of (3) in the notation (19), so that the
model (3), with the conservation law (1), is re-written in the form:

dx1
dt

= f1 = πf (1− φ)− βmcf
x15 + x16 + x17

x16x1 − µfx1,

dx2
dt

= f2 = πfφ− (1− εv)
βmcf

x15 + x16 + x17
x16x2 − µfx2,

dx3
dt

= f3 =
βmcf

x15 + x16 + x17
x16[x1 + (1− εv)x2]− g1x3,

dx4
dt

= f4 = σf (1− r1)x3 − g2x4,

dx5
dt

= f5 = κpx4 + κqx6 − g3x5,

dx6
dt

= f6 = ζ1x5 − g4x6,

dx7
dt

= f7 = ζ2x6 − g5x7,

dx8
dt

= f8 = α1x5 + κdx9 − g6x8,

dx9
dt

= f9 = α2x6 + ζ1x8 − g7x9,

dx10
dt

= f10 = α3x7 + ζ2x9 − g8x10,

dx11
dt

= f11 = ζ3x7 − g9x11,

dx12
dt

= f12 = αcx11 − g10x12,

dx13
dt

= f13 = γx12 − µfx13,

dx14
dt

= f14 = σfr1x3 + ψ0x4 +

3∑
i=1

ψixi+4 +

3∑
i=1

ρixi+7 − µfx14,

dx15
dt

= f15 = πm −
βfcf

x15 + x16 + x17
(x3 + θx4)x15 − µmx15,

dx16
dt

= f16 =
βfcf

x15 + x16 + x17
(x3 + θx4)x15 − g11x16,

dx17
dt

= f17 = σmx16 − µmx17.

(20)

The Jacobian of the system (20), at the DFE E0, is given by
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J(E0) =



−µf 0 0 0 0 0 0 0 0
0 −µf 0 0 0 0 0 0 0
0 0 −g1 0 0 0 0 0 0
0 0 σf (1− r1) −g2 0 0 0 0 0
0 0 0 κp −g3 κq 0 0 0
0 0 0 0 ζ1 −g4 0 0 0
0 0 0 0 0 ζ2 −g5 0 0
0 0 0 0 α1 0 0 −g6 κd
0 0 0 0 0 α2 0 ζ1 −g7
0 0 0 0 0 0 α3 0 ζ2
0 0 0 0 0 0 ζ3 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 σfr1 ψ0 ψ1 ψ2 ψ3 ρ1 ρ2
0 0 −j3 −θj3 0 0 0 0 0
0 0 j3 θj3 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −j1 0
0 0 0 0 0 0 −j2 0
0 0 0 0 0 0 0 j1 + j2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−g8 0 0 0 0 0 0 0

0 −g9 0 0 0 0 0 0
0 αc −g10 0 0 0 0 0
0 0 γ −µf 0 0 0 0
ρ3 0 0 0 −µf 0 0 0
0 0 0 0 0 −µm 0 0
0 0 0 0 0 0 −g11 0
0 0 0 0 0 0 σm −µm



,

where, j1 =
βmcfπfµm(1− φ)

πmµf
, j2 =

(1− εv)βmcfπfµmφ
πmµf

and j3 =
βmcfx1
x15

. It

can be shown, from the Jacobian J(E0), that (as in 7)),

R2
v =

βfβmc
2
fπfµm[g2 + θσf (1− r1)](1− εvφ)

g1g2g11πmµf
. (21)

Consider the case when Rv = 1. Suppose, further, that βf is chosen as a bifur-
cation parameter. Solving for βf from Rv = 1 in (21) gives

βf = β∗ =
g1g2g11πmµf

βmc2fπfµm[g2 + θσf (1− r1)](1− εvφ)
. (22)

It is easy to verify that the transformed system (20), with βf = β∗ has a simple
eigenvalue with zero real part, and all other eigenvalues have negative real parts.
Hence, the centre manifold theory can be used to analyse the dynamics of (20) near
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βf = β∗. In particular, Theorem 4.1 in [8] will be used. The application of this
theorem entails the following computations.

Eigenvectors of J(E0)|βf=β∗ . The Jacobian of (20) at βf = β∗, denoted by Jβ∗ , has
a right eigenvector (corresponding to the zero eigenvalue) given by w = [w1, · · · ,
w17]T , where

w1 = −
βmS

∗
fcf

S∗mµf
w16, w2 = −βmcf (1− εv)V ∗]

S∗mµf
w16,

w3 =
βm[S∗f + (1− εv)V ∗]cf

g1S∗m
w16, w4 =

σf (1− r1)βm[S∗f + (1− εv)V ∗]cf
g1g2S∗m

w16,

w5 =
κpg4

g3g4 − κqζ1
w4, w6 =

κpζ1
g3g4 − κqζ1

w4, w7 =
κpζ1ζ2

g5(g3g4 − κqζ1)
w4,

w8 =
κp(g4g7α1 + α2κdζ1)

(g6g7 − κdζ1)(g3g4 − κqζ1)
w4, w9 =

ζ1[κpα2w4 + (g3g4 − κqζ1)w8]

g7(g3g4 − κqζ1)
,

w10 =
ζ1ζ2(g5α2 + α3g7)κpw4 + (g3g4 − κqζ1)g5w8

g8g7g5(g4g3 − κqζ1)
, w11 =

ζ1ζ2ζ3κp
g5g9(g3g4 − κqζ1)

w4,

w12 =
αc
g10

w11, w13 =
γ

µf
w12,

w14 =
σfr1w3 + ψ0w4 + ψ1w5 + ψ2w6 + ψ3w7 + ρ1w8 + ρ2w9 + ρ3w10

µ
,

w15 = −β
∗cf (w3 + θw4)

µm
, w16 = w16 > 0, w17 =

σm
µm

w16,

where, g3g4 − κqζ1 > 0, and g6g7 − κdζ1 > 0. Further, the Jacobian Jβ∗ has a left
eigenvector (associated with the zero eigenvalue) given by v = [v1, · · · , v17], where

v1 = 0, v2 = 0, v3 =
βfcf [g2 + θσ(1− r1)]

g1g2
v16, v4 =

β∗cfθ

g2
v16,

v5 = · · · v15 = 0, v16 = v16 > 0, v17 = 0.

Computations of bifurcation coefficients a and b: For the system (20), the associated

non-zero partial derivatives of f̂ (at the DFE E0) are given by

∂2f3
∂x1∂x16

(0, 0) =
βmcf
S∗m

,
∂2f3

∂x2∂x16
(0, 0) =

(1− εv)βmcf
S∗m

,

∂2f3
∂x15∂x16

(0, 0) =
∂2f3

∂x16∂x17
(0, 0) = −

βmcf [S∗f + (1− εv)V ∗]
(S∗m)2

,

∂2f3
∂x216

(0, 0) = −
2βm[S∗f + (1− εv)V ∗]cf

(S∗m)2
,

∂2f16
∂x3∂x16

(0, 0) =
∂2f16
∂x3∂x17

(0, 0) = −β
∗cf
S∗m

,

∂2f16
∂x4∂x16

(0, 0) =
∂2f16
∂x4∂x17

(0, 0) = −β
∗cfθ

S∗m
.
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so that,

a =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

=
2v16w

2
16β
∗βmc

2
fπfµ

2
m[g2 + θσf (1− r1)]

g1g2π2
m{

β∗βmc
2
fπf (1− εvφ)2[g2 + θσf (1− r1)]

g1g22πmµf

−βmcf
g2µf

[(1− φ) + (1− εv)2φ]− 2(1− εvφ)g11
µm

}
(23)

The bifurcation coefficient b is similarly given by

b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂β∗

(0, 0) = v16w16βmc
2
fA2

[S∗f + (1− εv)V ∗]
g1g2S∗m

> 0.

Thus, it follows from Theorem 4.1 of [8] that the model (3) undergoes backward
bifurcation whenever the bifurcation coefficient, a, given in (23), is positive. The
inequality a > 0 can be expressed in terms of the model parameters as below.

β∗βmc
2
fπf (1−εvφ)2[g2+θσf (1−r1)]

g1g22πmµf

>
βmcf
g2µf

[(1− φ) + (1− εv)2φ] + 2(1−εvφ)g11
µm

. (24)

Remark 1. If εv = 1, then

a = −
2v16w

2
16β
∗βmc

2
fπfµ

2
m[g2 + θσf (1− r1)]

g1g2π2
m

{
cfβm(1− φ)

µf
+

(1− φ)g11
µm

}
< 0.

Thus the model (3) with perfect vaccine does not undergo a backward bifurcation
at Rv = 1, in line with Corollary 1.

Appendix B: Proposition 1.

Proposition 1. −
(S̃∗∗f )2

Sf
− (1− εv)

(Ṽ ∗∗)2

V
≤ −

[S̃∗∗f + (1− εv)Ṽ ∗∗]2

Sf + (1− εv)V
.

Proof. Suppose the proposition is false. Hence,

(S̃∗∗f )2

Sf
+ (1− εv)

(Ṽ ∗∗)2

V
<

[S̃∗∗f + (1− εv)Ṽ ∗∗]2

Sf + (1− εv)V
so that,

S̃∗∗f )2V + (1− εv)(Ṽ ∗∗)2Sf
SfV

<
(S̃∗∗f )2 + ε2v(Ṽ

∗∗)2 + 2εvS̃
∗∗
f Ṽ

∗∗

Sf + εvV

which can be simplified to:



1202 T. MALIK, J. REIMER, A. GUMEL, E. ELBASHA AND S. MAHMUD

(S̃∗∗f )2V Sf + εv(S̃
∗∗
f )2V 2 + εvS

2
f (Ṽ ∗∗)2 + ε2vSfV (Ṽ ∗∗)2

< Sf (S̃∗∗f )2V + ε2vSfV (Ṽ ∗∗)2 + 2εvSf S̃
∗∗
f V Ṽ

∗∗

or εv(S̃
∗∗
f )2V 2 + εvS

2
f (Ṽ ∗∗)2 − 2εvSf S̃

∗∗
f V Ṽ

∗∗ < 0

or (S̃∗∗f V − Sf Ṽ ∗∗)2 < 0,

which is a contradiction. Hence, −
(S̃∗∗f )2

Sf
−(1−εv)

(Ṽ ∗∗)2

V
≤ −

[S̃∗∗f + (1− εv)Ṽ ∗∗]2

Sf + (1− εv)V
.
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Figure 1. Schematic diagram of the model (3).
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Figure 2. Simulations of the model (3) showing the number of
infected individuals (males and females) as a function of time, using
various initial conditions. Parameter values used are as given in
Table 2, with φ = 0.3 and cf = 4 (so that, Rv = 3.7897 > 1).
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Figure 3. Simulations of the model (3) showing the number of
infected individuals (males and females) as a function of time, using
various initial conditions. Parameter values used are as given in
Table 2 with δ = 0, φ = 0.9 and cf = 1 (so that, R̃v = 0.4833 < 1).
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Figure 4. Simulation of the model (3) showing the contour plot

of R̃v as a function of vaccine efficacy (εv) and the fraction of
susceptible females vaccinated at steady-state (V ∗/N∗f ). Parameter
values used are as in Table 2, with δ = 0.
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Figure 5. Simulation of the model (3) showing the percentage
reduction in prevalence of the HPV infection and the associated
dysplasia as a function of time, in the absence of Pap screening.
Parameter values used are the same as those used to generate Fig-
ure 4.
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Figure 6. Cumulative number of detected cervical cancer and
CIN cases as a function of time. The dotted line represents 3-year
screening, solid line represents 2-year screening, and dashed line
represents annual screening. Parameter values used are as in Table
2, with δ = φ = 0. The inset plots show the same corresponding
to low screening rate due to low proportion screened (χ = 7%) and
high screening rate due to high proportion screened (χ = 44%).
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Figure 7. Simulation of the model (3) with δ = 0 showing the
percentage reduction in prevalence of the HPV infection and the
associated dysplasia as a function of time, with Pap screening. The
solid curve represents annual screening, dashed line represents 2-
year screening and the dotted line represents 3-year screening. Pa-
rameter values used are the same as those used to generate Figure
4. The inset plots show the same corresponding to low screening
rate due to low proportion screened (χ = 7%) and high screening
rate due to high proportion screened (χ = 44%).
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