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ABSTRACT. In this paper, we study a three-dimensional nonlinear model of a
controllable reaction [X]+ [Y]+ [Z] — [Z], where the reaction rate is given by
a unspecified nonlinear function. A model of this type describes a variety of
real-life processes in chemical kinetics and biology; in this paper our particular
interests is in its application to waste water biotreatment. For this control
model, we analytically study the corresponding attainable set and parameterize
it by the moments of switching of piecewise constant control functions. This
allows us to visualize the attainable sets using a numerical procedure.

These analytical results generalize the earlier findings, which were obtained
for a trilinear reaction rate (which corresponds to the law of mass action) and
reported in [18, 19], to the case of a general rate of reaction. These results allow
to reduce the problem of constructing the optimal control to a straightforward
constrained finite dimensional optimization problem.

1. Introduction. A need to optimize frequently arises in processes in chemical
kinetics, bio-engineering and medicine, including applications such as production
of biological materials with pre-determined properties, and treatments of diseases
(including cancer and HIV) [31, 32, 33]. However, fundamentally nonlinear nature
and complexity of the problems originated in biology make the construction of an
optimal control a challenging task. The usual approach to this kind of problems
is numerical methods and dynamical programming, whereas analytical results are
rare. An apparent drawback of the numerical methods is that a numerical proce-
dure is dealing with a model based on a number of specific assumptions regarding
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parametrization and the forms of functional feedbacks. Correctness of these as-
sumptions for a biological or a bio-engineering problem is usually very difficult to
justify. This drawback is generally not regarded as significant, because of intuitive
expectation that a specific choice of parametrization is not of principal importance
while the basic properties of the corresponding functions, such as monotonicity,
convexity/concavity, etc., remain the same. However, while this common believe
is probably justified when principal qualitative properties of a system have to be
studied, its correctness for the task of constructing the optimal control for a real-life
problem causes considerable doubts. Thus, Gross et al. [20] show an example of a
biosystem, where a small perturbation of functional responses can lead to principal
changes in the system stability; for a control system, the impact of such changes on
the corresponding optimal control could be dramatic.

An advance in the application of the classic optimal control theory and the Pon-
tryagin Maximum Principle to higher dimension nonlinear problems in biology and
biotechnology was made in recent papers of Grigorieva, Khailov and their collabo-
rators [18, 19], where the process known as the autothermal thermophilic aerobic
digestion was considered as a case study. Autothermal thermophilic aerobic diges-
tion (ATAD) is a bacterial process occurring in the presence of oxygen, which is
used to treat accumulated sewage sludge with the aim of reducing the organic con-
tents and the concentration of pathogenic microorganisms in the sludge. Aeration
promotes growth of bacteria, which feed on and thus reduce the organic substrates
in the sludge (converting it into carbon dioxide) and kill the pathogens with realiz-
ing metabolic heat. While the aeration significantly speeds up the process, it also
greatly increases the operating costs, because of the energy which is spent to pump
air into the sludge. Aeration can be controlled, and optimizing of the energy use
is, therefore, essential for reduction of these costs. A review of the ATAD origin,
design and operation can be found in [2, 13, 6].

Specifically, in [18, 19] a nonlinear control model of the ATAD was considered.
For this model, properties of the corresponding attainable set were studied in details,
and the parametrization of the set by the moments of switching of piecewise constant
controls was constructed. The exact or approximate knowledge of attainable sets of
a control system allows to estimate the limit possibilities for the control system and
to choose the optimal or a suboptimal control. This consideration makes results
in [18, 19] of immediate practically relevance, as they allow to considerably narrow
the class of functions, which should be considered as candidates for the optimal
controls, and thus serve as a sound basis for a numerical procedure. Substantial
discussion of the properties of attainable sets can be founded in monographs [9, 1].
Techniques for describing of attainable sets are provided in [25, 37, 39, 40, 38, 14,
16, 17], and a number of methods of approximating these sets are given in [30, 54,
35, 22, 48, 45, 46, 21, 8, 52, 53].

A certain shortcoming of the above mentioned results is that they are obtained for
a rather simple model based on a number of specific assumptions. The mathematical
model, considered in [18, 19], is due to Brune [5], and is composed of three variables.
It was postulated that the reaction occurs according to the law of mass action, while
the other functional responses were assumed linear. The law of mass action is a
mathematically convenient assumption, and is generally assumed to describe the
process with a reasonable degree of accuracy (qualitatively, at least). This makes
its use very common in mathematical modeling. However, the law of mass action
does not necessary describes the reaction with the accuracy sufficient for the real-life
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practice. The deficiency of the mass action law was recognized long time ago, and
a number of alternative nonlinear reaction rates, such as the Michaelis-Menten, or
Monod kinetics, were proposed.

It should be taken in consideration, that neither actual functional responses, nor
parametrization for ATAD is known in sufficient details. Furthermore, either of
these can differ for different plants, and even vary in a single plant in response to
varying environmental conditions (temperature, humidity) or the composition of
the threaded sludge. Bacterial composition is also different for different plants, and
varies within a single reactor with time. This makes sensible considering a sys-
tem with a non-specified nonlinear functional responses and looking for the generic
properties of these, in order to verify the robustness of the earlier obtained results.

Due to complexity of biological systems, the situations where functional responses
are unknown or undefinable are rather common. A sound mathematical approach
of dealing with this situation is to study generic properties of the systems assuming
that the functional responses are given by non-specified functions. This concept
goes back to the seminal work of A.N. Kolmogorov [24], and is currently considered
as one of the major directions in mathematical biology [4, 7, 49, 50, 12, 26, 27, 28].
In line with this idea, in this paper we assume that the reaction rate is given by
an unspecified non-linear separable function and establish the properties of this
function, which determine the control characteristics for the attainable set of the
considered control system.

This paper deals with the construction of a parametric description by the mo-
ments of switchings of a piecewise constant control of the attainable set (its interior
and boundary) for the three-dimensional nonlinear control model. The paper is
organized as follows. In Section 2, we formulate the mathematical model and de-
scribe its properties. In Section 3, we introduce the corresponding attainable set
and study its properties. The main result of this Section is Theorem 3.3, which
describes the structure of controls corresponding to points on the boundary of the
attainable set. Constructing of the parametrization for this set is conducted in Sec-
tion 4. Examples for specific models and pictures of the corresponding attainable
sets are presented in Section 5. Finally, appropriate conclusions are provided in
Section 6.

Background on ATAD [6]. Sewage water contains inorganic and organic chemi-
cal species and potentially pathogenic microorganisms. The objectives of the treat-
ment are, accordingly, (i) a reduction of the organic content to an acceptable pre-
determined level, and (ii) elimination, or at least a reduction to a safe level, of
pathogenic microorganisms. At the initial stage of the treatment, filtered concen-
trated sludge is produced in a process known as an activated sludge process (ASP);
the reduction of the organic content and elimination of pathogens are the objectives
of the next stage, that is ATAD. In this paper we assume that the above mentioned
objectives of ATAD can be separated; that is, following [6], we assume that the
reduction of the organic content to an acceptable level automatically implies the
elimination of the pathogenic microorganisms.

ATAD can be operated as a batch or semi-batch process. An additional volume of
untreated concentrated sludge is added into a reactor containing sludge at the start
of a batch. Air is pumped continuously into the reactor providing the oxygenation
required for aerobic bacterial digestion and the mechanical mixing of the sludge.
Bacterial growth and an increase of temperature follow the digestion of organic
substance. At the end of the batch period, which is typically set at 24 hours for
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staffing reasons, a part of the treated volume is removed and is immediately replaced
by the next batch of untreated sludge.

The process is efficient, but it is also costly, as the aeration is energy-consuming.
Optimizing the aeration can significantly reduce the cost of operation.

2. Mathematical model and its properties. The majority of existing ATAD
models are overloaded with details and, as a result, are very large and complex. This
complexity prevents the application of both the analysis and the usual optimization
techniques. In this paper, our intention is to study a model, which we are able to
investigate analytically and optimize numerically and which includes the essential
mechanisms of the ATAD process. Accordingly, we formulate and investigate a
simple model of the ATAD reaction, which is based on Brune’s model [1].

In order to describe the process of aerobic biotreatment, we consider a simple
mathematical model, which represent the process as a chemical reaction with three
reagents,

X1+ Y]+ [2] = [2].

For the particular case of ATAD, z(t) is the concentration of oxygen, y(t) is the
concentration of organic matter, and z(t) is that of the thermophilic aerobic bacte-
ria. We assume that the mass in the reactor is well stirred, and hence the reactant
concentrations are homogeneous in the volume. We also assume that all the biolog-
ical activity takes place only in the reactor, and that anaerobic metabolic activity
is negligible. Moreover, we assume that the aeration rate u is the only control,
and that the control function is bounded. These assumption are common in the
literature on ATAD [18, 19, 1].

In order to study the impact of a non-linearity of the reaction rate on the control
and the attainable set, in this paper we assume that the reaction rate is a product
of three unspecified functions f(z), g(y) and h(z), that is f(x)g(y)h(z). Under
this assumptions, the changes of concentrations of the reagents are described by a
three-dimensional nonlinear control system of differential equations

& = —d, f(x)g(y)h(z) + u(m — ),
g = —d, f(x)g(y)h(2), (1)
z=d.f(x)g(y)h(z) — bz.

Here, the first equation represents the evolution of oxygen concentration: the first
term, — f(z)g(y)h(z), describes the process of its absorption in the reaction, whereas
the second term describes inflow of oxygen by pumping into the reactor. The second
equation describes a decrease of the organic matter in the reaction. The third
equation of system (1) shows an evolution of the active biomass concentration; the
bacteria mass grows at the rate f(x)g(y)h(z) and decays (due to natural mortality)
at arate bz. In the equations of this system d,, dy, d. are positive reaction constants.
System (1) also includes positive initial conditions

(E(O) = X, y(o) = Yo, Z(O) = 20; To € (Oam)7 Yo, 20 > 07 (2)

and a restriction on the rate of pumping air.
Introduce the values:

dydz dzdz dz d’y

dzvﬂS: dy778:

g =
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In order to reduce the number of parameters in system (1), let us make the following
substitutions:

T=osT, Y=PBsy, Z2=17s2, M=asm,
where Z, ¥ and z are new variables, and m is the new parameter. The new initial
conditions and unspecified functions then should be defined as

ZTo = @sTo, Yo = BsYo, 20 = Vs20,

F@) = anf (f) 50 =g (g) @) = b (;) |

As a result, after dropping the tildes above solutions Z(t), y(t), z(t), functions f(Z),
9(¥), E(Z”) and values m, Zo, Yo, 20, we obtain the system of equations (1) with
initial conditions (2) and d, = d, = d, = 1. Therefore, in the following arguments
we will assume these values of the constants d,, d, d, in system (1).

We assume that functions f(z), g(y) and h(z) are twice continuously differen-
tiable for all x, y, z > —J, and that

f(0) =g(0) = h(0) =0 (3)
hold. Here ¢ is a small positive number. Moreover, we assume that functions f(z),
g(y) and h(z) are monotonically increasing and concave for all z, y, z > 0. That
is, the inequalities
f@)>0, g(y) >0, W(z)>0 (4)
and
(@) <0, ¢"(y) <0, 1'(z) <0 (5)

hold. By (3) and (4), functions f(z), g(y) and h(z) are positive for all z, y, z > 0.
Furthermore, by (3)—(5), the inequalities

f(@) < f(0)z, g(y) <g'(0)y, h(z) <H(0)z, (6)
and

f'(x) < f(0), ¢'(y) < g'(0), W(z)<h(0), (7)
hold for all z, y, z > 0.

The model is nonlinear and assumes a bounded control; these features make the
model very interesting from the mathematical point of view. Numerical experi-
ments [6] confirm that this model is capable to describe the process with a sufficient
degree of accuracy while providing a suitable basis for further optimization.

In system (1), the value u € [0, umax] is & control. We consider the control u from
the set of all Lebesgue measurable functions u(t), ¢ > 0 satisfying the inequalities
0 < u(t) < Umax. Further, we will consider such controls as admissible.

Let us fix an admissible control u(t) and consider for ¢ > 0 corresponding solution
Wy (t) = (24 (1), yu (), 2.(t)) T of system (1) with initial conditions (2). Here symbol

means transpose. Please note, that the solution w,(t) exists and unique on the
maximum interval [0, 7, ), where v, is either a finite positive number, or +o0 [34, 23].
The following statement holds for w,,(t).

Lemma 2.1. For admissible control u(t), t € [0,vy), for the corresponding solution
wy(t) = (2u(t), yu(t), 2(t)) T of the problem (1),(2),

0<zu(t) <m, 0<yu(t)yo, 0< 24(t) < Zmax (8)
hold for all t € [0,74), where Zmax = Yo + 2o-
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Proof. The positiveness of components x,,(t), y.(t), z,,(t) of the solution w,(t), that
is

Tu(t) >0, yu(t) >0, z4(t) >0, t€[0,7), 9)
follows from relationships (2),(3) and Theorem 4.6 (84, Chapter 1) in [29]. The
similar arguments lead to a validity of inequality

Zy(t) <m, t€[0,7,). (10)

From inequalities (9), the positiveness of functions f(z), ¢g(y) and h(z) for all
x, y, z > 0 and the second equation of system (1), we obtain inequality

Yu(t) < yo, t€ (0,7u) (11)
Finally, combining the second and the third equations of system (1), and then
integrating the result, we come to the equality
t
2u(t) = yo + 20 — yu(t) — b/zu(s)ds, t € [0,7)-
0
By (9), this relationship implies the inequality
Zu(t) <o+ 20 = Zmax, t € [0,7). (12)
Combining inequalities (9)—(12), we find the desired relationships (8). This com-
pletes the proof. O

The next statements immediately follow from Lemma 2.1.

Corollary 1. The positive octant Ri is a positively invariant set of system (1)
with respect to the given set of admissible controls.

Corollary 2. For admissible control u(t), t € [0,7,) the corresponding solution
wWu(t) = (24 (), yu (), 2.(t)) T of the problem (1),(2) is bounded.

Moreover, it immediately follows (cf. [23]) that for this problem the value 7, is
equal to oo, and that for any T > 0 the solution w(t) of system (1),(2) corre-
sponding to an arbitrary admissible control u(¢), can be continued to the segment
[0, T] under simultaneous satisfaction of the inequalities

0<z(t)<m, 0<y(t) <yo, 0<z(t) < Zmax, t€(0,T]. (13)

Finally, let us define the set of admissible controls D(T') as the set of all Lebesgue
measurable functions u(¢), such that for almost all ¢ € [0, 7] the inequalities

0 < u(t) < Umax (14)
hold.

3. Attainable set and its properties. For problem (1),(2), the attainable set
X(T) C R? from the initial point wg at the moment of time T is the set of values
w(T) = (2(T),y(T),z(T))" of solutions w(t) = (x(t),y(t),z(t))" of system (1)
with initial conditions (2) corresponding to all possible controls u(-) € D(T). From
inequalities (13) and Theorem 2 (Chapter 4 in [34]), it follows that the set X (T) is
a compact set in R? located in the region

{w:(x,y,z)T€R3:0<x<m,O<y<y0,0<z<zmax}.
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In order to study the boundary of the attainable set X (7T), we use the Pontryagin
Maximum Principle (Theorem 3, Chapter 4 in [34]). Define the Hamiltonian

H(w, ¢, u) = ulm —2)pr = f(2)g(y)h(2) (1 + 2 = P3) = bzs,

where 1 = (¢1,19,13) " are adjoint variables. Let the point w = (z,y,2)" be a
boundary point of set X (7). Then there are a corresponding control u(-) € D(T)
and a trajectory w(t) = (x(t), y(t), 2(t)) T of problem (1),(2), such that the equalities

z(T) =z, y(T) =y, 2(T) = z.

hold. Moreover, there exists a nontrivial solution ¥(t) = (¢ (t),¥2(t),3(t)) " of

the adjoint system

D1(t) = u(t)r(t) + 1 (@(£)g(y(0)h(=(0) (1 (t) + ¢a(t) — v3(1)),

Ua(t) = F((t)g' (y(1))A(=(1)) (1 (1) + a(t) — ¥3(t)), (15)
st ) F(@(@)g(y(@)n' (2() (1 (t) + a(t) — ¥3(t)) + bibs (),

for which the control u

H(w

—~

t) is defined from the condition of maximum

£),9(), u(t)) = Jopax ]H(w(t)vw(t),v), (16)

ﬁumax

A

which is valid for almost all ¢ € [0,T]. By the first inequality of (13), relationship
(16) can be rewritten as

0, if L(t) <0,
u(t) = < [0, umax], if L(t) =0, (17)
Umaxs if L(t) >0.

Here function L(t) = t1(t) is the switching function, which behavior completely
determines the control u(t).

For convenience at further analysis, we introduce, together with switching func-
tion L(t), the following axillary functions

G(t) = (1) +¢2(t) — ¥s(t), P(t) = —1bs(t),
a(t) = f'(x()g(y(t)h(=(t), B(E) = f(x(t)g(y®)h'(=(1)),
o(t) = f'(@(®))g(y(t)h(z(1) + f(x(t)g' (y(0)h(=(t)) — f(2(£))g(y(t)h' (2(1))-
By (4) and the positiveness of functions f(x), g(y) and h(z),
a(t) >0, 8(t) >0, te[0,T). (18)

Using adjoint system (15), we can now write a system of differential equations

L(t) ( ) (t) + a(t)G(D),
G(t)
P(t)

)L(t) + o (t)G(t) + bP(t), (19)
( )G(t) +bP(1).
for the functions L(t), G(t) and P(t).
We are now ready to proceed to properties of the switching function L(t). The
following statement is valid.

Lemma 3.1. The switching function L(t) is not equal to zero on any finite subin-
terval of the interval [0,T].
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Proof. Assume the contradiction. Let L(¢) = 0 hold on some subinterval A C [0, T7.
Then L(t) = 0 for all £ € A. Then, by the first equation of system (19) and
inequalities (18), G(t) = 0 on the subinterval A, and hence G(t) = 0 for all t € A
as well. Furthermore, from the second equation of this system we see that P(t) =0
holds on the interval A. Moreover, the third equation of system (19) is also satisfied
on this interval. System (19) is a linear and homogeneous system, and hence we
must conclude that the relationship

L{t) = G(t) = P(t) =0

holds on the entire interval [0,7]. Then the definitions of these functions immedi-
ately lead to the equalities

Y1 (t) = 1ha(t) = s(t) =0, t € [0,T].
This contradicts to the nontriviality of the solution ¥(t) = (11 (t),v2(t), ¥3(t)) " of

adjoint system (15), and hence the hypothesis is incorrect, and the function L(t)
cannot be equal to zero on the subinterval A C [0,7T]. The proof is completed. O

Remark 1. The same result can be obtained by verifying the standard Lie bracket
condition for existence of a singular arc [3, 43].

Remark 2. From (17) and Lemma 3.1 it follows that the control u(t), correspond-
ing to a boundary point w = (z,y,2)" of the attainable set X (T, is a piecewise
constant function taking values {0; Umax }-

The following statement estimates the maximum number of zeroes of function
L(¢).

Lemma 3.2. The switching function L(t) has at most two zeroes on the interval

0, 7).

Proof. Firstly, we outline the idea of the proof. System (19) is a linear nonau-
tonomous system of differential equations, defined on the given finite time interval.
We will transform the matrix of this system to the upper triangular form. Functions,
which are responsible for this transformation, are given by a system of quadratic
differential equations and, therefore, are locally defined in a small neighborhood of
the value t = 0. Arguing by contradiction and using differential inequalities and the
comparison theorem, we will show the existence of such solutions to the system of
quadratic differential equations, which are defined on the entire interval. Therefore,
the triangular system also is defined on this interval, and from its analysis we will
make a conclusion about the number of zeros of function L(t).
Now we proceed to the proof. Let us make the nonlinear substitution

p(t) = L(t), p(t)=G(), At)=P(t)+q@)Lt) +g@)G®),
to system (19), where functions g1 (t), g2(t) are to be defined. In new variables p(t),
w(t) and A(t), system (19) is

)
p() = ul®)p(t) + a(H)u(t),
jt) = (u(t) = bar (1)p(t) + (o (1) = baz(H)n(t) + bA(),
At) = [ar(®) + (u(t) = D () + u(Ba(t) — b (Daa(®)] O+ (20)
+ [da(t) + alha (®) + (0(1) = Blaat) — ba3 (1) = (1) u(t)+
+ (1 + g2 (t))A(t)-
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Here, we choose the functions ¢ (), g2(t) to makes the expressions inside the square
brackets equal to zero. Then the functions ¢ (t), ¢2(t) satisfy the differential equa-

tions

{ Gu(t) + (u(t) = b)qr(t) + u(t)g2(t) — bar (t)ga2(t) = 0, (21)
G2(t) + a(t)qi(t) + (o(t) — b)ga2(t) — bg3(t) — B(t) =0,
and system (20) is
pt) = u(t)p(t) + a(t)u(t),
{ fit) = (u(t) = bar (£))p(t) + (o(t) — baz(t)) u(t) + bA(), (22)
A(t) = b(1 + ga(£))A(D).
2)

Next, in system (22) we make again the nonlinear substitution
pt) = p(t), i(t) = p(t) + as(t)p(t), (1) = A(®),

where function ¢3(t) is to be defined. In the new variables, system (22) takes the
form

p(t) = (u(t) — a(t)gs(£)A(t) + a()fi(t),

lt) = |ds(t) = bar () + (u(t) — o (t))gs(t)+
+bga(t)gs(t) — a(t)g3 (t) + u(t) [ A1)+ (23)
+ (o () = baa(t) + a(t)as(t))iE) + bA(E),

A(t) = b(1+ ga(t))A(t).
As above, we choose function ¢3(t) such to make the expression inside the square
brackets equal to zero. Then we have the differential equation

G3(t) = bar (t) + (u(t) = o(t))as(t) + baa(t)gs(t) — a(t)gs(t) + u(t) =0.  (24)

for function ¢3(t), and system (23) is now

p(t) = (ult) — a(t)gs(£)A(t) + a(O)i(t),
f(t) = (o(t) — baa(t) + a(t)gs(t)) (t) 4 bA(D), (25)
A() = b(1+ g2(£))A(®).
Combining the differential equations (21),(24), for functions ¢ (), ¢2(t) and ¢3(¢),
we obtain the following system

Q1(t) = —(u(t) = b)qr(t) — u(t)gz(t) + bgi(t)g2(t),
G2(t) = —a(t)qi(t) — (o(t) — b)az(t) + bg3 (t) + B(t), (26)
d3(t) = ba1 (t) — (u(t) — o(t))gs(t) — baz(t)gs(t) + e(t)g3 (t) — u(t).

Let us now rewrite this system in a matrix form. In order to do this, we define
symmetric matrices A;(t), A2(t) and As(¢) as follows

0o % o 00 0 0 0 Ob
0 0 0 000 0 -5 an

We introduce vectors by (t), b2(t) and bs(t) as

b — u(t) —a(t) b
bi(t) = ( —u(t) ) , bo(t) = (b—a(t)) , ba(t) = ( 0 ) :
0 0 a(t) — u(t)



1076 E. V. GRIGORIEVA, E. N. KHAILOV AND A. KOROBEINIKOV

and functions ¢ (t), c2(t) and c3(t) as

c(t) =0, c(t) =B(t), cs(t) = —u(t).
Then the matrix form for system (26) is

G1(t) = (As(t)q(t), q(t)) + (br(1), q(t)) + ea(t),
Ga(t) = (A2(t)q(t), q(t)) + (ba(t), q(t)) + ca(t), (27)
g3(t) = (As(t)q(t), q(t)) + (bs(t), q(t)) + e3(t),

( (t

where ¢(t) = (q1(t), q2(t), g3(t)) " and (p, e) is the scalar product of vectors p, e € R3.

Our task now is to show that system (27) has a solution, defined on the entire
interval [0,T]. Assume the contradiction, that is let an arbitrary solution ¢(¢) of
system (27) be defined on the subinterval [0,¢1), t; € (0,T], which is the maximum
possible subinterval, where this solution exists. Then, by Lemma (§14, Chapter 4)
n [10], it follows that

lim {|g(t)[| = +o0, (28)

t—tq —0

and hence there necessary exists a number v > 0, a value to € [0,¢1), and a set
Il = {q € R®:||q| > v} such, that the inclusion g(t) € II holds for all t € [to,t1).
Here, the values v and tg will be defined below.

Let us evaluate the derivative of the function ||g(t)|| on the interval [tg,¢;). From
(27) we have

L (1a®) = a1~ - (1) + &) + &), (29)
where
&1(t) = a1 (1) (A (Da(t), a(1)) + aa()(As ()a(t), a(8)) + a5 (1) (As(D)a(t), (1)),
&(t) = a1(O)(1(1), a() + aa(8) (b2(1), a(1) + as(t) (bs(1), a(1)),
&(t) = e(Da (1) + e2(Daa(t) + ea(t)as(t).
),

Using inequities (6),(7),(13), and (14) we can estimate the upper boundary for
&1(t), &2(t) and &3(t) on the interval [to,¢1). For £3(t) we have the following chain
of relationships

&) < VB +u2(t) - la®)] = V(f(@(®)g(y(E) R (=(8)? + u2(t) - la(t)]
< \/(f’( )g' (0)h(0))222(8)y>(t) + u?(t) - la(®)] < C - gD},

Here and further we consider @ = f'(0)¢g’ (O)h’(O).
For &5(t) we have the following chain of relationships
& < VIO + 5202 + [bs ()] - lla(®)]? (30)
= V0 —u()? +u(t) +a2(t) + (b~ a(8) + b2 + (o(t) — u(t)? - la(t)]*.

Furthermore, we have the following inequalities

where

(b —u(t)? < 20% 4 2u?(t) < 20 + 2u>

max?

a?(t) = (f'(x()g(y(t)h(=(1))* < Q*y*()2*(t) < QY zhax:
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(b o()* = (')l A + FE)g D)
(PN =0) +5))
(

< 2(f' () g(y(E)h(=(8) + f(2(t)g (y(£)h(=(1)))”
+2(F(@(®)g(y())N (=(2) +b)*
< A(f (@) g(y(E)R(=(8))* + 4(f((8)g (y(£)h(=(1)))

+A(F () gy (2(£))” + 462

2

<4Q*(z?(1)yP (1) + y* (1)22(t) + 22 (t)2®(t)) + 4b
< 4Q2 (m yO + yOZmax + Zl?naxmz) + 4b2’

(o(t) —u(t)* = ((f’(x(t))g(y( Nh(z(t) + f(z(t)g (y()h(2(t)))

(
< 4@2( (DY (8) + ¥ (£)22(t) + 22(1)22(1)) + 4u(t)
<AQ* (MPYG + Y3 2hax + Ziaax™”) + AUy

Substituting these inequalities into (30), we find that
VI @12 + 102 (0)[12 + b3 (D)% - la()]1* < B [la(®)]1?,

where

B = \JT0? 4 Tu2, o + Q2 (8m23 + 99322 0 + 822,,m2).
Finally, for &;(t) we have the inequality
&) < lar(@®)] - [Ar(®)a@)] - gl + la2@)] - [[A2@)a(@)]] - lq ()] (31)
+lgs(t)] - [(As(t)g(t), q(1))]-

Here,

[A1(®)q@)] < gllq(t)IL [A2()q (@) < bllg(®)]]-

The eigenvalues of matrix As(t) are

a(t) — Oé2t+b2 a(t) + a2t+b2
nit) =0l = L 2() L m3(t) = & 2()

Hence, for the last term in (31), the inequality

[(As(D)a(t), a()] < ns(t)lla(®)]?

holds. Combining the estimations, obtained for (31), we have the following chain
of inequalities

@] 1A Oa®] - la®)]] + la2(®)] - [1A2(Oa@®)] - la®)]] + las(®)] - [(As(B)a(t), q(t))]



1078 E. V. GRIGORIEVA, E. N. KHAILOV AND A. KOROBEINIKOV

a(t) 4+ y/a?(t) + b?

IN

2l (0] + Haa0)] + (0] | -la(o)?

2
2
2 2
@jL (oz(t)—F\/oz (t)+b) O
<\3 y Jla®)l
7H2 9 3 3
<\ +a2®) - eI < A a1,
where
7h2
A= T + QQZ/(%Z?T[&X'

Substituting the inequalities for & (¢), £2(t) and &5(t) into (29), we finally obtain
the differential inequality

d
dt
Now, we consider a quadratic equation

AK? - BK +C =0. (33)

(la@®1) < Alla@®)lI* + Bllat)ll + C, t € [to, t1)- (32)

For its discriminant D, we have the following chain of equalities
D =B* - 4AC
=07 + Tt + Q% (8m°Y5 + 995 2hax + 82maxm”)

b2 /
- 4 T + Q2y8Z12nax : QQmng + u12113x

=70 + Tu? . + Q* (szyg +9y222 .+ 822 m2)

- \/ 0% 4+ 4Q%y3 22 . - \/ 4Q*m2yg + 42,
2 2
— (V7 10 )+ (Vg
- \/7b2 + 4Q2y82r2nax : \/4Q2m2y8 + 4u12nax

+ (3ur2nax —+ Q2 (4m2y8 + BySZEaax + Szgﬂaxm2)) .

It is easy to see that the discriminant D is positive.
Next, we introduce a Lyapunov function V(q) = ||g|| + Ko, where ¢ € II and K
is the biggest root of equation (33), that is

_ B+ +VB?-4AC
o 24 ’

Ko

By (32), the function V(q) satisfies

9 (Vi) < AV () ~ Ko)? + B(V(a(t) ~ Ko) + O
Here, by definition, AKZ — BKy + C = 0, and hence
9 (Vi) < Av2a) - (24K~ B)VGa(®), te o). (34)
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Now, let consider the auxiliary Cauchy problem

h(t) = AR%(t) — (2AK0 — B)h(t)7 t € [to, 1], (35)
h(to) = ho, ho > Ko + v.
Here the value hg satisfies
B
ho > 2Kg — —. (36)

A
Solving the corresponding Bernoulli equation and satisfying the initial condition,
we find the solution to (35):
h(t) = (714 N A
94Ky, — B ' lhy 24K, - B
In this equality, we assume that the values of v and ¢y are such that the expression
in brackets is defined for all ¢ € [to, t1]. We can do this, for example, by choosing, for
a given v, a value g such that the difference (t; —t¢) was sufficiently small. By (36),
the sum inside of the square brackets in (37) is negative, and hence h(t) is a finite
positive monotonically increasing on the segment [tg, 1] function. Therefore, h(t) <
h(ty) for all ¢ € [to,t1). Hence, by differential inequality (34), Cauchy problem (35)
and Chaplygin’s Theorem (Theorem 1.1 in [51]), and under the condition

ho = V(q(to)) = Ko + llg(to)l,

-1
}e(zAKofB)(t*to)) , L€ [to, t1].  (37)

we have the inequalities
lg(®)| < h(t) — Ko < h(t1) — Ko, t € (to, t1).

This contradicts to (28), and hence the hypothesis is incorrect, and system (26) has
a solution ¢(t) = (q1(t), q2(t), g3(t)) T defined on the entire interval [0, T]. Therefore,
system (25) is defined on this interval as well. Applying to this system the general-
ized Rolle’s Theorem [11], we conclude that the switching function L(t) = p(t) has
at most two zeros on the interval [0, 7T]. This completes the proof. O

From Lemma 3.2, Remark 2 to Lemma 3.1 and relationship (17) lead to the
following theorem.

Theorem 3.3. Let point w = (z,y,2)" be on the boundary of the attainable set
X(T). Then, its corresponding control u(t) is a piecewise constant function taking
values {0; umax } and having at most two switchings on the interval (0,T).

4. Parametric description of the attainable set. The results in the previ-
ous Section enable us to parameterize the attainable set X (T') by the moments of
switching of piecewise constant controls.

Let us consider the set

AT) ={0=(01,02,05)" €R*:0<0, <0 <O3<T}.
For each point 6§ € A(T'), we define the corresponding control ug(-) € D(T)

Umax if 0 S t S 91»
wo(t) = 0, if 0; <t <0y, (38)
? B Umax if 92 <t< 937

0, if 03<t<T.
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Let wy(t) be the solution of problem (1),(2) corresponding to control ug(t). We
define a mapping F(-,T) : A(T) — R? as

F(6,T) = we(T), 6 € AT).

For this mapping we have the statement, which follows from well-known results in
theory of ODEs about a continuous dependence of solutions to ODEs with respect
to parameters [23].

Lemma 4.1. The mapping F(-,T) is continuous on the set A(T).

Using the mapping F'(-,T'), we introduce the auxiliary set Z(T') = F(A(T),T),
which consists of all ends wg(T') of trajectories wy(t) of problem (1),(2) under all
possible controls ug(t), t € [0,T], defined by formula (38). Every element of the
set Z(T) is a result of a bang-bang control ug(t), ¢t € [0,T], with at most three
switchings on the interval (0,T).

Now, we have to discuss some properties of the auxiliary set Z(T"). Considering a
point 6 € intA(T), its corresponding control ug(t) defined by (38) and a trajectory

wy(t), t € [0,T], we can reformulate the Cauchy problem (1),(2) in the form
we(t) = Awg(t) + p(wa(t))c + ua(t)p(we(t)), t € [0,T],
; (39)
we(0) = wo = (0, Y0, 20)

where A is a 3 x 3 matrix, ¢ € R3, and functions p(w) and ¢(w) are a vector and a
scalar functions, respectively, such that

0 0 O -1 m—x
A=[0 0 0 |,e=| =1 |, pw)= 0 ; pw) = f(z)g(y)h(2).
0 0 —b 1 0

For the system (39), we define a function ®y(t), t € [0,T], as a solution of the
matrix Cauchy problem

.
bo(t) = <A+c (52 waten) +ue<t>§j<we<t>>> Bolt), t€ 0,7],

Qy(T) = E,

(41)

where E is the identity matrix.
Let us evaluate the derivatives %(T), i = 1,3. Using well-known results in
3

theory of ODEs about differentiation of solutions to ODEs with respect to param-
eters [23] one can find that the derivatives satisfy the following equalities

%lgf (T) = (1)t @3 (0)plwp (6:)), i = T, 3. (42)

Remark 3. More detailed calculations for systems, in which the control appears
linearly, are presented in [36].

Now we are in a position to state the following statement.
Lemma 4.2. The following equalities hold
F(intA(T),T) = intZ(T), F(OANT),T) = 0Z(T), (43)
and the restriction of mapping F(-,T) onto the interior of set A(T) is one-to-one.

Here, 9O and int® denote the boundary and the interior of a compact set © C R3.
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Proof. Firstly, we consider the set intA(7"). The mapping F(-,T) is continuously
differentiable on the set intA(T), and for every point § € intA(T'), by (42), the
following equalities hold

Z—Z(G,T) = (= 1) " Mupmax®, 1 (0:) p(we(6;)), i =1, 3. (44)

The continuity of these derivatives on the set intA(T") is determined by a contin-
uous dependence of the trajectory wy(t) and solution ®y(t) of the matrix Cauchy
problem (41) in variables 6;, ¢« = 1,3. It is established by arguments, which are
similar to the arguments presented in Lemma 4.1.

We have to show that the Jacobi matrix of the restriction of mapping F'(-,T") onto
intA(T) is nonsingular. Suppose the opposite. Then there is a point € intA(T)

for which vectors %(é, T), i = 1,3, are linearly dependent. With respect to (44),

it means the existence of a nonzero vector ¢ € R? such that the equalities

(p(we(6:)),n(6:)) =0, i = 1,3, (45)

hold. Here n(t) = (®,'(t))Tq. By (41), we can see that function n(t), t € [0, 77,
satisfies the adjoint system (15), which is written as

- T
¢<t>=—<A+c(;ﬁ<we<t>>) +u9(t)gi(w9(t))> vlt),

where 1) (t) = (11(t),¥2(t),¥3(t)) . Then, applying inequalities (13) and Lemma 3.2
to the function r(t) = (p(we(t)),n(t)), we find that function r(t) has two zeros on
interval (0,7") at most. This fact contradicts the equalities

r(éi) =0,1= ﬁa
resulting from (45). Therefore, the assumption is wrong, and hence the proposition
is true. By this and by the Theorem on the invariance of interior points [41], the
first equality of (43) follows.

Furthermore, set intA(T") is a convex set, and the set intZ(T") is path connected.
Indeed, the mapping F(-,T) transforms any segment of intA(7") into a curve located
completely inside intZ(T"). For every point of intA(T") the Local Theorem on an
implicit function [41] holds. Then the last fact of the statement follows from the
Global Theorem 3 on an implicit function [47]. Hence the validity of the second
equality of (43) follows. The proof is completed. O

Remark 4. We extend by continuity the derivatives %(G,T), i = 1,3 of the

mapping F(-,T) onto the boundary of the set A(T'). As a result, we have continuous
partial derivatives of the mapping F(-,T) on the entire set A(T).

From the definitions of the attainable set X (7T') and the auxiliary set Z(T),
Theorem 3.3, and Lemma 4.2 the following inclusions hold

Z(T) € X(T), dX(T) C dZ(T). (46)

These explain why the set Z(T) plays such an important role in the study of the
attainable set X (T).

Let us establish another important property of the auxiliary set Z(T). It shows
the uniqueness of controls corresponding to points on the boundary of this set and
is a direct consequence of Lemma 4.2. This property was not before in [18, 19],
though it strengthens results presented there.
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Lemma 4.3. Let 6y, 02 be different points of the set IAN(T), and ug, (t), we,(t)
corresponding controls, defined on the interval [0,T] by (38), for which

meas{t € [0,T] : ug, (t) # ug, (t)} > 0. (47)

Suppose that the controls ug, (t) and ug,(t) correspond to the same point w on the
boundary of the set Z(T'). Then, these controls coincide; that is ug, (t) = ug,(t) for
all t € 0,T7.

Here meas O is the Lebesgue measure of the set © C R!.

Remark 5. Condition (47) is essential for this Lemma. For example, the points
61 = (£,Z,L)" and 6, = (£,3L,30)T are different and belong to set OA(T).
However, they give by (38) the same piecewise constant control, defined on the
interval [0, T], which takes the value umax on the interval [0, %] and the value 0 on
the interval (%,T]. Therefore, points 67 and 65 correspond to the same point on
the boundary of the set Z(T).

Proof. First, we have to introduce additional concepts and notations. Let us fix
a small number p > 0 and integrate on the interval [—pu, 0] from right to left the
problem (1),(2) with control u(t) = umax. The integration yields the point w}. Let
us now consider the system

w(t) = Aw(t) + p(w(t))e + ut)p(w(t)), te€[—p T+ pl, (48)
with initial condition
w(—p) = B (19)

Here matrix A, vector ¢ and functions ¢(w), p(w) are defined by (40).

By analogy with the set D(T), for problem (48),(49) we define the set of ad-
missible controls D, (T) as the set of all Lebesgue measurable functions, which for
almost all ¢ € [0, T satisfy inequalities (14).

We introduce the set

Ap(T)=1{0=(01,02,05)" €R®: —p <01 <0< 03 <T+p}.
For each point 0 € A, (T) we construct the control uy(-) € D,(T) as

Umax; if —uStSHl,

ﬂg(t) _ 0, if 01 <t <0, (50)
Umax if Oy <t <03,
0,  if Os<t<T+p

Let @l (t), t € [—p, T + p] be the solution to the problem (48),(49) corresponding
to the control @ (t). Finally, define a mapping F,(-,T) : A,(T) — R? by the rule

F,(0,T) = @4(T + ), 6€A,(T).

Using arguments similar to those in Lemma 4.2 applied to this mapping lead to the
following statement.

Proposition 1. The restriction of mapping 13‘\”(~,T) onto the interior of the set
A, (T) is one-to-one.
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Next, we integrate on the interval [—u, 0] from right to left the problem (1),(2)
with control u(t) = 0 and, as a result, obtain the point w}. Let us consider on the
interval [—p, T + p] system (48) with the initial condition

w(—p) = wy. (51)
For problem (48),(51) we take D,(T) as the set of admissible controls.
For each point 6 € A, (T) we construct the control uj(-) € D,(T) by formula

Oa if _:U’Stgelv
ﬂg(t) _ Umax if 91 <t S 927 (52)
0, if 0y <t <03,

Umax, 1 03 <t <T+p.

Let wj (t), t € [—p, T + p] be the solution to the problem (48),(51) corresponding
to the control uj(t). Finally, we define a mapping f‘u(~,T) : Ay (T) — R3 by the
rule B

F(0,T)=wy(T +p), 0e€A,(T).
Again, the arguments similar to those presented in Lemma 4.2 applied to this map-
ping lead to the following statement.

Proposition 2. The restriction of mapping ﬁu(~7T) onto the interior of the set
A, (T) is one-to-one.

Now, we are in a position to finish the proof of Lemma 4.3. Let 6; and 65 be the
points of set OA(T'), for which the corresponding controls ug, (t), ug, (t), t € [0,T],
defined by (38) and satisfying (47), correspond to the same point w € OA(T). There
are three cases.

Case 1. Let the control ug, (t) be one of three types, namely either

Umax if 0 S t S 1,
ug, (t) =<0, if 71 <t<m, (53)
Umax if To <t < Ta

or
0, if 0<t<7y,
Ug, (t) = {§ Umax, if <t S T, (54)
0, if m<t<T,
or
0, if 0<t<,
ua, (1) = {umx, if r<t<T. (55)

Here 7 € (0,T), and 71,72 € (0,T), 71 < T2 are the moments of switching. We
continue controls ug, (t), ug,(t), t € [0,7T] to the interval [—u, T + u] by the value
Umax ON the interval [—u, 0) and the value 0 on the interval (T, T + p]. This yields
new controls y (t), g, (t) of type (50) corresponding to points ol oL € A (T),
which steer system (48) on the interval [—u,T + p] from initial point (49) to the
same point w,. In this case, the point 5‘{ is uniquely associated with switchings
of control Uy (t). Namely, 0! = (1,72, T)7 for (53), 01" = (0,71,72)7 for (54),
and 6" = (0,7,T)7 for (55). For all these formulas, the inclusion §!' € intA,(T)
holds. Therefore, by Proposition 1 the coincidence of points 55‘ and 55 immediately
follows. Hence, the corresponding controls @y (t) and y, (t) also coincide on the
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interval [—u, T + u]. Therefore, the same conclusion holds for controls ug, (t) and
ug, (t) on the interval [0, T
Case 2. Let the control ug, (t) be of the type

Uma, 1 0<E<T,
£) = 56
ua,(t) {0, if r<t<T, (56)

where 7 € (0,T) is the moment of switching. Without loss of generality, we assume
that control ug,(t) is not of types (53)—(55).

Let us continue controls wug, (t), ug, (t), t € [0,T] to the interval [—u, T + p] by
the value 0 on the interval [—p,0) and the value upmax on the interval (T, T + pl.
This yields new controls wy (t), U, (t) of type (52) corresponding to points ok, 6k €
A, (T), which steer system (48) on the interval [—p, T'+ p] from initial point (51) to
the same point w,. In this case, the point 5’1‘ is uniquely associated with switchings
of control uj (t) by formula 0% = (0,7,T)T. Then, the inclusion ¢4 € intA,(T)
holds. Therefore, by Proposition 2 the coincidence of points gf and 55 immediately
follows. Hence, the corresponding controls wy (t), U (t) also coincide on the interval
[, T + p], and the same conclusion is correct for controls ug, (t), ug,(t) on the
interval [0, T].

Case 3. Suppose for definiteness that controls wug, (t), ug,(t) are of the types

Uo, (t) = Umax, U, (t) =0, te [0, T]

We continue these controls to the interval [—u, T + p] in the same manner as in
Case 2, obtaining controls wy () and uy (t) of the types

_ 0, if —p<t<o,
“(t)—{ oo

u =
b1 Umax, if  0<t<T+p,
and
_ 0, if —pu<t<T,
(1) = A
2 Umax, if T <t<T+p.

These controls are of the type (55) and therefore, by the arguments from Case 1
applied on the interval [—2u, T+ 2u], we come to the conclusion that controls ug, (t)
and wug, (t) also coincide on the interval [0, T].

All cases are considered, and the proof is completed. O

The following Corollary immediately follows from Lemma 4.3.

Corollary 3. Each point w on the boundary of the auziliary set Z(T) can be reached
by unique piecewise constant control u(t), t € [0,T], which takes values {0; umax }
and has at most two switchings on the interval (0,T).

Further investigation of the auxiliary set Z(T') involves studies of its supplements
R3*\intZ(T) and R3\ Z(T). First, we prove the following statement about the set
R3\ intZ(T).

Lemma 4.4. The set R®\ intZ(T) is path connected.
Proof. Inequalities (13) imply the existence of the ball Px(0) = {w eR3: Jlw| <

K} such that Z(T) C intPg(0). Let us consider the closed sets Ay = Z(T') and
Ay = Pg(0) \ intZ(T). It is easy to see that the sets A3 U Ay = Pg(0) and
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A; N Ay = 9Z(T) are path connected. Then, by Proposition 14.11 in [55], the set
Ay is path connected as well. Since the set R? \ intPx (0) is path connected and
has a non-empty intersection with the set As, then, by Proposition 14.F in [55], we
conclude that the set R? \ intZ(T) is path connected as well. This completes the
proof. 0

Second, we prove the statement below associated with the set R®\ Z(T). The
proof employs an extension method of the mapping F(-,T), which is different from
the method presented in [18, 19] and which is more natural for problem (1),(2).

Lemma 4.5. The set R*\ Z(T) is path connected.

Proof. The justification of this statement consists of two steps.
Step 1. Let us fix a small number p > 0. Using arguments from Lemma 4.3
we construct an extension F),(-,T) of the mapping F(-,T) from the set A(T) to
the set A, (T) as follows. For each point § € A, (T) we define by (50) the control
uy(-) € D,(T). Then, let wy(t), t € [—p, T+ ] be the solution of system (48) with
initial condition w}) = @}/ corresponding to control uy(t). Next, we integrate this
system with initial condition w}y (T4 p) from right to left on the interval [T, T + y]
with control u4(¢) = 0, and denote w¥ (¢) the corresponding solution. Finally, we
define a mapping F,(-,T) : A, (T) — R? by the rule

T+p

Fu0.7) = wh(T+10 — [ (Awk) + elwb()c)dr, 0 € A,(T)

T

From this definition it follows that

F.(0,T)=F(,T), 60¢cAT).
Hence, the mapping F),(-,T) is the desired extension of the mapping F'(-,T).
The mapping F,(-,T') is continuously differentiable on the set intZ,(T"), and for
each point 6 € intA,(T) the equalities

%Z’i‘ (0,7) = (1)t @2 (T) [ @ 01)| Tl 6)), i=T3  (57)

hold. These equalities are corollaries of the well-known results in theory of ODEs
about differentiation of solutions to ODEs with respect to parameters and initial
conditions [23]. Here, ®(t) and ® (¢) are solutions of Cauchy problems similar to
(41). These solutions are respectively defined on intervals [—p, T+ ] and [T, T+ p].
The first function corresponds to control uj (¢) and solution w} (¢), and the second
function corresponds to control w4 (¢) and solution wk (¢). These functions satisfy

initial conditions

(T +p) = E = ®L(T + p).
Now, applying to mapping F),(-,T) the arguments similar to those in Lemma 4.2
we obtain the following statement.

Proposition 3. The restriction of mapping F,,(-,T) onto the interior of the set
A, (T) is one-to-one.

Let us consider the following subsets on the boundary of the set A(T):
Al(T):{eeA(T):Ozel<02<63<T},

AQ(T):{HGA(T):O<01<02<03:T},
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A3(T):{06A(T):O:t91<62<03:T}.

Lemma 4.3 implies that the mapping F(-,T) transfers one-to-one these sets onto
corresponding surfaces and a curve on the boundary of the set Z(T). Since sets
Ai(T), i = 1,3 are located in the set intA,(T'), then by Proposition 3 the mapping
F,.(-,T), as an extension of the mapping F'(-,T), transfers one-to-one path connected

neighborhoods B,,(6)N (R3\A(T)) of points 6 € A;(T), i = 1,3 onto path connected
neighborhoods of points

w=F(0,T) = F,(0,T) € dZ(T).

Here B, (0) = {n cR3: |n—0| < M}.

We note that at each point of sets A;(T), ¢ = 1,3 mappings F(-,T), F,(-,T)
coincide, and the corresponding Jacobi matrix is nonsingular. Therefore, points
of these sets are regular points of these mappings (cf. [42]). It is easy to see,
from Remark 4 to Lemma 4.2 and formulas (44),(57), that at all other points on
the boundary of the set A(T) the Jacobi matrix is singular. Therefore, all these
points form a set of critical points of mappings F'(-,T), F,(-,T). From the Sard’s
Theorem [42], it follows that the image of this set has zero Lebesgue measure on
the set 0Z(T). Indeed, on the boundary of the set Z(T") such points form a curve.
The proof of Step 1 is completed.

Step 2. Let us consider arbitrary points wy,we € R3\ Z(T). At the same time,
we have wi,wy € R?\ intZ(T) and by Lemma 4.4 the set R? \ intZ(T) is path
connected. Therefore, there exists the path h(t), ¢ € [0,1] connecting these points;
that is

R(0) = wy, h(1) =wo; h(t) € R3\intZ(T), t € (0,1).
Next, we consider two cases.
Case 1. Let the inclusion h(t) € R3\ Z(T') hold for all ¢ € [0,1]. Then, points
wy and wy are connected by path h(t), ¢t € [0,1] in the set R® \ Z(T). From the
arbitrariness of these points the desired fact follows.
Case 2. Let there be a value ¢y € (0,1) such that h(ty) ¢ R3\ Z(T). The set
R3\ Z(T) is open and therefore, there are intervals adjoining to ¢t = 0 and t = 1,
such that for each value ¢ in these intervals the inclusion h(t) € R*\ Z(T) holds.
Then, it determined the values

f = sup {t € (0,t0) : Vs € [0,] h(s) € R\ Z(T)}7

7= inf{t € (to,1) : Vs € [t,1] h(s) € R®\ Z(T)}.

Obviously that ¢ < ¢. N N

Let us consider the case f < t. The case t = t will follow from arguments below.
By definitions of values ¢, ¢ we have h(t),h(t ) € 0Z(T). The set 0Z(T) is path
connected and therefore, there exists the path g(t), ¢ € [¢,¢ ] connecting points h(¥)
and h(t); that is

g(B) = h(®), g(t) =h(t); g(t) € dZ(T), t € (L,1).

The continuous curve g(t), t € [£,1] is a compact set in R, Therefore, by Proposi-
tion 17.H in [55], it is covered by a finite number of balls B.(g(t;)), i =0, (m + 1).

Here {ti}f;gl is the partition of the interval [f,1]: T =t) < t; <ty < -+ < b <
tmi1 = t, and {g(t;)}75! are centers of these balls. On the basis of results of
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Step 1, without loss of generality, we consider, first, that all points {g(t;) ?20-1 are

regular points of the mapping F(-,T). Second, the value ¢ > 0 is chosen so that
sets Be(g(ti)) N (R3 \ Z(T)), i =0, (m+ 1) are path connected.

Now, for each i = 0, m, we consider two neighboring balls Be(g(t:)), Be(g(ti+1))-
There exists a point 1 of the curve g(t), [¢,¢ ] such that n € B.(g(t;)), n €
B(g(tit+1)). Then, there is an open neighborhood V of point n such that V' C
B(g(t;)), V. C Be(g(ti+1)). The point n is on the boundary of the set Z(T)
and therefore, in neighborhood V there is the point € R®\ Z(T). Hence,
the point 7 belongs to both these balls and therefore, the path connected sets
Be(g(t:))N (R3 \ Z(T)), Be(g(ti+1)) N (R3 \ Z(T)) have a non-empty intersection.
Then, by Proposition 14.F in [55], the set

m—+1
Q="0 (Bug(t)n (R*\ 2(1))) c R*\ Z(T),

and is path connected.
Let us define the small number § > 0 such that inclusions

Wi = 9) € Blg(to)) N (R*\Z(T)), (T +06) € Be(g(tmin)) N (RP\ Z(T))

simultaneously hold. Hence, we can conclude that h(f — §), h(t + ) € Q. Therefore,
from the path connection of the set €2, it follows the existence of the path ¢(t),
t € [t — 4,t + d] connecting points h(f — §) and h(t + 4); that is

gt —0) =h(t—0), ¢t +8) =h(t+0); qt) eR3\ Z(T), t € (t—6,t+96).
Now, we define the path x(t), ¢t € [0, 1] by the formula

h(t), if tel0,f—d],
(t), if tel[t—0a,t+4],

x(t) =144q
h(t), if tet+6,1].

Obviously, the inclusion y(t) € R?*\ Z(T) holds for all ¢ € [0,1], and hence, the
points w; and wsy are connected by path x(t), t € [0,1] in the set R3\ Z(T'). From
the arbitrariness of these points the desired fact follows. The proof of Step 2 and
hence, that of the entire statement is now completed. O

Finally, we are now able to establish the validity of the main result of this paper.

Theorem 4.6. For the attainable set X(T') and the auziliary set Z(T), the equality
X(T) = Z(T) holds.
Proof. Tt follows from the first inclusion in (46) that in order to prove the hypothesis

it is sufficient to show the validity of the inclusion X (7T') C Z(T'). Let us assume
the opposite, i.e. assume that there exists a point w such that

@ ¢ Z(T), @ € X(T)

holds. Consider a point @ ¢ X (T').

The arguments presented in Lemmas 4.2 and 4.5 show that the boundary of the
set Z(T) divides R? into two path connected subsets intZ(T) and R3\ Z(T'). The
path connectedness of the second set ensures the existence of a continuous curve
o(s), s € [0,1], as well as w = 0(0), W = o(1), and o(s) ¢ Z(T) for all s € (0,1).
By Theorem 36 on “transition through customs” in [44], there is a value s, € (0,1)
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such that o(s,) € 0X(T'). Therefore, there is a defined point @ = o(s,), such that
the relationships

wedX(T), w¢oz(T),
simultaneously hold. This contradicts to the second inclusion in (46). Hence the

assumption is incorrect, and the required inclusion holds. The proof is completed.
O

Theorem 4.6, Lemma 4.2, and Corollary 3 of Lemma 4.3 imply, that the set A(T)
and the mapping F(-,T) form a parametric description of the attainable set X (7T')
(its boundary and interior) by the moments of switching of control ug(t). Moreover,
each interior point of the attainable set X (7") can be obtained under unique control
ug(t) with precisely three switchings, and each boundary point of this set can be
reached by a unique control with at most two switchings.

Remark 6. It may be noteworthy that a similar parametrization of the attainable
set was obtained for a nonlinear control model for the process of production and
sales of a consumer good [15].

5. Numerical simulations. We consider numerical examples for two specific types
of the reaction rate in system (1).

Law of mass action. Let f(z) = x, g(y) = y, h(z) = z. It is easy to see that
constrains (3)—(5) are satisfied. With this reaction rate, the system (1) takes the
form
& =—zyz+ulm—2x), t €[0,7T],
y=—wyz, (58)
z=ayz — bz.
This reaction rate is the law of mass action, and this model was studied in detail
in [18, 19].
Figures 1 to 3 were constructed with MATLAB using Theorem 4.6, and previ-
ously reported in [18, 19]. These Figures show attainable sets X (T') for system (58)
for three sets of initial conditions and system parameters, respectively.

Michaelis—Menten kinetics. Let f(z) = #[(w? 9(y) = ﬁ, h(z) = =

Constrains (3)—(5) are also satisfied, and system (1) takes the form

o __x Y _
T = x+sz+Kyz+u(m x), t € 10,7,
x

- Y
y__x+sz+Kyz’ (59)
;= % Y z— bz
z+ Ky y+ K,y )
Figures 4 to 6, which are also constructed with MATLAB using Theorem 4.6,
show Examples 4 to 6 of attainable sets X (7T') for system (59) for three different
sets of initial conditions and system parameters, which are taken from [6].

6. Conclusions. Many processes in biotechnology and medicine (treatments) can
be controlled. High costs of reagents and medications, as well as possible severe
side effects, imply that optimizing controls for these processes may be beneficial.
However, complexity of biological processes and insufficient data usually prevent
straightforward application of standard optimization techniques to these problems.

In this paper we consider a control model of a process of the autothermal ther-
mophilic aerobic digestion. This is a biological process, where bacteria are employed
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FIGURE 1. Attainable set X (7T') of system (58),(2). Here, xzy =
0.0019, yo = 2.498, 2o = 0.0874, m = 0.048, b = 0.24, Umax = 4.0
and T' = 6.0 (Example 1).
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o
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— .
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w
~N
©
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FIGURE 2. Attainable set X (7T') of system (58),(2). Here, zy =
0.0192, yo = T4.94, 2o = 0.0874, m = 0.048, b = 0.24, Upmgx = 4.0
and T = 6.0 (Example 2).
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x10 5 296 y

FIGURE 3. Attainable set X(7T') of system (58),(2). Here, xg
0.001, yo = 146.9694, zo = 0.1715, m = 0.0245, b = 0.5, Umax =
4.0 and T = 20.0 (Example 3).

x10

FIGURE 4. Attainable set X(7T') of system (59),(2). Here, z
0.9541 - 1072, yo = 0.4989, zo = 0.5612, K, = 0.0006361, K,
0.1247, m = 5.6125, b = 0.5, Umax = 20.0 and 7' = 10.0 (Exam-
ple 4).
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FIGURE 5. Attainable set X (T') of system (59),(2). Here, g =
0.004874, yo = 3.2496, zo = 1.0155, K, = 0.32496, K,
0.8124, m = 0.04874, b = 0.5625, umax = 12.5 and T = 8.0
(Example 5).
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FIGURE 6. Attainable set X (T) of system (59),(2). Here, z¢ =
0.002647, yo = 9.9247, z = 1.3233, K, = 0.26466, K, =
5.9548, m — 0.06616, b — 0.25, e — 4.1666 and T = 12.0
(Example 6).
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for waste water treatment. Our objective was to investigate the impact of the non-
linearity of the reaction rate on the attainable set and the control function. For
this reason, we considered a very general model of the process, where the reaction
rate is given by a product of three unspecified nonlinear functions, f(x)g(y)h(z),
constrained by a few biologically motivated generic conditions (such as monotonic-
ity and concavity of the functions). For this model, we analytically obtained the
detailed structure of an attainable set X (T") and found the form of controls corre-
sponding to points of this set. In particular, for this model the moments of switching
of the controls ug(t), which form the set A(T), together with the mapping F(-,T),
play the role of parametrization for the set X (7T') (for both its interior and bound-
ary). It was proved that each point on the boundary of set X(T') can be reached
by a control from the above mentioned class (a bang-bang control with at most two
switchings), and every point of the interior of X (7') is the result of a bang-bang
control with precisely three switchings. An original computer program (written
in MATLAB) allows us to numerically construct attainable sets for a variety of
reaction rates, initial conditions and the system parameters.

It is noteworthy, that this results are in agreement with the earlier reported
results for the model, where the reaction rate is given by the law of mass action.
This finding rigorously confirm the intuitive expectation, that this type of control
is the same for any model of the process where a reaction rate possesses certain
generic properties, such as the monotonicity and the concaveness with respect to
all arguments.

These results are also of apparent practical significance and can be straightfor-
wardly applied to practice, as they allow significantly narrow the set of possible
controls and thus considerably reduce the amount of computations required to nu-
merically find optimal controls for real-life optimal control problems.

Acknowledgments. A. Korobeinikov is supported by the Ministry of Science and
Innovation of Spain via Ramén y Cajal Fellowship RYC-2011-08061.
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