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Abstract. Hand, foot and mouth disease (HFMD) is one of the major public-

health problems in China. Based on the HFMD data of the Department of
Health of Shandong Province, we propose a dynamic model with periodic trans-

mission rates to investigate the seasonal HFMD. After evaluating the basic

reproduction number, we analyze the dynamical behaviors of the model and
simulate the HFMD data of Shandong Province. By carrying out the sensitivity

analysis of some key parameters, we conclude that the recessive subpopulation
plays an important role in the spread of HFMD, and only quarantining the

infected is not an effective measure in controlling the disease.

1. Introduction. Hand, foot and mouth disease (HFMD) is a common infectious
disease among infants and children. HFMD is caused by a group of enterovirus
which mainly include coxsackievirus A16 (CA16) and enterovirus 71 (EV71) [4]. It
is estimated that there are 500,000∼1,800,000 HFMD cases per year in China [21],
and a series of recent HFMD outbreaks in China can be found in [9, 10, 22, 26, 27].

In the spread of HFMD, children are more susceptible to be infected than adults,
because they are less likely than adults to have antibodies and awareness of self-
protection. HFMD spreads mainly among children under five-years old [5], and may
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also occur among adults. A health individual will be infected by contacting with the
infectious individuals or touching objects which are touched by the infectious. After
a susceptible individual is infected he firstly enters the incubation period of HFMD.
The incubation period is about 3 ∼ 7 days. After the incubation period, the infected
will show some clinical symptoms, such as have a fever, poor appetite, malaise
and sore throat, few people may develop dehydration, febrile seizures, encephalitis,
meningitis, cardiomyopathy, etc. However, some infectious individuals especially
adults do not show the clinical symptom, and we call them the recessive infection.
The recessive infection individuals are also infectious, and they can transmit HFMD
virus to the susceptible. After the end of the incubation period an infectious people
will recover back to the susceptible in 7 ∼ 10 days.

In general, many infectious diseases fluctuate over time and show seasonal pat-
terns in the incident rate, such as measles, whooping cough, polio, influenza, chick-
enpox, mumps, etc [1, 6, 11]. Although this phenomenon is familiar with us, the
causes and consequences of seasonal patterns in the incident rate are not fully un-
derstood. Periodic changing in the birth rate [12] and seasonally changing in the
contact rate [7, 16, 17] are often regarded as sources of periodicity. In this paper,
based on the characteristics of reported weekly data from the Department of Health
of Shandong Province, we consider the periodic transmission attribute to the fol-
lowing three facts: (i) In the winter most children like to stay at home due to the
cold weather and while in the summer and fall, people especially children have more
frequent outdoor activities. (ii) The warm climate contribute to the reproduction
of the virus and the prevalence of the disease in the summer. In fact, it is reported
that HFMD cases increase sharply when the average temperature is more than a
threshold value of 19◦C [20]. (iii) From April to June children usually play and
study together at school, while during July and August most schools are closed for
summer vacation thus many children play together without supervision. All these
reasons cause the disease spread easily and form a seasonal pattern.

Recently, several mathematical models have been developed to study the trans-
mission dynamics of HFMD. For example, Tiing and Labadin [19] studied a simple
SIR model to predict the number of infected and the duration of an outbreak in
Sarawak Malaysia. Liu [9] constructed a periodic epidemic model to simulate the
dynamics of HFMD transmission, and showed that quarantine has a positive impact
on controlling the spread of HFMD. In China, with the increasing of the recessive,
understanding and exploring the role of the recessive in the spread of HFMD become
an important research field. In this paper, taking into account the role of recessive
infection, we propose a susceptible, exposed, infected, recessive, quarantined and
recovered (SEIIeQR) model with periodic transmission rate. We firstly determine
the basic reproduction number and analyze the dynamic behaviors of the model,
and then carry out numerical simulations and the sensitivity analysis of some key
parameters. At last based on the analysis and simulations we discuss some effective
strategies in controlling the spread of HFMD in Shandong Province.

The paper is organized as follows. In section 2, we present the model and give
the parameters. In section 3, we determine the basic reproduction number R0

and analyze the global asymptotic stability of the disease-free equilibrium and the
existence of positive periodic solutions. Simulations of the model and sensitivity
analysis are performed in section 4. In section 5, we give a brief discussion. The
detailed calculation of the basic reproduction number and the proof of some results
are presented in the Appendix.
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2. The HFMD Model. We classify the population into six compartments accord-
ing to their states: susceptible, exposed, infected, recessive, quarantined, recovered,
which are denoted by S(t), E(t), I(t), Ie(t), Q(t) and R(t), respectively. We denote
the total population by N(t), that is N(t) = S(t)+E(t)+I(t)+Ie(t)+Q(t)+R(t).
The transition dynamics associated with these subpopulations are illustrated in
Figure 1. People who are infected firstly enter the latent period, during which
they do not show symptoms and can not infect others. After about 3 ∼ 7 days,
these people become the infectious. The infectious people are classified into the
infected (I(t)) and the recessive (Ie(t)), who are different in the transmission rate.
Some of the infected people will be hospitalized for treatment, and thus they (Q(t))
are isolated from other subpopulations. Because HFMD in Shandong was mainly
caused by EV71[27], thus some of the recovered will be reinfected after they lose
the immunity.

Figure 1. Flowchart of HFMD transmission with subpopulations

The standard incidence β(t)SI/N is applied in the model because an infectious
individual only can contact a finite number of individuals within a unit time among a
large population [14]. The transmission rate between S(t) and I(t) is β1(t), and the
transmission rate between S(t) and Ie(t) is β2(t). As discussed in the Introduction,
many epidemiological models [6, 8, 12, 13, 16, 23, 24, 28] were simulated by using
sinusoidal function of period 1 year (β(t) = β0 + β sin(ωt + φ)) for the seasonal
varying transmission rate. In this model, we use the periodic functions β1(t) =
a1 + b1 sin( π26 t + φ) and β2(t) = a2 + b2 sin( π26 t + φ) with period ω (here ω = 52
weeks) as the transmission rates. Here a1, b1, a2, b2 and φ are constant, which can
be determined by the least-square fitting in Section 4.

The interpretations and values of parameters are described in Table 1. The source
[A] is from Shandong Statistical Yearbook 2010, 2011 and 2012 [18]. From [A] we
obtain the values of the annual average birth rate and natural death rate, then we
divide them by 52 and derive the weekly birth population Λ and natural death rate
d. The source [B] is the reported data of HFMD in Shandong from April 2009 to
October 2011. As similar as the above, we derive the weekly disease-related death
δ1, δ2 and the quarantine rate k. The average incubation period 1/σ and the recover
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Table 1. Descriptions and values of parameters

Para. Value Unit Interpretation Source
Λ 2.0961 × 104 week−1 Birth population [A]
1/σ 4/7 week The average incubation period [9]
p 2.5 × 10−2 none The fraction of developing infected cases Fitting
δ1 1.6 × 10−4 week−1 The infected disease-related death rate [B]
δ2 1.6 × 10−4 week−1 The quarantined disease-related death rate [B]
k 2.85 × 10−2 week−1 The quarantine rate [B]
γ1 0.8235 week The recover rate of the infected [9]
γ2 0.8235 week The recover rate of the quarantined Assumption
γ3 0.8235 week The recover rate of the recessive Assumption
d 1.37 × 10−4 week−1 Natural death rate [A]
η 1.5 × 10−2 none The rate from recovered to susceptible Fitting

rate of the infected individuals γ1 are given by [9]. In this model we also assume
that the infected, the quarantined and the recessive have the same recover rate
γ1 = γ2 = γ3. The values of other parameters can be obtained by the least-square
fitting method.

The model is described by the following system of nonautonomous differential
equations.

dS

dt
= Λ− β1(t)

S

N
I − β2(t)

S

N
Ie + ηR− dS, (1a)

dE

dt
= β1(t)

S

N
I + β2(t)

S

N
Ie − σE − dE, (1b)

dI

dt
= σpE − (γ1 + k + δ1)I − dI, (1c)

dIe
dt

= σ(1− p)E − γ3Ie − dIe, (1d)

dQ

dt
= kI − (γ2 + δ2)Q− dQ, (1e)

dR

dt
= γ1I + γ2Q+ γ3Ie − ηR− dR. (1f)

3. Mathematical analysis. In this section, we investigate the global stability
of disease-free equilibrium and the existence of the positive periodic solution of
model (1). It is easy to see that model (1) always has one disease-free equilibrium

P0 = (Ŝ, 0, 0, 0, 0, 0), where Ŝ = Λ
d . By using model (1), we have

dN

dt
= Λ− dN − δ1I − δ2Q ≤ Λ− dN, (2)

therefore

X =

{
(S,E, I, Ie, Q,R)|S,E, I, Ie, Q,R ≥ 0, 0 < S + E + I + Ie +Q+R ≤ Λ

d

}
is the feasible region for model (1), and we also have

Theorem 3.1. The region X is positively invariant set for model (1).

It is not difficult to prove Theorem 3.1, thus we put the proof in the Appendix
A. We can derive the basic reproduction number of model (1) by the definition of
Bacaër and Guernaoui [2], and its calculation is based on Floquet theory introduced
in [3] and Wang and Zhao [25]. The details are given in the Appendix B. For
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the globally asymptotically stable of the disease-free equilibrium P0, we have the
following theorem.

Theorem 3.2. The disease-free equilibrium P0 is globally asymptotically stable
when R0 < 1.

About the proof of Theorem 3.2, we also put it in the Appendix C. The following
we consider the existence of the positive periodic solution of model (1). Define

X0 := {(S,E, I, Ie, Q,R) ∈ X : E > 0, I > 0, Ie > 0}
and ∂X0 = X \ X0. Denote u(t, x0) as the unique solution of model (1) with the
initial value x0 = (S0, E0, I0, I0

e , Q
0, R0). Let P : X → X be the Poincaré map

associated with model (1), i.e.,

P (x0) = u(ω, x0), ∀x0 ∈ X,
where ω is the period. Applying the fundamental existence-uniqueness theorem[15],
we know that u(t, x0) is the unique solution of model (1) with u(0, x0) = x0. From
Theorem 3.1, we know that X is positively invariant and P is dissipative point. To
prove the main result about the existence of positive periodic solution of model (1),
we need the following lemma.

Lemma 3.3. When R0 > 1, there exists a δ > 0 such that when

‖(S0, E0, I0, I0
e , Q

0, R0)− P0‖ ≤ δ
for any (S0, E0, I0, I0

e , Q
0, R0) ∈ X0, we have

lim sup
m→∞

d[Pm(S0, E0, I0, I0
e , Q

0, R0), P0] ≥ δ,

where P0 = (Ŝ, 0, 0, 0, 0, 0).

Because the proof of Lemma 3.3 is similar with the proof of Lemma 2.4 in [28],
here we omit it. According to Lemma 3.3, we can get the following theorem about
the existence of positive periodic solution of model (1). Similarly, the reader can
find the proof in the Appendix D.

Theorem 3.4. Model (1) has at least one positive periodic solution when R0 > 1.

4. Simulations and sensitivity analysis. In this section, by using model (1),
we simulate the reported data of HFMD in Shandong, China from April 2009 to
October 2011, and carry out the sensitivity analysis based on the parameters.

We need to estimate the values of parameters of model (1), most of which can
be obtained from the literature or assumed on the basis of common sense. From
the Department of Health of Shandong Province, we obtained the data of HFMD.
By using the least-square fitting of I(t), we estimated the values of parameters p, η,
and we also obtained β1(t) = 1+0.3 sin( π26 t+2) and β2(t) = 0.878+0.3 sin( π26 t+2).
The values of other parameters are listed in Table 1. We need the initial values to
perform the numerical simulations. The number of the initial susceptible population
at the end of 2008, S(0) = 9.3 × 107, is obtained from the Statistical Information
of Shandong Province [18]. The numbers of the initial infected and quarantined
population I(t) and Q(t) are obtained from the reported data of HFMD, thus I(0) =
5.775 × 103, Q(0) = 50. Because the numbers of the initial exposed population
E(0), the recessive population Ie(0) and the recovered population R(0) can not be
obtained directly, we derive R(0) = 5×104 by the parameter γ1 and E(0) = 8.5×104

and Ie(0) = 7× 104 are estimated by a reasonable assumption.
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Figure 2. The solid curve represents the simulation curve and the
stars are the weekly data reported by the Department of Health of
Shandong.
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Figure 3. Simulations of the infective I(t) with different val-
ues R0 in Shandong. Here (a1,a2)=(1,0.878),(0.95,0.85),(0.93,0.83)
and the values of other parameters are same, and R0 =
1.0414, 1.0066, 0.9823, respectively.

The numerical simulation of the model (1) about the number of HFMD infectious
cases is shown in Figure 2. It indicates that with these parameter values, there is a
good fit between the simulation of the model (1) and the infectious cases in Shan-
dong Province from 2009 to 2011. Moreover, with these parameter values, we can
roughly estimate that the basic reproduction number R0 ' 1.04 > 1, which show
that HFMD in Shandong Province persist under current circumstances. Further-
more we notice R0 is also close to one. This is because that we suppose the whole
population of Shandong (almost 100 million people) is homogeneously mixing. If we
have try to take for the susceptible population by the children under five-years old
and their family (less than 10 million people), the estimate for R0 would be some-
what higher. Moreover, we demonstrate R0 is a threshold, which determine the
disease extinct or not. HFMD will persist under the condition R0 ' 1.01, where
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a1 = 0.95, a2 = 0.85 in β1(t) and β2(t). If let a1 = 0.93 and a2 = 0.83, we get
R0 ' 0.98. In this case the disease will extinct (see Figure 3). Next we discover the
influence of initial values S(0), E(0), Ie(0), Q(0) and R(0) on the number of infected
cases I(t). From Figure 4, we can see that the initial value of S(t) has a greater
impact on I(t) while other initial values have little or no impact on I(t).
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Figure 4. Simulations of the infected cases I(t) with different
values of S(0), E(0), Ie(0), Q(0) and R(0) in Shandong Province of
China. Here R0 ' 1.04.

In order to perform sensitivity analysis of parameters p and k, we fix all parame-
ters except p and k. Figure 5(a) reflects the relation between the basic reproduction
number R0 and the parameter p. We see that the basic reproduction number R0

increase with the increasing of p, and R0 always larger than one even if p = 0. From
Figure 5(a), we conclude that the parameter p has great influence on R0, and the
infected and the recessive subpopulation play the dominant role in the spread of
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Figure 5. The influence of parameters on R0. (a) Versus p; (b)
versus k. Other parameter values in Table 1 do not change.

HFMD. Figure 5(b) shows that the larger k is, the less R0 is, that is to say, quar-
antine has a positive impact on controlling the spread of disease. However, even if
the quarantine rate k is larger than 3 the basic reproduction number is also larger
than one.

5. Discussion. The transmission of HFMD has been a growing concern in China.
In this paper, by using HFMD data of Shandong Province, we constructed an
SEIIeQR model with periodic transmission rates to investigate the spread of sea-
sonal HFMD in Shandong. From the simulations, we concluded that HFMD will
persist in Shandong Province under current circumstances. By carrying out the sen-
sitivity analysis of some key parameters, we found that the recessive subpopulation
plays an important role in the spread of HFMD while the quarantine subpopula-
tion has a little effect in controlling the disease. Even if the quarantine rate k is
larger, the basic reproduction number is still larger than one, that is to say, HFMD
still persist even with a larger quarantine rate. Therefore the quarantine is not an
effective measure in many measures of controlling HFMD.

According to WHO, there is no an effective vaccine or antiviral treatment specif-
ically for HFMD. However, the risk of infection can be minimized by good hygiene
practices, including: (i) washing hands frequently and thoroughly with soap and
cleaning dirty surfaces and soiled items; (ii) avoiding close contact with the infec-
tive; (iii) not sharing personal items such as spoons, cups and other utensils with
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other people. In a word, publicity and education on the risk and prevention of
HFMD is necessary and should be strengthened especially in endemic areas.

Appendix A: Calculation of the basic reproduction number. We evaluate
the basic reproduction number R0 for system (1) following the definition of Bacaër
and Guernaoui [2] and the calculation procedure for ODEs based on Floquet theory
introduced in [3]. According to Wang and Zhao [25], we have

F =


β1(t) SN I + β2(t) SN Ie

0
0
0
0
0

 , V =


σE + dE

(γ1 + k + δ1 + d)I − σpE
(γ3 + d)Ie − σ(1− p)E

(γ2 + δ2 + d)Q− kI
(η + d)R− (γ1I + γ2Q+ γ3Ie)

β1(t) SN I + β2(t) SN Ie + dS − ηR− Λ

 ,

V− =


0

σpE
σ(1− p)E

kI
γ1I + γ2Q+ γ3Ie

ηR+ Λ

 , V+ =


σE + dE

(γ1 + k + δ1 + d)I
(γ3 + d)Ie

(γ2 + δ2 + d)Q
(η + d)R

β1(t) SN I + β2(t) SN Ie + dS

 .

So we derive

F (t) =


0 β1(t) β2(t) 0
0 0 0 0
0 0 0 0
0 0 0 0


and

V (t) =


σ + d 0 0 0
−σp γ1 + k + δ1 + d 0 0

−σ(1− p) 0 γ3 + d 0
0 −k 0 γ2 + δ2 + d

 .

Now we introduce the following linear ω-periodic equation

dw

dt
= [−V (t) +

F (t)

z
]w, t ∈ R+, (3)

with parameter z ∈ (0,∞). Let W (t, s, z), t ≥ s, s ∈ R, be the evolution operator
of system (3) on R4. Clearly, ΦF−V (t) = W (t, 0, 1),∀t ≥ 0. To determine the
threshold of dynamics, we use Theorems 2.1 and 2.2 in Wang and Zhao [25] which is
a generalization of §3.4 in [3]. First of all, we can verify the seven assumptions in the
theorems. Then we can obtain that all eigenvalues of the matrix W (ω, 0, z). Because
the W (ω, 0, z) is more complex, we do not want to show its accurate expression in
this paper. Using (ii) in Theorem 2.1 in Wang and Zhao [25], we can calculate the
basic reproduction number.

Appendix B: Proof of Theorem 3.1.

Proof. From model (1), the total population N(t) satisfies the following equation,

dN

dt
≤ Λ− dN.
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It is clear that N1(t) = Λ
d is a solution of

dN1

dt
= Λ− dN1, (4)

and for any N(t0) ≥ 0, the general solution of (4) is

N1(t) =
1

d
[Λ− (Λ− dN1(t0))e−d(t−t0)],

that we have lim
t→∞

N1(t) = Λ
d , thus lim

t→∞
N(t) ≤ Λ

d , which implies that X is positively

invariant with respect to system (1).

Appendix C: Proof of Theorem 3.2.

Proof. If R0 < 1, P0 is locally asymptotically stable by Theorem 2.2 in Wang and
Zhao [25]. To show the solution is globally stable, we need show that P0 is globally
attractive. Clearly, S(t) ≤ N(t), for all t ≥ 0. Then from system (1), we have

dE

dt
≤ β1(t)I + β2(t)Ie − (σ + d)E, (5a)

dI

dt
= σpE − (γ1 + k + δ1)I − dI, (5b)

dIe
dt

= σ(1− p)E − γ3Ie − dIe, (5c)

dQ

dt
= kI − (γ2 + δ2)Q− dQ. (5d)

Consider the following comparison system

dh

dt
= (F (t)− V (t))h(t), h(t) = (E(t), I(t), Ie(t), Q(t))T . (6)

Applying Theorem 2.2 in Wang and Zhao [25], we know that R0 < 1 if and only
if ρ(ΦF−V (ω)) < 1. By Lemma 2.1 in Zhang and Zhao [29], it follows that there

exists a positive ω-periodic function ĥ(t) such that h(t) = eptĥ(t) is a solution of
system (6), where p = 1

ω ln ρ(ΦF−V (ω)). We know when R0 < 1, ρ(ΦF−V (ω)) < 1.
Therefore, we have h(t) → 0 as t → ∞, which implies that the zero solution of
system (5) is globally asymptotically stable. Applying the comparison principle, we
know that for system (1), E(t) → 0, I(t) → 0, Ie(t) → 0 and Q(t) → 0 as t → ∞.

By the theory of asymptotic autonomous systems, it is also known that S(t) → Ŝ
as t → ∞. So P0 is globally attractive when R0 < 1. It follows that P0 is globally
asymptotically stable when R0 < 1.

Appendix D: Proof of Theorem 3.4.

Proof. We first prove that {Pm}m≥0 is uniformly persistent with respect to (X0,
∂X0). First of all, we explain that X0 and ∂X0 are positively invariant. For any
(S0, E0, I0, I0

e , Q
0, R0) ∈ X0, solving the first equation of system (1), we derive that

S(t) = e−
∫ t
0

(d+a(s1))ds1 [S0 +

∫ t

0

(Λ + ηR(s2))e
∫ s2
0 (d+a(s1))ds1ds2]

≥ e−
∫ t
0

(d+a(s1))ds1

∫ t

0

(Λ + ηR(s2))e
∫ s2
0 (d+a(s1))ds1ds2

> 0, ∀t > 0, (7)
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E(t) = e−(σ+d)t[E0 +

∫ t

0

a(s1)S(s1)e(σ+d)s1ds1]

≥ e−(σ+d)t

∫ t

0

a(s1)S(s1)e(σ+d)s1ds1]

> 0, ∀t > 0, (8)

I(t) = e−(γ1+k+δ1+d)t[I0 +

∫ t

0

σpE(s1)e(γ1+k+δ1+d)s1ds1]

≥ e−(m+µ)t

∫ t

0

σpE(s1)e(γ1+k+δ1+d)s1ds1

> 0, ∀t > 0, (9)

Ie(t) = e−(γ3+d)t[I0
e +

∫ t

0

σ(1− p)E(s1)e(γ3+d)s1ds1]

≥ e−(γ3+d)t

∫ t

0

σ(1− p)E(s1)e(γ3+d)s1ds1

> 0, ∀t > 0, (10)

Q(t) = e−(γ2+δ2+d)t[Q0 +

∫ t

0

kI(s1)e(γ2+δ2+d)s1ds1]

≥ e−(γ2+δ2+d)t

∫ t

0

kI(s1)e(γ2+δ2+d)s1ds1

> 0, ∀t > 0, (11)

and

R(t) = e−(η+d)t[R0 +

∫ t

0

(γ1I(s1) + γ2Q(s1) + γ3Ie(s1))e(η+d)s1ds1]

≥ e−(η+d)t

∫ t

0

(γ1I(s1) + γ2Q(s1) + γ3Ie(s1))e(η+d)s1ds1

> 0, ∀t > 0. (12)

where a(t) := β1(t) I(t)N(t) + β2(t) Ie(t)
N(t) . So, X0 is positively invariant. Clearly, ∂X0 is

relatively closed in X. Set

M∂ = {(S0, E0, I0, I0
e , Q

0, R0) ∈ ∂X0 : Pm(S0, E0, I0, I0
e , Q

0, R0) ∈ ∂X0,∀m ≥ 0}.
It is easy to show that

M∂ = {(S, 0, 0, 0, 0, 0) ∈ X : S ≥ 0}. (13)

Note that {(S, 0, 0, 0, 0, 0) ∈ X : S ≥ 0} ⊆ M∂ , we only need to prove that M∂ ⊆
{(S, 0, 0, 0, 0, 0) ∈ X : S ≥ 0}. That is, for any (S0, E0, I0, I0

e , Q
0, R0) ∈ ∂X0, we

have
E(mω) = I(mω) = Ie(mω) = 0,∀m ≥ 0.

If there exists an m1 ≥ 0 such that

(E(m1ω), I(m1ω), Ie(m1ω))T > 0,

by replacing the initial time 0 with m1ω and following the processes as in (7)-(12).
Analogously, we have (E(t), I(t), Ie(t))

T > 0,∀t > m1ω. Thus, we have

(S(t), E(t), I(t), Ie(t), Q(t), R(t)) ∈ X0, ∀t > m1ω,
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which contradicts that (S0, E0, I0, I0
e , Q

0, R0) ∈ ∂X0 that requires

Pm(S0, E0, I0, I0
e , Q

0, R0) ∈ ∂X0,∀m ≥ 0.

So the equality (13) holds which implies that P0 is the only fixed point of P and
acyclic in ∂X0.

Moreover, Lemma 3.3 implies that P0 = (Ŝ, 0, 0, 0, 0, 0) is an isolated invariant
set in X and WS(P0)∩X0 = ∅. By the acyclicity theorem on uniform persistence for
maps (Theorem 1.3.1 and Remark 1.3.1 in Zhao [25]), it follows that P is uniformly
persistent with respect to (X0, ∂X0).

Theorem 1.3.6 in Zhao [25] implies that P has a fixed point

(S∗(0), E∗(0), I∗(0), I∗e (0), Q∗(0), R∗(0)) ∈ X0.

From the first equation of system (1) we have that

S∗(t) = e−
∫ t
0

(d+a(s1))ds1 [S∗(0) +

∫ t

0

(Λ + ηR(s2)e
∫ s2
0 (d+a(s1))ds1ds2]

≥ e−
∫ t
0
d+a(s1))ds1

∫ t

0

(Λ + ηR(s2)e
∫ s2
0 (d+a(s1))ds1ds2

> 0, ∀t ∈ [0, ω].

The periodicity of S∗(t) implies S∗(t) > 0 for all t > 0. Following the processes as in
inequalities (7)-(12), we have E∗(t) > 0, I∗(t) > 0, I∗e (t) > 0, Q∗(t) > 0, R∗(t) > 0,
for all t ≥ 0. Therefore,

(S∗(t), E∗(t), I∗(t), I∗e (t), Q∗(t), R∗(t))

is a positive ω−periodic solution of system (1).
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