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Abstract. We consider the case of measles in South Africa to show that an

high vaccination coverage may be not enough - alone - to ensure measles eradi-

cation. The occurrence of certain epidemic episodes may in fact be encouraged
by delays in the treatments or by not adequately fast clinical case management,

which may be related to the backward bifurcation phenomenon as well as to

an intriguing spiking dynamics which appears in the system for specific ranges
of parameter values.

1. Introduction and research motivations. Epidemic models are mostly ex-
pressed as nonlinear dynamical systems. One of the most striking features of non-
linear dynamical systems is the large number of different dynamical behaviors that
may be obtained - even from relatively simple models - by varying significant pa-
rameters in the system. Bifurcation theory is a fundamental tool to get insight such
variety of behaviors since, detecting the specific type of bifurcation which occurs
in a certain system, provides the ability to recognize the dynamical behavior in
the neighboring of the bifurcation point as well as the threshold values separating
different dynamical regimes.

Kermack and Mc Kendric [29] - just in 1927 - developed ideas as epidemic thresh-
old or endemicity persistence. Today the concept of epidemic threshold has become
one of the cornerstones of theoretical epidemiology and is intimately related to the
basic reproduction number R0 which commonly indicates the expected number of
new infections produced by a single infective individual introduced into a disease-
free population [44]. R0 is hence a clear indicator of the strength of the disease and
provides a direct measure of the control effort required to eradicate the disease. As
a matter of fact, it may be considered the single-most useful quantity to estimate
when modeling the population dynamics of an infectious disease.

For an endemic infection, the value R0 = 1 defines a threshold, separating the
stability and instability regimes of the disease-free equilibrium. In many cases,
condition R0 > 1 corresponds to disease endemicity whereas condition R0 < 1
ensures disease eradication. However, since such threshold on the reproduction
number is based on conditions at the disease-free equilibrium, it does not necessarily
indicate the ability of the disease to persist at endemic levels [44].
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Commonly two are the possible bifurcation scenarios at R0 = 1: (i) forward
bifurcation (ii) backward bifurcation. The former is surely the simplest from the
dynamical point of view and implies disease eradication below the threshold R0 = 1.

The backward bifurcation scenario involves instead multiplicity of endemic equi-
libria and subcritical persistence of the disease. This phenomenological framework
includes a saddle-node bifurcation at R0 = Rsn0 < 1 and a subcritical transcritical
bifurcation at R0 = 1. In this case, the classical method to reduce R0 below 1 is
not sufficient to eradicate the disease and a further effort should be done until R0 is
lowered below the critical value Rsn0 . In the perspectives of disease control, checking
the occurrence of backward bifurcations has hence a primary importance.

A way to get insight on disease persistence is to perform a bifurcation analysis
in order to establish the nature of the bifurcation at R0 = 1. This goal may be
achieved through specific bifurcation approaches [8, 14, 30, 31] which make use
of two powerful tools of dynamical systems theory: center manifold and normal
forms [20]. Such techniques often require preliminary transformations to be applied
and tend to be technically enough complicated. More recently [3] has proposed a
simple approach - based on algebraic elementary techniques - to get insight into
the bifurcation behavior near R0 = 1, without making use of the above specific
bifurcation methods. While the center manifold and normal forms theory - even
through complicated technicalities - are however the only possible choice to study
bifurcation behavior of models with many compartments or strong nonlinearities,
the simpler approach proposed by [3], turns out to be effective in many commonly
used epidemic models.

Although many papers have been focused on detecting backward bifurcations in
a variety of epidemiological models, few papers in literature have effectively inves-
tigated the role of the backward scenario in concrete disease-control settings, e.g.
[6, 19, 22]. In this paper we choose to consider the case of measles in South Africa to
show how situations of saturated treatments may be responsible for measles resur-
gence episodes through the following two mechanisms: (i) subcritical persistence of
the disease, which is related to the backward bifurcation phenomenon (ii) a spik-
ing dynamics emerging in the system for specific ranges of parameter values when
R0 > 1.

Two questions might arise at this point: why measles? And why South Africa?
Different motivations have supported this choice. Measles is a disease - mathemat-
ically well described by SEIR models [1] - for which endemic equilibria have been
observed in many places, frequently with sustained oscillations about the equilib-
rium. Although its global incidence has been substantially reduced with vaccination,
it remains an important public health problem, especially in developing countries.
However - even in industrialized countries - several resurgences of measles have
been observed in the last decades, despite the high vaccination coverage. A clinical
study of measles in Poland reports an epidemic outbreak between 1997 and 1998
(with 2255 cases), despite a 95% vaccination coverage since the 1980s, [27]. Per-
sistence of measles in spite of the high vaccination coverage, raises questions about
the existence of further mechanisms in order to explain why reducing R0 below
the transcritical bifurcation threshold may fail to control the spread of the disease.
Saturated treatment mechanisms may offer interesting answers in this direction.

On this line, we have focused on South Africa because (i) it exhibits an high
overall national rate of measles vaccination coverage (ii) despite of this, measles
resurgences have been recently observed, e.g. the outbreaks of 2003 and 2009 (iii)
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investigations during recent measles outbreaks have revealed the considerable need
to improve therapeutic treatments because vaccination of contacts alone was shown
to be ineffective in stopping transmission of measles in resource-limited settings [36].
We also think that using mathematical models with parameters and data proper of
the South-African context is of a certain importance since there are still few measles
studies performed with parameters proper of the developing countries, principally
due to a lack of data [4]. In South Africa there is a good availability of data thanks
to the NICD (National Institute for Communicable Diseases), the national organ for
public health surveillance of communicable diseases born with the aim to collect,
analyze and interpret communicable diseases data on an ongoing and systematic
basis. Data used in our case-study are mainly coming from NICD sources, as the
Communicable Diseases Surveillance Bulletin.

The rest of the paper is structured as follows. In Section 2 we introduce a SEIR
model potentially suitable for the case study, which we show to be structurally
equivalent to the model considered in [53]. In Section 3 we recall its basic properties
and revisit the problem of subcritical endemicity showing that backward bifurcation
conditions may be very easily obtained through the simple approach proposed in [3].
In Section 4, we explicitly consider the case of measles in South Africa. The obtained
theoretical results are validated by considering epidemiological parameters proper
of the South African context in the case of slow treatments, interestingly showing
that backward scenario may be detected within such field-parameter setting. The
considered model seems however to be dynamically richer than this. In fact, we
numerically show the existence - for a certain range of the parameter values - of a
spiking attractor involving the disease free equilibrium when R0 > 1, which seems
to be related to an homoclinic bifurcation. In Sections 5-6, the role of backward
scenario and spiking mechanism as direct fruits of saturated treatments is discussed
in order to provide operative solutions to the problem of measles resurgence episodes
in South Africa.

2. The SEIR model. We consider the following SEIR model with treatment,
describing the dynamics of susceptible (S), latent or exposed (E), infectives (I) and
removed (R) individuals:

Ṡ = A(1− p)− dS − βSI
Ė = βSI − (ε+ d)E

İ = εE − (γ + α+ d)I − F (I)

Ṙ = Ap+ γI − dR+ F (I),

(1)

where S(t) +E(t) + I(t) +R(t) = N(t). The involved parameters, all positive, have
the following meaning: A denotes the influx or recruitment of susceptibles, p is the
proportion of the recruited individuals who are vaccinated, i.e. 0 ≤ p < 1, d is the
natural death whereas α is the disease-caused death; β is the contact rate; ε and γ
denote the transfer rates between the corresponding compartments. Heuristically,
1
ε stands for the mean latent period and 1

γ for the mean infectious period.

The requirement of a constant recruitment A of susceptibles has a particular sense
in the perspective of using model (1) to analyze endemic diseases in the context of
less developed countries. In fact to model a disease which may be endemic, both
the shorter epidemic time scale and the longer demographic time scale have to be
considered. This means that births and deaths have to be included in the model.
A simple way to allow this, is to assume that the number of births per unit of time
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equals the number of deaths, so that the total population size is constant. However,
such an assumption is plausible if there are no deaths due to the disease (α = 0) but
it is not appropriate in presence of significant disease-caused deaths (α 6= 0). In less
developed countries, where there is often a very high mortality rate for certain kind
of infectious diseases, the total population must vary in time: this may be simply
obtained by requiring a constant recruitment rate.

In model (1), F (I) represents the treatment term. In classical epidemic models,
the treatment rate of infectives is assumed to be directly proportional to the number
of infectives and hence modeled through a linear function. In practice, this feature
is enough unsatisfactory because the resources required for treatment should be
quite large. On the contrary, each city or country has its maximal capacity for
the treatment of a disease. At this regard, in [46], a staged treatment function is
introduced for which the treatment rate is proportional to the number of infectives
when the capacity treatment is not reached and takes the maximal saturated level
otherwise. This accounts for example situations where - to treat patients - the
number of hospital beds is limited or medicines are not sufficient.

A similar idea was proposed in [11] and [51], where saturation recovery of in-
fectives was modeled through a smooth Verhulst-type function [38]. We adopt this
idea and consider the following treatment function:

F (I) =
rI

1 + b0 I
, (2)

where r > 0 is the treatment rate and b0 > 0 measures the extent of the effect of
the infectives being delayed for treatment. To show how the saturation coefficient
b0 may be related to delays in the treatment, we derive the essential features of the
treatment term (2). At this aim, we assume the total time T spent for treatment
of infective individuals as divided in two main kinds of activities: (i) collecting
infectives (ii) managing infectives. Hence T = Tcollect +Tmanage, where Tcollect and
Tmanage are respectively the times spent for collecting and managing infectives.
Now, denoting with Ic the number of infectives collected to be cured during the
time T , we can also assume Ic as proportional to the time spent to collect them:

Ic = r Tcollect I. As a consequence, Tcollect =
Ic
r I

. On the other hand, it is

also plausible to assume that the management time Tmanage is proportional to the
number of infectives Ic collected to be cured: Tmanage = IcTh, where Th is the time
spent on managing one infective individual. It thus follows T = Tcollect+Tmanage =
Ic
r I

+ IcTh, so that Ic =
r T I

1 + r Th I
.

Since the number of infective individuals treated per unit of time is Ic = F (I) T ,
one has:

F (I) =
r I

1 + r Th I
.

As a consequence (2) is obtained with the saturation coefficient b0 given by b0 = rTh
and hence related to the time spent in managing the infectives. Higher values of
b0 may hence be related to higher collecting rates as well as higher times spent in
managing individuals.

Treatment term (2) is thus a plausible choice for modeling situations when the
number of infectives is getting larger and the medical condition is limited; it also
explicitly includes the effect of delayed treatments. This is an important point to



SATURATED TREATMENTS AND MEASLES IN SOUTH AFRICA 1139

consider since the efficiency for treatment may be seriously affected if the infective
individuals are delayed for treatment.

With regard to disease transmission, model (1) implicitly assumes that new cases
are generated through homogeneous mixing (between susceptible and infective indi-
viduals) so that the mass-action incidence term βIS is considered. The hypothesis of
homogeneous mixing may be inaccurate, particularly under specific circumstances,
i.e. situations including saturation or thresholds effects. In this context we have
used a mass-action term to better elucidate the contribute of the treatment term
for the occurrence of the backward bifurcation phenomenon. We are however aware
that a more general contact rate would have provided a more reliable model.

Now, by considering in model (1) the change of variables S = S′(1 − p), E =
E′(1− p), I = I ′(1− p) and R = R′(1− p) + (A/d)p, the dynamical equations for
the primed variables are given by:

Ṡ′ = A− dS′ − βvS′I ′
Ė′ = βvS

′I ′ − (ε+ d)E′

İ ′ = εE′ − (γ + α+ d)I ′ − rI ′

1 + b I ′

Ṙ′ = γI ′ − dR′ + rI ′

1 + b I ′

(3)

with βv = β (1 − p) and b = b0 (1 − p). Model (3) hence exhibits the same mathe-
matical structure of the general SEIR model with constant recruitment introduced
in [32], enriched with the saturated treatment function modeled in [51].

3. Saturated treatments and backward bifurcations. As largely shown in
literature [2, 8, 16, 23, 30, 34, 39, 44], backward bifurcations from the disease-
free equilibrium have been detected and analyzed in systems modeling completely
different situations.

A number of studies have shown that multigroup structure with asymmetry be-
tween groups, multiple interaction processes (e.g. demographic and epidemiological
ones), pair formation, macroparasite infection, age structure, are all mechanisms
that can cause backward bifurcations, [2, 14, 23, 25, 26, 34].

In [39], subcritical persistence of the disease has been critically discussed and
(i) enhanced susceptibility of the recovered class, e.g. [16, 18, 41] (ii) exhogenous
reinfection of the exposed class, e.g. [6, 16] (iii) non linear transmission, e.g. [5,
7, 18, 21, 33, 44, 28] (iv) the existence of a carrier class, e.g. [37], have been
addressed as further general mechanisms encouraging an endemic disease to persist
even though R0 < 1.

In this line, a certain attention has been recently devoted to the role of the
treatment mechanism: saturated-type treatment functions have been indicated as
responsible for the occurrence of backward bifurcations in SIR [46, 51, 52] as well
as in SIS [11, 47] and SEIR models [53].

At this regard, model (3) may be considered a clear example supporting the
general circumstance that saturated-type treatments may be one of the causes of
backward bifurcation in epidemic models. In fact investigations performed in [32]
about the SEIR model (without treatment) indicate the occurrence of a very clas-
sical forward scenario at R0 = 1: global stability for the disease-free equilibrium
in the range R0 < 1 and global stability of the endemic equilibrium in the range
R0 > 1. Hence the occurrence of backward bifurcation in the same model enriched
with treatment, means considering the backward scenario as a direct fruit of the
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saturated treatment mechanism. Moreover, the SEIR model (3) with treatment
mechanism (2) is structurally equivalent to the SEIR model in [53] where local and
global equilibria stability properties as well as the occurrence of backward bifurca-
tion have been investigated. We here briefly revisit some of their results in view of
the model application in Section 4.

3.1. Analytical results. For the sake of simplicity, in the rest of the paper we use
model (3) with dropping the prime notation. The first three equations in system
(3) are independent of R and one considers the reduced system:

Ṡ = A− dS − βvSI
Ė = βvSI − (ε+ d)E

İ = εE − (γ + α+ d)I − rI

1 + b I
,

(4)

whose dynamics can be studied in the feasible region Γ = {(S,E, I) ∈ R3
+ : S+E+

I ≤ A
d }, which is positively invariant with respect to (4).

A first effect that the treatment mechanism (2) produces on the dynamics of
model (4), is the chance to have multiple endemic states. In fact introducing the
basic reproductive number,

R0 =
βv Aε

d (ε+ d) (γ + α+ d+ r)
, (5)

we observe that system (4) admits (i) the disease-free equilibrium P0 =

(
A

d
, 0, 0

)
which is locally asymptotically stable for R0 < 1 and unstable for R0 > 1 (ii) the
endemic equilibrium P = (S∗, E∗, I∗) where

S∗ =
A

d+ βvI∗
, E∗ =

βvAI
∗

(ε+ d)(d+ βvI∗)
,

and I∗ represent the real positive solutions of the algebraic equation

A1I
2 +B1I + C1 = 0. (6)

Here,

A1 = βvb(γ + α+ d)(ε+ d),

B1 = bd (ε+ d) (γ + α+ d+ r) (1−R0) + (ε+ d) [βv (γ + α+ d+ r)− bdr] ,

C1 = d(d+ γ + r + α)(ε+ d)(1−R0).
(7)

Looking at (7) and observing that

R0 = 1⇔ βv = β∗ =
d (ε+ d) (d+ r + γ + α)

Aε
, (8)

it follows that, when R0 > 1 then C1 < 0 and hence ∆ = B2
1 − 4A1C1 is a positive

quantity. According to the Descartes’s rule of signs, the algebraic equation (6)
admits a unique real positive root, independently of the sign of B1. When R0 < 1,
the matter is more complicated and is worthy of separate investigations as detailed
in Appendix A. Let A∗, β∗2 and β∗ be the quantities respectively defined in (13),(11),
(8). The following result holds:
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Theorem 3.1. Let A > A∗.
If βv < β∗2 then model (4) admits the disease-free equilibrium and no endemic

equilibrium. If β∗2 < βv < β∗, then model (4) admits the disease-free equilibrium
together with two endemic equilibria. If βv > β∗ then model (4) admits the disease-
free equilibrium and a unique endemic equilibrium.

The above framework clearly indicates a backward bifurcation scenario, suggest-
ing the occurrence of a saddle-node bifurcation at βv = β∗2 and of a transcritical
bifurcation at βv = β∗.

3.2. Backward vs forward scenario revisited. Differently from [53] where the
occurrence of backward bifurcation has been established through the bifurcation
method introduced in [8],we make here use of the simple approach proposed in [3]
which is based on an accurate glance at the equilibrium curve in the neighboring of
the bifurcation point R0 = 1.

Recalling (5), it is easy to observe that all coefficients in equation (6) may be
regarded as functions of the parameter βv, i.e. A1 = A1(βv), B1 = B1(βv), C1 =
C1(βv). By (7), it follows that when R0 = 1 then C1 = 0, i.e. C1(β∗) = 0. Hence
equation (6) becomes:

A1(β∗)I2 +B1(β∗)I = 0

which admits as roots I = 0 and I = −B1(β
∗)

A1(β∗) . The root I = 0 is related to the

disease free equilibrium whereas I = −B1(β
∗)

A1(β∗) corresponds to a positive (endemic)

equilibrium only if B1(β∗) and A1(β∗) have opposite sign and hence B1(β∗) < 0
must hold. Further, implicit differentiation with respect to βv of the equilibrium
curve (6) leads to:

(2A1I +B1)
dI

dβv
+
dA1

dβv
I2 +

dB1

dβv
I +

dC1

dβv
= 0.

Now, looking at the equilibrium I = 0 at βv = β∗, one obtains:

B1(β∗)
dI

dβv
(β∗) = −dC1

dβv
> 0,

since by (7) the quantity
dC1

dβv
is negative. One may hence conclude that the slope

of the bifurcation curve at I = 0 has the same sign as the coefficient B1(β∗). As a
consequence, if B1(β∗) < 0 then a backward bifurcation occurs at βv = β∗ whereas
if B1(β∗) > 0 there is forward equilibrium at βv = β∗.

In our case condition B1(β∗) < 0, which is necessary and sufficient for the oc-
currence of the backward bifurcation at βv = β∗, is given by

B1(β∗) = (ε+ d) [β∗ (γ + α+ d+ r)− bdr] < 0⇔

(ε+ d) d

[
(γ + α+ d+ r)2 (ε+ d)

εA
− br

]
< 0,

which means:

A > A∗ =
(ε+ d)(γ + α+ d+ r)2

εrb
⇔ b > b∗ =

(ε+ d)(γ + α+ d+ r)2

εrA
.

The above results are summarized in the following theorem:
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Theorem 3.2. Let b∗ =
(ε+ d)(γ + α+ d+ r)2

εrA
. If b > b∗ then system (4) exhibits

a backward bifurcation when βv = β∗ (or equivalently when R0 = 1). If b < b∗

then system (4) exhibits a forward bifurcation when βv = β∗ (or equivalently when
R0 = 1).

This feature strongly enlightens the role of the delayed treatment for the occur-
rence of backward scenario. In fact, when the effect of the infectives being delayed
for treatment is weak, i.e. when b < b∗, then R0 has to be classically lowered below
1 to eradicate the disease. On the contrary, when this delayed effect is strong, i.e.
when b > b∗, driving R0 below 1 is not enough to eradicate the disease.

4. Measles in South Africa: A case of study. The above results may be fruit-
fully used to get insights on recent measles outbreaks in South Africa. Measles is
a highly contagious, vaccine preventable, viral disease caused by paramyxovirus of
the genus Morbillovirus and transmitted through aereosol particles. The incubation
period lasts about 8 days after which individuals are infectious for nearly 5 days.
Typical signs and symptoms include fever, a non blistering rash, coryza and con-
junctivitis, [24]. Although an effective vaccine is available, measles remains among
the leading causes of vaccine preventable deaths in children under five years of age,
especially in developing countries, [48].

In South Africa, routine immunization campaigns were first introduced in 1975
and measles has been a notifiable disease since 1979. In the 1980’s, from 15000 to
20000 measles cases were counted each year and the reported measles-caused deaths
ranged annually from 250 to 500. During the 1990’s, measles remained endemic
and epidemic continued to occur periodically even if at the beginning of the 1990’s,
the case fatality ratio (CFR) sharply declined and stabilized at low levels, [43].
Since 1995 seven southern South Africa nations, including South Africa, launched
measles elimination initiatives - in accordance with the recommendations of the
World Health Organization (WHO) Regional Office for Africa [9] - which resulted
in the virtual elimination of measles in Southern Africa, [36]

The main goals of such recommended programs were (i) to achieve and sustain
routine immunization coverage of 95% (ii) to implement a one-time national ‘catch-
up’ measles vaccination campaign (iii) to implement periodic national ‘follow-up’
campaigns (iv) to establish case-based measles surveillance with laboratory confir-
mation [9]. The NICD was accredited by WHO to perform measles IgM testing
for national case-based surveillance, as part of the measles elimination strategy.
In South Africa, a first and a second dose of measles vaccine (MCV1, MCV2)
are provided to children at 9 and 18 months respectively. Moreover, since 1996,
South Africa has been at the forefront of implementing regular national or sub-
national supplementary immunization activities (SIAs), following an approach -
implemented by the Pan American Health Organization - which is thought to have
contributed to measles eradication in the Americas [13]. Over the period 1996-2010,
SIA coverage in South Africa was executed in each of the country’s nine provinces
and has remained at high levels, which indicates that a considerable amount of
resources have been employed for the SIA policy, [45]. In 1996-1997, the overall
measles vaccination campaign coverage was estimated at 85% [43] whereas in 2000,
a nationwide campaign reported 92% administrative coverage. Measles incidence
reflected the success of the above campaigns: in the period 1999-2002, less than 60
measles cases were reported annually, [36]. Nevertheless in 2003, a measles virus
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- introduced to Mpumalanga and Gauting provinces from Mozambique - lead an
epidemic lasting more than 2 years. To face such an emergence, a national measles
vaccination campaign was conducted in 2004, with a consequent decreasing in the
measles virus transmission, [36]. For the period 2006-2008, numbers of measles IgM
positive cases remained relatively low. However, a widespread outbreak of measles
occurred in 2009.

This seems to indicate that even in a setting of low reported cases, communities
still remain vulnerable to measles importation so that it is always necessary to
maintain immunity among the population even in the absence of a circulating virus.
Efforts to maintain the vaccine coverage at 95% - as recommended by WHO - have
hence been emphasised [10]. However such a measure, alone, might be not enough.

We will use model (4) with epidemiological parameter values proper of the South
African context, to show that even in the presence of an high routine vaccination
coverage, the occurrence of some epidemic episodes may be encouraged by features
- as the not adequately fast clinical case management - that might be related to
backward bifurcation or to spiking phenomena.

4.1. Parameters setting. As a first step, we aim to choose parameter values so
that model (4) might adequately describe the South African case.

1. Demographic indicators
For the choice of demographic parameter values, we explicitly refer to [42].

In 2009, the crude birth rate (i.e. the annual number of births per 1000
population) for South Africa was set at 22. We then assume the recruitment
A of susceptible individuals to be A = 22000 [individual][year]−1 discounted
by a 95% vaccination rate (p = 0.95) The crude death rate (i.e. the annual
number of deaths per 1000 population) was instead established at 15. We
then choose the death rate d to be d = 0.015 [year]−1.

2. Measles indicators
The mean latent period for measles was recognized to be 8 days. Since we

choose year as time unit, we can assume the parameter ε - representing the rate
at which exposed individuals become infectious - as ε = 365/8 [year]−1, that
is ε = 45.6250 [year]−1. The mean infectious period is 5 days. Hence we can
assume the parameter γ - representing the rate at which infective individuals
recover - as γ = 365/5 [year]−1, that is γ = 73 [year]−1, [24]. Finally, measles
mortality rate - mortality rate per 1000 live births - is set at 168 so that we
assume the disease-caused death rate α = 168/1000 = 0.168 [year]−1, [49].

3. Treatment indicators
South Africa, has a well-developed, predominantly hospital-centered health

care system, in which approximately 80% of the population receives their
health care, mainly in the public sector, [43]. Accordingly, we assume the
treatment rate to be r = 0.8 [year]−1.

The WHO and the United Nations Children’s Fund (UNICEF) Integrated Man-
agement of Childhood Illness guidelines, recommend for measles treatment, antibi-
otic therapy and two doses of Vitamin A given 24 hour apart. Moreover, a prompt
isolation of measles cases strongly limits nosocomial measles transmission. Investi-
gations during measles outbreaks in South Africa [36] have however revealed that
less than half of the children presenting to health facilities reported any treatment
with vitamin A and that isolation measures in health facilities were inadequate. Mo-
tivated by the above field observations, in the sequel we consider the contact rate β
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Figure 1. Percentage ages of patients with laboratory confirmed
measles: South-Africa 2009, [35].

and the saturation coefficient b as bifurcation parameters, and exploit the analytical
results of Section 3 to study the dynamics of system (4) with the parameter values
described above and summarized in Table1.

Parameter Value Source
A 22000 individuals / year [42]
d 0.015 /year [42]
ε 45.6250/year [24]
γ 73/year [24]
α 0.168 / year [49]
r 0.8 / year [43]
p 0.85 or 0.95 [48]

Table 1. Parameters values used in simulations and the related sources.

4.2. A qualitative model testing. The chosen parameter values allow to esti-
mate the basic reproductive ratio during the 2009’s outbreak in South Africa, by
using the theoretically derived relationship R0 = g/ā where g is the reciprocal of
the per capita birth rate and ā is the mean age at first infection [1, 4]. For values
as in Table1, g = 1/0.022 = 45.4545 whereas the parameter ā may be derived by
the reported ages of the infectives which provide us with a field estimate of the
mean age at infection of nearly 11.2927 years, Fig1. This provides a field basic re-
productive number R0 = 4.0251. To qualitatively validate model (4), we illustrate
its dynamical behavior when the basic reproductive number is R0 = 4.0251 and
p = 0.85. This choice for p is since the reported vaccination coverage for South
Africa in 2008, was 85%, which is less than the target of 90% that forms part of the
measles elimination strategy. According to the reported cases [36], we also consider
enough slow treatments for the infectives and choose b = 15. This point surely de-
serves a comment since it requires the choice of a specific value of the parameter b,
which is not available in literature. Such numerical choice for b has been performed
according to the considerations summarized in Fig.2. For parameter values as in
Table1, the threshold b∗ separating the backward and forward scenario is b∗ ≈ 0.3.
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Figure 2. Qualitative explanation for the numerical choice of the pa-
rameter b, as related to fast or slow treatments.

Recalling that b ∝ rTh, we observe that higher values of b may be related, for a
fixed treatment rate r, to higher times Th spent in managing individuals. We quali-
tatively consider as very fast treatments the ones for which b < b∗ = 0.3. Moreover,
choosing b as b = 3 means that the related treatments are 10 times slower with
respect to b∗ and we classify as not so fast the ones whose b∗ < b ≤ 3. Treatments
whose b are such that 3 < b ≤ 15 are instead classified as slow since for b = 15 they
are 50 times slower with respect to b∗. Following the same reasoning, treatments
for which 15 < b ≤ 30 are classified as very slow. For the purposes of the back-
ward bifurcation, the effect of b-values higher than 30 are similar enough to those
obtained for b = 30. Hence we will consider 0 < b ≤ 30. For the above field-value of
R0, bifurcation analysis prescribes endemicity of the disease. Analysis in the time
dependent regimes for initial conditions near the endemic equilibrium are shown in
Fig.3 and reveal for the damped oscillations, a period of oscillation T ≈ 5 which
may be in a certain accordance with field data estimation. Time dependent inves-
tigations for the same parameter values and initial conditions in the neighboring
the disease-free equilibrium are depicted in Fig.4 which shows how trajectories tend
asymptotically to the endemic equilibrium but also reveals a peculiar structure of
the transient oscillations. We will come back on this point at the end of this section.

4.3. Disease subcritical persistence. Basing on the WHO recommendations
inside the measles elimination programs, in the sequel we increase the vaccination
coverage p at the recommended value p = 0.95 to show that - despite of the high vac-
cination coverage - subcritical persistence of the disease via backward bifurcation,
may be related to sufficiently high delays in the treatment of the infectives.

At first, we provide some explicit remarks on the different thresholds of model
(4) considered with the above chosen parameter values. The threshold b∗, sepa-
rating the backward and the forward scenarios, is b∗ = 0.311095 whereas the basic
reproductive number is given by R0 = 999.8929β. R0 does not depend on the
value we choose for the parameter b as well as the transcritical threshold value β∗,
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Figure 3. The case R0 = 4.0251, p = 0.85, b = 15. Initial conditions
are chosen in the neighboring of the endemic equilibrium. The numerical
values for the other parameters are as in Table 1 (a) Time dependent
behavior (b) Phase diagram.
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Figure 4. The case R0 = 4.0251, p = 0.85, b = 15. Initial condi-
tions are chosen in the neighboring of the disease-free equilibrium. The
numerical values for the other parameters are as in Table 1 (a) Details
of the temporal dynamics of the exposed population (b) Details of the
temporal dynamics of the infective population.

β∗ = 0.00005045. The saddle-node bifurcation threshold β∗2 exhibits instead such a
dependence, i.e. β∗2 = β∗2(b).

Theoretical results in Section 3 ensures that for b < b∗, a classical forward sce-
nario is expected so that very fast treatments may exclude subcritical persistence of
the disease. Hence in the following, we consider the case b > b∗ in order to specifi-
cally focus on the role of the backward bifurcation. We stress that for βv in the range
[β∗2 , β

∗], multiplicity of endemic equilibria is expected. Figure 5 shows how the size
of the range [β∗2 , β

∗] explicitly varies with varying b. It clearly appears as enough
fast treatments, i.e. low values of b, strongly reduce the possibility of multiplicity
of endemic equilibria and hence the chance of subcritical persistence. Moreover,
slow treatments lead an increasing saturating size of the multiplicity range. As
βv = (1 − p)β, multiplicity of endemic equilibria is obtained for β ∈ [β∗2v(b), β

∗
v ]
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Figure 6. Bifurcation diagram in the plane (b, β, I∗) showing the co-
alescence of the two endemic equilibria I∗. The numerical values for the
other parameters are as in Table 1.

where β∗2v(b) =
β∗2(b)

1− p
and β∗v =

β∗

1− p
. In this range, two endemic equilibria P ∗1

and P ∗2 exist which coalesce at β = β∗2v via saddle-node bifurcation, Fig. 6. With
regard to stability properties, the endemic equilibrium P ∗1 - characterized by a small
number of infectives - is always unstable whereas the disease-free equilibrium P0 is
locally asymptotically stable for β < β∗v . The endemic equilibrium P ∗2 - character-
ized by a large number of infectives - may instead change its stability properties by
varying the bifurcation parameter.

4.4. Slow treatment settings and disease control. Suppose now to consider a
situation involving a fixed, sufficiently slow treatment b and investigate the effects
produced on the dynamics of system (4) by varying the contact rate β.
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Figure 7. Temporal diagrams for the case b = 15 when (a) β∗2v < β <
βH , i.e. β = 0.0010025 (b) β > βH , i.e. β = 0.001009. The numerical
values for the other parameters are as in Table 1.

β-range DF Equilibrium Endemic Equilibria Locally Stable
β < β∗2v P0 P0

β∗2v < β < βH P0 P ∗1 , P ∗2 P0

βH < β < β∗v P0 P ∗1 , P ∗2 P0, P ∗2
β > β∗v P0 P ∗2 P ∗2

Table 2. Feasible equilibria and the related stability properties for
b = 15 and β as bifurcation parameter. The numerical values for the
other parameters are as in Table 1.

By choosing b = 15, one explicitly obtains the multiplicity range to be β∗2v(b) <
β < β∗v , where β∗2v(b) = 0.001001171722 and β∗v = 0.001009190770. For β < β∗2v,
the disease free equilibrium P0 is the only attractor for the system. For β = β∗2v, a
saddle-node bifurcation occurs involving P ∗1 and P ∗2 . Numerical investigations show
that for this value of β, both these equilibria are unstable.

By further increasing the parameter β, the endemic equilibrium P ∗2 becomes an
unstable focus, so that initial conditions near P ∗2 make the system approach the
disease free equilibrium P0 through oscillations of increasing amplitude, Fig.7(a).
At β = βH ≈ 0.0010029, the endemic equilibrium P ∗2 changes its stability because
of a subcritical Hopf bifurcation. Hence, for β > βH , P ∗2 is a stable focus: initial
conditions near P ∗2 lead system’s trajectories approach P ∗2 with damped oscilla-
tions. Fig.7(b) well underlines how trajectories starting near P ∗2 , initially seem to
follow the unstable periodic orbit in the surrounding of such equilibrium before
approaching P ∗2 , so that the transient nearly resembles a periodic motion.

Existence and stability properties of the equilibria are specifically summarized
in Table2. These results put into evidence that - although multiplicity of endemic
equilibria are possible in the range β∗2v < β < β∗v - when treatments are sufficiently
slow, subcritical persistence is really possible only in the range βH < β < β∗v . This
should suggest that - to control disease - it might be enough to lower β below
βH . However, in this case the disease-free equilibrium - which is the only attractor
for the system - might be approached via oscillations of large amplitude. Hence a
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Figure 8. Temporal plots showing the spiking dynamics obtained in
the range β > β∗v for initial conditions in the neighboring of P0. Increas-
ing values of β are considered (a) β = 0.0010098 (b)) β = 0.001012 (c)
β = 0.00106 (d) β = 0.00109.

more effective way to eradicate disease turns out to lower β below the saddle-node
bifurcation threshold β∗2v. Such findings well elucidate the key role of accurate time-
dependent investigations for gaining correct informations on disease-thresholds in
way to efficaciously perform the most suitable control measure. This aspect is more
strongly confirmed by looking at the range β ≥ β∗v . For β = β∗v the transcritical
bifurcation takes place so that the disease free equilibrium P0 changes its stability
becoming unstable. In this range the endemic equilibrium P ∗2 is locally asymp-
totically stable and initial conditions near P ∗2 make system trajectories to damply
oscillate toward P ∗2 . However a different set of initial conditions may produce a
different output. Numerical simulations show in fact that initial conditions in the
neighboring of the disease-free equilibrium P0 lead system trajectories toward a
spiking attractor, represented in Fig.8 and Fig.9 where temporal diagrams and the
related phase ports are plotted for values of β increasing from β∗v . It clearly ap-
pears how the spiking effect increases with increasing the values of β whereas for
β → β∗v the spiking attractor is likely to culminate into an homoclinic orbit with
beginning and end at P0. The spiking attractor obtained for initial conditions near
P0 when β = 0.00106 is specifically reported in Fig.10 for different time intervals, in
order to better elucidate the spiking mechanisms. Such an attractor seems to loose
stability for β = 0.002 so that initial conditions near P0 lead system trajectories
toward the stable endemic equilibrium P ∗2 , Fig.11.

Numerical investigations in the case β > β∗v have hence revealed an intriguing
bistability situation in the range β∗v < β < 0.002 where - according to the initial
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Figure 9. Phase diagrams showing the spiking dynamics obtained in
the range β > β∗v for initial conditions in the neighboring of P0. Increas-
ing values of β are considered (a) β = 0.0010098 (b) β = 0.001012 (c)
β = 0.00106 (d) β = 0.00109.

conditions - the endemic equilibrium P ∗2 or the spiking attractor involving P0 may
be achieved. The former dynamical case may be epidemiologically interpreted as
persistence of the disease whereas the latter corresponds to a cyclic apparent erad-
ication of the disease with sudden epidemic bursts since it occurs superthreshold
when initial infective population size is close enough to zero. Moreover the fre-
quency of the bursts increases with β increasing from β∗v . We also stress that such
bistability situation appears to be the fruit of including saturated mechanisms in
the model since, for the case b = 0, the endemic equilibrium P ∗2 is a globally stable
attractor for the system, as shown in [32]. Theoretical investigations to accurately
get insight on the arising and the nature of the above spiking attractor will be
developed in future studies.

5. Discussions. The importance of detecting backward bifurcation is a matter of
fact in terms of disease management and control. Differently from the forward
scenario - for which the disease control appears relatively smooth - the backward
phenomenon requires a precise strategy for disease eradication. The transcritical
threshold is not a strict threshold for the disease control and the bifurcation pa-
rameter has to be lowered below the saddle-node bifurcation value in order to avoid
subcritical persistence of the disease. As a consequence, the skill to connect the
backward phenomenon with the occurrence of specific biological mechanisms - as
saturated-type treatment of the infectives - may be a great practical advantage to
set the most suitable disease elimination strategy.

Necessary and sufficient conditions for backward bifurcation are here obtained
for model (4) by exploiting considerations on the equilibria curve at R0 = 1 as
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Figure 10. The attractor related to the case β = 0.00106 for different
time intervals (a) Projection of the attractor in the (S, I) phase space;
tfinal = 5000 (b) Projection of the attractor in the (S, I) phase space;
tfinal = 10000 (c) (S,E, I) phase port; tfinal = 20000 (d) Details of the
temporal dynamics of the infective population.
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Figure 11. The case β = 0.002. Initial conditions are chosen in the
neighboring of the disease-free equilibrium P0. The numerical values for
the other parameters are as in Table 1 (a) Time dependent behavior (b)
Phase diagram.

recently suggested in [3]. The full agreement of such findings with the general
results obtained in [53] clearly reveals that such simple approach may be considered
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as an efficacious and more direct alternative to the classical bifurcation techniques,
for models with not many compartments and without strong nonlinearities.

We have applied the above theoretical results to the case of measles in South
Africa, for which certain saturated treatment mechanisms have been identified.
Field investigations during measles outbreaks in South Africa [36] have in fact re-
vealed that less than half of the children presenting to health facilities reported
any treatment with vitamin A and that isolation measures in health facilities were
nor prompt nor adequate. As a consequence, the strong need for more extensive
therapeutic use of vitamin A and the greater use of respiratory isolation have been
highly stressed since vaccination of contacts alone was shown to be ineffective in
stopping transmission of measles in resource-limited settings.

The study of model (4) with parameter values proper of the South African con-
text, has revealed that - although in presence of an high vaccination coverage,
sufficiently high delays in the treatment of infectives may encourage the occurrence
of a backward bifurcation phenomenon and lead to possible subcritical persistence
of the disease. Time dependent investigations clearly elucidate the role of b on
the dynamics of system (4) and strictly confirm the importance to strongly reduce
delays in the disease management.

Our results show that a very effective method to prevent the backward scenario
is to reduce the parameter b which means - in practice - to give patients very
timely treatments with improving medical technologies or investing much more in
medicines, beds, etc. In this case the control of the disease may straightly follow the
classic road of reducing the contacts β below the transcritical threshold β∗v . On the
contrary if not enough fast treatment may be provided, then the backward scenario
cannot be avoided and has to be properly managed. In this case a reduction of
the contact rate β under the saddle-node threshold β∗2v is required to obtain the
eradication of the disease. At this aim, a more adequate use of isolation measures
in health facilities as well as specific public education programs may be employed
since properly reducing contacts they can reduce disease transmission.

Time dependent investigations have also revealed that saturated treatment mech-
anisms (b 6= 0) may be responsible for an intriguing bistability situation above the
threshold β = β∗v where in a specific range of the parameter β, system trajectories
tend either toward the stable endemic equilibrium or to a spiking attractor. Hence,
according to the initial population sizes, disease may persist at an endemic level or
exhibit recurrent epidemic bursts.

Looking at the peculiar structure of the spiking attractor, it appears reliable to
conjecture that such latter scenario might be the effect of an homoclinic bifurcation
involving the non hyperbolic disease-free equilibrium at β = β∗v . The homoclinic
bifurcation is a global bifurcation, not easy to be detected since it is not revealed
by local stability analysis. In an homoclinic bifurcation of an (hyperbolic/non
hyperbolic) equilibrium, a periodic attractor emerges from an homoclinic orbit,
i.e. a trajectory that tends to the same equilibrium both in direct and in reverse
time [17]. For their own structure, homoclinic bifurcations can epidemiologically
be related to sudden epidemic bursts and - as well as backward bifurcations - they
join the group of the so called dangerous bifurcations. A dangerous bifurcation
implies discontinuous behavior namely sudden appearance or disappearance of the
attractor and a fast dynamic jump toward a different, unrelated attractor.

Such a feature clearly reveals how homoclinic phenomena may have a remarkable
potential for applications in epidemic context and justifies the increasing theoretical
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interest for homoclinic bifurcation in epidemics [12, 15, 40, 50]. Nevertheless, to the
best of our knowledge, there is no example of concrete linkage between homoclinic
phenomena and epidemic bursts in a field-case of study. At this regard the case of
measles in South Africa is worth to be deeply investigated since it might interestingly
offer such kind of example.

6. Concluding remarks. In conclusion, the application of model (4) in the South
African context strongly suggests that the occurrence of certain epidemic episodes
might be discouraged through an overall improvement of the health system as a
whole. On this line the backward bifurcation phenomenon along with the spik-
ing mechanism may help in the understanding of that complex picture which sees
measles resurgence episodes in South Africa - like the outbreaks of 2003 and 2009
- as open challenges to the basic measles control in a country characterized by an
high overall country rate of vaccination coverage. In fact, giving a satisfactory
solution to the problem of measles eradication in South Africa is far from being
a straightforward issue since the interplaying of many factors has to be properly
taken into account. As well indicated in a recent study on measles control measures
in South Africa [45], the high national rates of measles vaccination coverage masks
a substantial heterogeneity across the 9 provinces and 52 districts which ultimately
facilitates the resurgences of outbreaks.

Verguet and coauthors also stress that, although supplementary immunization
initiatives can reduce part of this heterogeneity with raising the overall coverage in
all the districts, SIAs can also have the collateral effect of affecting performance of
the health system as a whole by interfering with delivery of other health services
which may be interrupted during SIAs because of staff shortage and inadequate
preparation [45]. On the other hand in a resource-limited setting, possible malfunc-
tioning in the health services are often associated to saturation mechanisms and
may favor delays in treatments as well as not adequately fast case managements,
and hence subcritical persistence of the disease via backward bifurcation or spiking
dynamics via likely homoclinic phenomena.

Our findings hence outline one of the reasons why South Africa remains vulnera-
ble to large measles outbreaks and suggest possible prevention measures which are
in accordance with field results: focusing on rapid case notifications and on adequate
and fast clinical case management including provision of vitamin A and antibiotics
where indicated; strongly improving the use of isolation measures in health facilities
and - last but not least - keeping the high recommended vaccination coverage by
carefully maintaining at their best health system services, especially during SIAs
campaigns.

Appendix A. We give here details about the occurrence for a saddle-node bifur-
cation in the case R0 < 1. When R0 < 1 then C1 > 0 and ∆ = B2

1 − 4A1C1 has no
definite sign. According to the Descartes’s rule of signs: (i) if ∆ = B2

1 − 4A1C1 < 0
then no real roots of (6) exist (ii) if ∆ = B2

1 − 4A1C1 > 0 and B1 < 0, two real
positive roots exist (iii) if ∆ = B2

1 − 4A1C1 > 0 and B1 > 0, two real negative
roots exist. The latter case is not biologically relevant, whereas cases (i)-(ii) may
be related to a backward bifurcation scenario. Inside this backward framework,
condition ∆ = B2

1 − 4A1C1 = 0 provides the saddle-node bifurcation values.
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To deeper investigate on conditions (i)-(ii), we preliminary introduce the follow-
ing quantities:

Γ1 = Abε− (d+ γ + α+ r) (ε+ d) , Γ2 = b (d+ γ + α) (ε+ d) .

We also observe that equation ∆ = B2
1 − 4A1C1 = 0 may be regarded as

A2β
2
v +B2βv + C2 = 0, (9)

where:
A2 = Γ2

1 + 4εAΓ2;

B2 = −2dΓ2 [d (d+ γ + α+ ε+ r) + ε (α+ γ + bA+ r)] ;

C2 = d2Γ2
2.

(10)

Moreover, ∆2 = B2
2 − 4A2C2 is such that ∆2 = 16d2bεAr(ε+ d)Γ2

2.
∆2 is a positive quantity and coefficients (10) always have definite sign. As a

consequence, according to the Descartes’s rule of signs, equation (9) admits two real
positive roots, β∗1 and β∗2 :

β∗1 =
−B2 −

√
∆2

2A2
; β∗2 =

−B2 +
√

∆2

2A2
. (11)

It follows that ∆ = B2
1 − 4A1C1 > 0 if and only if βv < β∗1 or βv > β∗2 .

We now explicitly search for conditions on the system parameters, ensuring that
B1 < 0 in the range R0 < 1. This is certainly true if

A > Ã

β̃ < βv < β∗
(12)

where Ã =
(d+ γ + α+ r)(ε+ d)

bε
, β̃ =

dΓ2

Γ1
and β∗ - already defined in (8) -

rearranged as β∗ =
Abε− Γ1

εA
. Note that (12).1 ensures Γ1 to be a positive quantity

whereas (12).2 prescribes B1 to be negative in the range R0 < 1. Moreover, in order
(12).2 to hold, we must require that

dΓ2

Γ1
<
Abε− Γ1

εA

This inequality is verified if A > A∗ where

A∗ =
(d+ γ + α+ r)2(ε+ d)

bεr
. (13)

It is also easy to note that A∗ > Ã so that A > A∗ ⇒ A > Ã. By combining
the above observations with (12), we can conclude that in the range R0 < 1, the
coefficient B1 is a negative quantity if

A > A∗

β̃ < βv < β∗

The above results may be summarized as follows:
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Remark 1. Let A > A∗. (i) If β̃ < βv < β∗ and (βv < β∗1 ∨βv > β∗2) then equation
(6) admits two real positive roots. (ii) If β∗1 < βv < β∗2 , then equation (6) has no
real roots.

The last step is hence to make order among the above βv-thresholds.

Remark 2. Let A > A∗. Then:

1. β∗1 < β̃,

2. β∗2 > β̃,
3. β∗2 < β∗.

Proof. 1. β∗1 < β̃ ⇔ Γ2
1 + Γ1

[√
Abεr(ε+ d)−Abε

]
+ 2AεΓ2 ≥ 0. Moreover, hol-

ding A > A∗ and hence Abε >
(d+ γ + α+ r)2(ε+ d)

r
, we can write:

Γ2
1 + Γ1

[√
Abεr(ε+ d)−Abε

]
+ 2AεΓ2

> Γ2
1 + Γ1 [(d+ γ + α+ r)(ε+ d)−Abε] + 2AεΓ2

= Γ2
1 − Γ2

1 + 2AεΓ2 = 2AεΓ2 > 0,

so that 1. is always verified. 2. Similarly, inequality 2. holds. 3. If β∗2 > β∗,
then - according to Remark 1 - no real root exists for β ∈ [β∗, β∗2 ]. But β > β∗ is
equivalent to R0 > 1, so that no real root of equation (6) should exist in this range
of R0. By the Descartes’ rule of sign, we know it is absurd. Hence β∗2 < β∗.
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