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Abstract. Hepatitis C virus (HCV) is a leading cause of chronic liver disease.

This paper presents a deterministic model for HCV infection transmission and
uses the model to assess the potential impact of antiviral therapy. The model is

based on the susceptible-infective-removed-susceptible (SIRS) compartmental

structure with chronic primary infection and possibility of reinfection. Im-
portant epidemiologic thresholds such as the basic and control reproduction

numbers and a measure of treatment impact are derived. We find that if

the control reproduction number is greater than unity, there is a locally un-
stable infection-free equilibrium and a unique, globally asymptotically stable

endemic equilibrium. If the control reproduction number is less than unity, the

infection-free equilibrium is globally asymptotically stable, and HCV will be
eliminated. Numerical simulations suggest that, besides the parameters that

determine the basic reproduction number, reinfection plays an important role

in HCV transmissions and magnitude of the public health impact of antiviral
therapy. Further, treatment regimens with better efficacy holds great promise

for lowering the public health burden of HCV disease.

1. Introduction. Infection with hepatitis C virus (HCV) is a major global public
health problem. According to the World Health Organization statistics, 3–4 million
people are infected every year and the number of people currently infected with
HCV worldwide is approximately 150 million [50]. HCV infection is the most com-
mon chronic blood-borne infection in the United States (US) with an estimated 3.2
million persons being chronically infected [5].

HCV is a single-stranded ribonucleic acid (RNA) virus that is transmitted pri-
marily through direct percutaneous exposures to blood. In many countries, the two
most common exposures associated with transmission of HCV are injecting-drug
use and transfusion of blood from unscreened donors. Transmission can also result
from occupational, perinatal, and sexual exposures.

Most of newly infected persons are asymptomatic (and are unaware of their in-
fection) with a minority having symptoms such as jaundice, dark urine, fatigue,
nausea, vomiting, and abdominal pain [27]. Approximately 10–20% spontaneously
clear the virus and develop natural immunity. Following the acute period, a high
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proportion of HCV-infected persons develops chronic infection. Chronic infection
with HCV can result in chronic liver disease or other HCV-related chronic diseases
decades after infection [3, 16]. In the US, chronic HCV infection causes approxi-
mately 8,000–10,000 deaths each year and is the leading indication for liver trans-
plantations [13].

Currently there is no vaccine for the prevention of HCV infection. Prior to
the introduction of HCV protease-inhibitor-based triple therapy for chronic HCV
genotype 1 infection in 2011[23], the standard of care for chronic HCV infection
is a combination of a pegylated interferon alfa and ribavirin [24]. However, dual
therapy is efficacious in less than half of the patients infected with the predominant
genotype 1, and treatment may cause serious side effects.

Several mathematical models for HCV RNA kinetics were developed to assess
the viral dynamics in vivo and the antiviral efficacy of therapy [40, 44]. However,
very few studies of mathematical models of HCV transmission in a community have
been conducted. Martcheva and Castillo-Chavez [35] introduced an epidemiologic
model of hepatitis C with chronic infectious stage in a varying population. Their
model does not include a recovered or immune class and falls within the susceptible-
infected-susceptible (SIS) category of models. A susceptible-infected-removed (SIR)
model is used by Kretzschmar and Wiessing [32] to study the transmission of HCV
among injecting drug users (IDUs). Models that allow for waning immunity of the
susceptible-infected-removed-susceptible (SIRS) type are used by Das et al. [17]
and Zeiler et al. [51].

None of these models consider directly reinfection. Studies of the natural history
of HCV infection suggest that recovery provides only partial, temporary immunity
[46]. Secondary infections following recovery behave differently from primary in-
fections. For example, higher spontaneous viral clearance rate and lower rate of
chronic reinfection was observed in reinfected patients compared with primary in-
fected patients. Also, viral load during episodes of reinfection is significantly lower
compared with that of the primary infection in the same subjects, suggesting lower
infectiousness of secondary infections [7, 25, 39].

This paper presents a deterministic model for HCV transmissions with the ob-
jective of assessing the potential public health impact of therapy. The model is
rigorously analyzed to gain insight into its qualitative behavior. We then use real-
istic parameters values to numerically simulate the model and trace the transient
dynamics following treatment. To take into account various sources of uncertainty
in model inputs, we conduct uncertainty and sensitivity analyses.

The rest of the paper is organized as follows. Section 2 presents the model.
Qualitative analysis of the model is presented in section 3. Section 4 describes
parameters estimation and includes several numerical analyses. Final discussion is
provided in section 5.

2. Model. The transmission dynamics of HCV will be studied using an extended
version of the simple Kermack-McKendrick-type model [30]. The model analyzes
the transmission of an infectious agent in a homogeneously mixing population. The
population is divided into several classes: susceptible to infection (S), acutely in-
fected (I), persistently (chronically) infected (P ), and removed (R). The model
allows reinfection. Like primary infections, reinfection classes are divided into acute
reinfection (V ) and chronic reinfection (W ) classes (Figure 1).
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To focus on epidemiologic effects of treatment, we choose a simple demographic
model with a constant rate of recruitment in the näıve class Λ and exit rate from
all classes µ. Susceptible persons are infected at a per capita rate λ. This force of
infection λ depends on the patterns of interaction between persons, the probability
that an interaction between an infected and a susceptible person results in trans-
mission of infection β, and the probability that a new contact is infected and the
contact level of infectiousness.

Upon infection, the host moves into the I compartment and progresses to chronic
stage at rate ε. A primary infected host can clear acute infection at rate σ and
chronic infection at rate δ. A host acquires partial immunity upon clearing infection,
and becomes less susceptible compared with a näıve host. The residual susceptibility
of persons in class R is measured by ψ such that the force of infection is ψλ. Because
a host acquires partial immunity upon clearing infection, and becomes less or as
susceptible compared with a näıve host, it is assumed that ψ ≤ 1. Immunity of
persons in compartment R wanes and eventually they return to the susceptible
class S at rate γ. A reinfected host can clear acute infection at rate α and chronic
infection at rate η faster than primary infection. The rate of progression to chronic
stage of a reinfected host is κ slower than primary infection.

Chronically infected persons in classes P and W are treated at rate τ and φ
and move to classes T and Q, respectively. After the treatment period of 24 to 48
weeks ends, a fraction of patients succeed in clearing HCV, also known as sustained
virologic response (SVR), and move to class R at rate θ. The remainder fail treat-
ment and move back to class P at rate ρ and class W at rate ζ. The degree of
infectiousness of hosts in classes P , V , W , T and Q relative to that of hosts in class
I is π, ν, ωπ, χπ, and χπ, respectively.

The ordinary differential equations that represent the model with treatment are

dS

dt
= Λ− λS − µS + γR,

dI

dt
= λS − (µ+ σ + ε)I,

dP

dt
= εI + ρT − (µ+ δ + τ)P,

dR

dt
= σI + δP + ασV + ηδW + θT + θQ− ψλR− (µ+ γ)R, (1)

dV

dt
= ψλR− (µ+ ασ + κε)V,

dW

dt
= κεV + ζQ− (µ+ ηδ + φ)W,

dT

dt
= τP − (µ+ ρ+ θ)T,

dQ

dt
= φW − (µ+ ζ + θ)Q,

where

λ =
β(I + πP + νV + ωπW + χπT + χπQ)

N
,

N = S + I + P +R+ V +W + T +Q.
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All variables and parameters are defined in Table 1. It should be noted that the
model (1), in the absence of treatment, becomes an SIR when ψ = γ = 0 and an
SIS model when ψ = 1.

Figure 1. Transfer diagram of the HCV infection transmission
model with treatment. The model divides the population into 8
major groups according to their susceptibilities and infectiousness.
The force of infection is: λ = β(I + πP + νV + ωπW + χπT +
χπQ)/N .

3. Qualitative analysis of the model. We begin the analysis by considering a
simpler version of the model in which reinfection behaves the same way as primary
infection with regard to infectivity and rates of recovery, progression, and treatment.
That is, κ = α = η = ω = ν = 1, φ = τ , and ζ = ρ. This allows us to include
persons in class V with those in class I, persons in class W with those in class P ,
and combine class Q with class T . In order to avoid confusion we define S̄ = S,
Ī = I + V , P̄ = P +W , R̄ = R, T̄ = T +Q, and rewrite system (1) in terms of the
variables S̄, Ī, P̄ , R̄, and T̄ . The resulting system is

dS̄

dt
= Λ− λ̄S̄ − µS̄ + γR̄,

dĪ

dt
= λ̄S̄ + ψλ̄R̄− (µ+ σ + ε)Ī ,

dP̄

dt
= εĪ + ρT̄ − (µ+ δ + τ)P̄ , (2)

dR̄

dt
= σĪ + δP̄ + θT̄ − ψλ̄R̄− (µ+ γ)R̄,

dT̄

dt
= τP̄ − (µ+ ρ+ θ)T̄ ,

with λ̄ = β(Ī + πP̄ + χπT̄ )/N̄ and N̄ = S̄ + Ī + P̄ + R̄+ T̄ .
Define the biologically feasible set for system (2) as

D =
{

(S̄, Ī, P̄ , R̄, T̄ ) ∈ R5
+ : N̄ ≤ Λ/µ

}
The closed set D is positively invariant with respect to the model (2). This can be
verified as follows. The rate of change of the total population, obtained by adding
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Symbol Description Value

Variables
S(t) Susceptible population
I(t) Acutely infected population
P (t) Chronically infected population
R(t) Recovered population with partial immunity
V (t) Acutely reinfected population
W (t) Chronically reinfected population
T (t) Chronically infected treated population
Q(t) Chronically reinfected treated population
λ(t) Force of infection

Parameters
Λ New recruits into the population 39,600 year−1

µ Death or retirement rate from the population 0.09 year−1

β Contact rate 2.68 year−1

σ Recovery from acute infection 0.5 year−1

δ Recovery from chronic infection 0.002 year−1

ε Rate of progression to chronic infection 1.5 year−1

ψ Relative susceptibility of recovered population 0.5
α Relative rate of recovery from acute reinfection 3.3
η Relative rate of recovery from chronic reinfection 3.3
κ Relative rate of progression to chronic reinfection 1/3.3
τ Treatment rate of chronically infected population 0.04 year−1

φ Treatment rate of chronically reinfected population 0.04 year−1

θ Treatment cure rate 0.67 year−1

ρ Treatment failure rate of chronically infected 0.82 year−1

population
ζ Treatment failure rate of chronically reinfected 0.82 year−1

population
γ Rate of waning immunity 0.025 year−1

π Relative infectivity of chronically infected population 0.01
ν Relative infectivity of acutely reinfected population 1/6.5
ω Relative infectivity of chronically reinfected population 1/6.5
χ Relative infectivity of treated population 0.5

Table 1. Description of variables and parameters. Sources for
values of parameters are given in the text.

all the equations of the model (2), is given by

dN̄

dt
= Λ− µN̄ (3)

The solution of equation (3) is

N̄(t) =
Λ

µ
+

[
N̄(0)− Λ

µ

]
e−µt.

It follows that for all N̄(0) ≤ Λ/µ, N̄(t) ≤ Λ/µ for all t > 0. Therefore, all solutions
of the model with initial conditions in D remain in D for all t > 0. Thus, the set



1050 ELAMIN H. ELBASHA

D is positively invariant with respect to the model (2). In the qualitative analyses,
we will only consider the dynamics of the flow generated by (2) in this domain D.

3.1. Infection-free equilibrium and reproduction numbers. The model (2)
has a disease-free equilibrium given by

E0 = (S∗, I∗, P ∗, R∗, T ∗) =

(
Λ

µ
, 0, 0, 0, 0

)
.

A commonly used measures of the severity of an epidemic is the basic reproduction
number R0. It is defined as the expected number of new infections generated by a
single infected person during his/her entire period of infectiousness when introduced
in a completely susceptible population [4, 18, 26]. The basic reproduction number
R0 is typically defined in the absence of any control measures such as vaccination
or treatment, and can be derived using the next generation operator technique
[47]. Considering model (2) without treatment, the nonnegative matrix F and the
non-singular M -matrix Q are given by

F =

(
β πβ
0 0

)
,

Q =

(
µ+ σ + ε 0
−ε µ+ δ

)
.

The matrix F includes transmissions from the acutely and chronically infected per-
sons (those in compartments I and P ) to persons in other compartments (those in
compartments S and R). The matrix Q corresponds to transitions between com-
partments and death such that the elements of Q−1 represent the expected time
a person spend in a given epidemiologic class during his/her entire life [19]. R0 is
equal to the spectral radius of the matrix FQ−1:

R0 =
β

ε+ µ+ σ

(
1 +

επ

δ + µ

)
.

Because reinfection is ignored in the calculations of R0, the term ψ does not appear
in the formula for R0. The result showing that the expression for R0 is unchanged
by the presence of reinfection is similar to the findings of Singer and Kirschner [45].
R0 indicates the severity of an epidemic in the absence of any prevention or ther-

apeutic program to control the spread of infection. A similar quantity, known as the
control reproduction number Rc, is used to gauge the severity of an epidemic in the
presence of a control measure such as treatment. It represents the average number
of secondary infections acquired from a primary case introduced into a suscepti-
ble population where a control measure is applied on a fraction of the population
[10]. We can follow the same approach as before and construct the matrices of

transmission F̂ and transition Q̂ as:

F̂ =

 β πβ πβχ
0 0 0
0 0 0

 ,

Q̂ =

 µ+ σ + ε 0 0
−ε µ+ δ + τ −ρ
0 −τ µ+ ρ+ θ

 .
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We can derive the reproduction number with treatment Rc as the spectral radius
of the matrix F̂ Q̂−1:

Rc =
β

ε+ µ+ σ

{
1 +

πε(θ + µ+ ρ+ τχ)

(δ + µ)(θ + µ+ ρ) + (θ + µ)τ

}
.

It can be shown that Rc = R0 when τ = 0. As expected, the control reproduction
number becomes the basic reproduction number in the absence of treatment.

It is instructive to investigate the sensitivity of Rc to changes in the treatment
parameters τ , ρ, and θ. It can be shown that Rc is inversely related to τ provided
θ + µ > (δ + µ)χ. Thus, differentiating Rc with respect to τ yields

∂Rc
∂τ

= − β

(ε+ µ+ σ)

πε(θ + µ+ ρ)[(θ + µ)− (δ + µ)χ]

[(δ + µ)(θ + µ+ ρ) + (θ + µ)τ ]
2 .

This condition is likely to be satisfied because the rate of recovery following treat-
ment θ is greater than that following untreated chronic infection δ (i.e., θ > δ), and
untreated chronic infections are as infectious as treated chronic infection (1 ≥ χ).
Likewise, Rc is positively related to ρ provided θ+µ > (δ+µ)χ. This can be shown
by partially differentiating Rc with respect to ρ

∂Rc
∂ρ

=
β

(ε+ µ+ σ)

πετ [(θ + µ)− (δ + µ)χ]

[(δ + µ)(θ + µ+ ρ) + (θ + µ)τ ]
2 .

Regardless, Rc is positively related to χ and inversely related to θ:

∂Rc
∂χ

=
β

(ε+ µ+ σ)

πετ

[(δ + µ)(θ + µ+ ρ) + (θ + µ)τ ]
,

∂Rc
∂θ

= − β

(ε+ µ+ σ)

πετ [ρ+ (δ + µ+ τ)χ]

[(δ + µ)(θ + µ+ ρ) + (θ + µ)τ ]
2 .

Therefore, higher treatment rates with drugs with higher and faster cure rates and
lower failure rates will decrease the control reproduction number and the intensity
of the epidemic.

Both R0 and Rc are fundamental to understanding the epidemiology of infec-
tious diseases because, in many cases, they completely characterize the dynamics
of infection. Typically, a small influx of infected persons cannot generate outbreaks
(infection dies out over time) when R0 is less than unity, and the infection will per-
sist if R0 exceeds unity. Similarly, treatment with sufficient coverage can succeed in
eliminating infection when Rc is below unity. Because Rc measures the intensity of
the epidemic, treatment, by lowering Rc, can have significant public health impact
even if it fails to eliminate infection in a specific population.

Following McLean and Blower [38], a measure of treatment impact based on the
reproduction numbers can be defined as

Φ(τ) = 1− Rc
R0

=
επτ [θ + µ− (δ + µ)χ]

(δ + πε+ µ) [(δ + µ)(θ + µ+ ρ) + (θ + µ)τ ]
.

Thus, population-level impact of treatment is always positive provided θ + µ >
(δ + µ)χ. As mentioned above, this condition is likely to be satisfied for treatment
with currently licensed drugs. The implication of this is that widespread treatment
is unlikely to cause perverse public health outcomes. Further, the population-level
impact of treatment is large, the higher and faster are cure rates (τ and θ) and the
lower are the failure rate (ρ) and relative infectivity rate (χ). As a function of τ ,
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the impact Φ(τ) is concave, indicating that the impact increases at a diminishing
rate as treatment level increases.

3.2. Stability of infection-free equilibrium. To simplify the stability analysis
we let γ = 0 and assume, without any loss of generality, that the demographic
process is at equilibrium and Λ = µ, so that all the variables are expressed as
fractions of the population. Given this, we have S̄ + Ī + P̄ + R̄ + T̄ = 1. This
equation can be used to eliminate R̄ and rewrite model (2) as

dS̄

dt
= µ− λ̄S̄ − µS̄,

dĪ

dt
= (1− ψ)λ̄S̄ + ψλ̄(1− Ī − P̄ − T̄ )− (µ+ σ + ε)Ī ,

dP̄

dt
= εĪ + ρT̄ − (µ+ δ + τ)P̄ , (4)

dT̄

dt
= τP̄ − (µ+ ρ+ θ)T̄ ,

with λ̄ = β(Ī + πP̄ + χπT̄ ). We now prove the global stability of the infection-free
equilibrium E0 = (1, 0, 0, 0) when the reproduction number Rc is less than or equal
to unity.

Theorem 3.1. The infection-free equilibrium E0 of model (4) is globally asymptot-
ically stable if Rc ≤ 1 and unstable if Rc > 1.

Proof. Consider the Lyapunov function (see, e.g., [22])

L0 = (1−ψ)

(
S̄ − S∗ − S∗ ln

S̄

S∗

)
+Ī+A(µ+ρ+θ+τχ)πP̄+A [χ(µ+ δ + τ) + ρ]πT̄ ,

where A is given by

A =
µ+ σ + ε

(µ+ ρ+ θ)(µ+ δ + πε) + τ(µ+ θ + χπε)
.

L0 is defined, continuous, and positive definite for all S̄, Ī, P̄ , T̄ > 0. Also, the global
minimum L0 = 0 occurs at the infection-free equilibrium E0. Further, function L0,
along the trajectories of system (4), satisfies

dL0

dt
= (1− ψ)(1− S∗

S̄
)
dS̄

dt
+
dĪ

dt
+A(µ+ ρ+ θ + τχ)π

dP̄

dt

+A [χ(µ+ δ + τ) + ρ]π
dT̄

dt

= (1− ψ)(1− S∗

S̄
)(µS∗ − λ̄S̄ − µS̄)

+(1− ψ)λ̄S̄ + ψλ̄(1− Ī − P̄ − T̄ )− (µ+ σ + ε)Ī

+Aπ(µ+ ρ+ θ + τχ)
[
εĪ + ρT̄ − (µ+ δ + τ)P̄

]
+ Aπ [χ(µ+ δ + τ) + ρ]

[
τP̄ − (µ+ ρ+ θ)T̄

]}
.
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Simplifying and collecting terms for Ī, P̄ , and T̄ yield

dL0

dt
= (1− ψ)µS∗(1− S∗

S̄
)(1− S̄

S∗ ) + (1− ψ)λ̄S∗ + ψλ̄(1− Ī − P̄ − T̄ )

−A[(µ+ ρ+ θ)(µ+ δ + πε) + τ(µ+ θ + χπε)− επ(µ+ ρ+ θ + τχ)]Ī

−A{(µ+ ρ+ θ + τχ)(µ+ δ + τ)− [χ(µ+ δ + τ) + ρ]τ}πP̄
−A {[χ(µ+ δ + τ) + ρ] (µ+ ρ+ θ)− (µ+ ρ+ θ + τχ)ρ}πT̄}

Using the definition of A and further simplifying give

dL0

dt
= (1− ψ)µS∗(1− S∗

S̄
)(1− S̄

S∗ ) + (1− ψ)λ̄S∗ + ψλ̄(1− Ī − P̄ − T̄ )

−A [(µ+ ρ+ θ)(µ+ δ) + τ(µ+ θ)] (Ī + πP̄ + χπT̄ )}

= (1− ψ)µS∗(1− S∗

S̄
)(1− S̄

S∗ ) +A [(µ+ ρ+ θ)(µ+ δ) + τ(µ+ θ)]

×(Ī + πP̄ + χπT̄ )

{
β [(µ+ ρ+ θ)(µ+ δ + πε) + τ(µ+ θ + χπε)]

(µ+ σ + ε) [(µ+ ρ+ θ)(µ+ δ) + τ(µ+ θ)][
(1− ψ)S∗ + ψ(1− Ī − P̄ − T̄ )

]
− 1
}
,

= (1− ψ)µS∗(1− S∗

S̄
)(1− S̄

S∗ ) +A [(µ+ ρ+ θ)(µ+ δ) + τ(µ+ θ)]

×(Ī + πP̄ + χπT̄ )
{
Rc
[
(1− ψ)S∗ + ψ(1− Ī − P̄ − T̄ )

]
− 1
}
.

The term (1− ψ)µS∗(1− S∗/S̄)(1− S̄/S∗) = (1− ψ)µS∗(2− S∗/S̄ − S̄/S∗) is less
than or equal to zero by the arithmetic-geometric mean inequality (the geometric
mean is always less than or equal to the arithmetic mean):(

n∏
i=1

ai

) 1
n

−
n∑
i=1

ai/n ≤ 0, ai ≥ 0, i = 1, 2, ..., n.

In this case, the geometric mean of S∗/S̄ and S̄/S∗ is
√

(S∗/S̄)(S̄/S∗) = 1 and
the arithmetic mean is (1/2)(S∗/S̄ + S̄/S∗).

Recall that S∗ = 1, Ī + P̄ + T̄ ≤ 1, and 0 ≤ ψ ≤ 1 so that (1 − ψ)S∗ +
ψ(1 − Ī − P̄ − T̄ ) ≤ 1. Therefore, if Rc ≤ 1, dL0/dt ≤ 0 for all S̄, Ī, P̄ , T̄ > 0.
The equality dL0/dt = 0 holds only (a) at the infection-free equilibrium E0 or (b)
when Rc

[
(1− ψ)S∗ + ψ(1− Ī − P̄ − T̄ )

]
= 1 and S̄ = S∗. The latter case implies

Ī = P̄ = T̄ = R̄ = 0 because

1 ≥ S̄ + Ī + P̄ + R̄+ T̄ = S∗ + Ī + P̄ + R̄+ T̄

= 1 + Ī + P̄ + R̄+ T̄ .

Therefore, the largest compact invariant subset of the set

M =

{
(S̄, Ī, P̄ , R̄, T̄ ) ∈ D :

dL0

dt
= 0

}
is the singleton {E0}. By the the LaSalle’s Invariance Principle [28], the infection-
free equilibrium E0 is globally asymptotically stable if Rc ≤ 1.

The relevant submatrix of the Jacobian matrix of the system (4) evaluated at
the infection-free equilibrium E0 is

J =

 β − (µ+ σ + ε) πβ βχπ
ε −(µ+ δ + τ) ρ
0 τ −(µ+ ρ+ θ)


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The determinant of J (which is equal to the product of the three eigenvalues of
J) is (ε + µ + σ)[(δ + µ)(θ + µ + ρ) + (θ + µ)τ ] (Rc − 1). If Rc > 1, at least one
of the eigenvalues of the Jacobian matrix evaluated at E0 has a positive real part.
Therefore, the infection-free equilibrium E◦ is unstable when Rc > 1.

3.3. Existence of endemic equilibrium. To explore the existence of endemic
equilibrium, we set the right hand side of system (2) to zero, solve in terms of λ̄,
and substitute the result in the equation for λ̄. Thus, the non-zero equilibria of the
model satisfy the following quadratic equation (in terms of λ∗∗)

a2λ
∗∗2 + a1λ

∗∗ + a0 = 0,

where

a2 = [(δ + ε+ µ)(θ + µ+ ρ) + (ε+ θ + µ)τ ]ψ,

a1 = [(δ + ε+ µ)(θ + µ+ ρ) + (ε+ θ + µ)τ ] (γ + µψ)

+(ε+ µ+ σ) [(δ + µ)(θ + µ+ ρ) + (θ + µ)τ ] (1− ψRc) ,
a0 = (γ + µ)(ε+ µ+ σ) [(δ + µ)(θ + µ+ ρ) + (θ + µ)τ ] (1−Rc) .

Depending on the values of the parameters, this equation has one or two real solu-
tions. The coefficient a2 is always positive, and a0 is positive (negative) if Rc is less
than (greater than) unity. If Rc > 1, the quadratic equation has only one positive
solution regardless of the value of a1. If Rc ≤ 1, a1 is positive and a0 is nonnegative.
In this case (i.e., Rc ≤ 1), the quadratic equation has no positive solution. Hence,
the following result is established.

Theorem 3.2. If Rc ≤ 1, there is no positive endemic equilibrium and the infection-
free equilibrium is the only equilibrium. If Rc > 1, there exists a unique positive
endemic equilibrium.

3.4. Stability of endemic equilibrium. Because the bifurcation parameter Rc
is independent of ψ, and hence ψ does not affect the qualitative behavior of the
model (4), the stability of endemic equilibrium is studied under the simplifying
assumption that partial immunity is fully protective (i.e., ψ = 0). The implied
model structure is SIR with a chronic infection state. Under this assumption the
endemic equilibrium simplifies to

E1 = (S∗∗, I∗∗, P ∗∗, T ∗∗)

=

(
1

Rc
,

µ (Rc − 1)

(ε+ µ+ σ)Rc
,
εµ(θ + µ+ ρ) (Rc − 1)

K(ε+ µ+ σ)Rc
,

εµτ (Rc − 1)

K(ε+ µ+ σ)Rc

)
,

where K = (δ + µ)(θ + µ+ ρ) + (θ + µ)τ .

Theorem 3.3. The endemic equilibrium E1 of model (4) with ψ = 0 is globally
asymptotically stable whenever it exists.

Proof. Consider the Lyapunov function

L1 = S̄ − S∗∗ − S∗∗ ln
S̄

S∗∗ + Ī − I∗∗ − I∗∗ ln
Ī

I∗∗

+Aπ

{
(µ+ ρ+ θ + χτ)(P̄ − P ∗∗ − P ∗∗ ln

P̄

P ∗∗ )

+ [χ(µ+ δ + τ) + ρ](T̄ − T ∗∗ − T ∗∗ ln
T̄

T ∗∗ )

}
,
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where A is as defined before. This function is defined, continuous, and positive for
all S̄, Ī, P̄ , T̄ > 0. It can be verified that the function L1 takes the value L1 = 0 at
the equilibrium point E1, and thus, the global minimum of L1 occurs at the endemic
equilibrium E1.

The time derivative of L1 along the solutions of system (4), using the equilibrium
relations, is

dL1

dt
= (1− S∗∗

S̄
)(µS∗∗ + βI∗∗S∗∗ + βπP ∗∗S∗∗ + βπχT ∗∗S∗∗ − µS̄ − βĪS̄

−βπP̄ S̄ − βπχT̄ S̄) + (1− I∗∗

Ī
)
(
βĪS̄ + βπP̄ S̄ + βπχT̄ S̄ − βS∗∗Ī

−βπP ∗∗S∗∗ Ī

I∗∗
− βπχT ∗∗S∗∗ Ī

I∗∗

)
+πA(µ+ ρ+ θ + χτ)(1− P ∗∗

P̄
)

(
εĪ + ρT̄ − εI∗∗ P̄

P ∗∗ − ρT
∗∗ P̄

P ∗∗

)
+πA[χ(µ+ δ + τ) + ρ](1− T ∗∗

T̄
)

(
τP̄ − τP ∗∗ T̄

T ∗∗

)
.

Simplifying and collecting terms yield

dL1

dt
= (µS∗∗ + βI∗∗S∗∗) (1− S∗∗

S̄
)(1− S̄

S∗∗ )

+βπP ∗∗S∗∗
(

2 +
P̄

P ∗∗ −
S∗∗

S̄
− Ī

I∗∗
− I∗∗P̄ S̄

ĪP ∗∗S∗∗

)
+βπχT ∗∗S∗∗

(
2 +

T̄

T ∗∗ −
S∗∗

S̄
− Ī

I∗∗
− I∗∗T̄ S̄

ĪT ∗∗S∗∗

)
+πA(µ+ ρ+ θ)εI∗∗(1− P ∗∗

P̄
)(

Ī

I∗∗
− P̄

P ∗∗ )

+πAχτεI∗∗(1− P ∗∗

P̄
)(

Ī

I∗∗
− P̄

P ∗∗ )

+πAχτρT ∗∗(1− P ∗∗

P̄
)(

T̄

T ∗∗ −
P̄

P ∗∗ )

+πA(µ+ ρ+ θ)ρT ∗∗(1− P ∗∗

P̄
)(

T̄

T ∗∗ −
P̄

P ∗∗ )

+πAτχ(µ+ δ + τ)P ∗∗(1− T ∗∗

T̄
)(

P̄

P ∗∗ −
T̄

T ∗∗ )

+πAρτP ∗∗(1− T ∗∗

T̄
)(

P̄

P ∗∗ −
T̄

T ∗∗ ).
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Because βπP ∗∗S∗∗ = πA(µ+ ρ+ θ)εI∗∗ and (µ+ ρ+ θ)T ∗∗ = τP ∗∗, we have

dL1

dt
= (µS∗∗ + βI∗∗S∗∗)

(
2− S∗∗

S̄
− S̄

S∗∗

)
+βπP ∗∗S∗∗

(
3− S∗∗

S̄
− P ∗∗Ī

P̄ I∗∗
− I∗∗P̄ S̄

ĪP ∗∗S∗∗

)
+βπχT ∗∗S∗∗

(
2 +

T̄

T ∗∗ −
S∗∗

S̄
− Ī

I∗∗
− I∗∗T̄ S̄

ĪT ∗∗S∗∗

)
+πAχτεI∗∗

(
1− P̄

P ∗∗ +
Ī

I∗∗
− P ∗∗Ī

P̄ I∗∗

)

+πAχτρT ∗∗
(

1− P̄

P ∗∗ +
T̄

T ∗∗ −
P ∗∗T̄

P̄ T ∗∗

)
+πAτχ(µ+ δ + τ)P ∗∗

(
1 +

P̄

P ∗∗ −
T̄

T ∗∗ −
T ∗∗P̄

T̄P ∗∗

)
+πAρτP ∗∗

(
2− P ∗∗T̄

P̄ T ∗∗ −
T ∗∗P̄

T̄P ∗∗

)
.

Also, (µ+ δ + τ)P ∗∗ = εI∗∗ + ρP ∗∗. Thus,

dL1

dt
= (µS∗∗ + βI∗∗S∗∗)

(
2− S∗∗

S̄
− S̄

S∗∗

)
+βπP ∗∗S∗∗

(
3− S∗∗

S̄
− P ∗∗Ī

P̄ I∗∗
− I∗∗P̄ S̄

ĪP ∗∗S∗∗

)
+βπχT ∗∗S∗∗

(
2 +

T̄

T ∗∗ −
S∗∗

S̄
− Ī

I∗∗
− I∗∗T̄ S̄

ĪT ∗∗S∗∗

)
+πAχτεI∗∗

(
2− T̄

T ∗∗ +
Ī

I∗∗
− P ∗∗Ī

P̄ I∗∗
− T ∗∗P̄

TP ∗∗

)
+πAρτ(P ∗∗ + χT ∗∗)

(
2− P ∗∗T̄

P̄ T ∗∗ −
T ∗∗P̄

T̄P ∗∗

)
.

Because βπχT ∗∗S∗∗ = πAχτεI∗∗, we finally have

dL1

dt
= (µS∗∗ + βI∗∗S∗∗)

(
2− S∗∗

S̄
− S̄

S∗∗

)
+βπP ∗∗S∗∗

(
3− S∗∗

S̄
− P ∗∗Ī

P̄ I∗∗
− I∗∗P̄ S̄

ĪP ∗∗S∗∗

)
+βπχT ∗∗S∗∗

(
4− S∗∗

S̄
− P ∗∗Ī

P̄ I∗∗
− T ∗∗P̄

T̄P ∗∗ −
I∗∗T̄ S̄

ĪT ∗∗S∗∗

)
+πAρτ(P ∗∗ + χT ∗∗)

(
2− P ∗∗T̄

P̄ T ∗∗ −
T ∗∗P̄

T̄P ∗∗

)
≤ 0.

The terms between the larger brackets are less than or equal to zero by the inequal-
ity: the geometric mean less than or equal to the arithmetic mean. It should be
noted that dL1/dt = 0 holds if and only if (S̄, Ī, P̄ , T̄ ) take the equilibrium val-
ues (S∗∗, I∗∗, P ∗∗, T ∗∗). Therefore, by the the LaSalle’s Invariance Principle the
endemic equilibrium E1 is globally asymptotically stable.
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4. Quantitative analysis of the model. In this section, we use realistic sets of
parameters to assess the public health impact of treatment for chronic HCV infection
using pegylated interferon plus ribavirin. The model considers HCV transmission
in a high-risk population. In the United States, the most common mode of HCV
transmission is injecting-drug use [12]. Although many currently infected HCV
patients contracted the virus through blood transfusions in the 1970s and 1980s,
post-transfusion HCV transmission has become a rare event after the implementa-
tion of effective screening programs of the blood supply for the presence of HCV
in the 1990s. Because blood transfusion rarely accounts for recently acquired in-
fections and other modes are relatively less important and/or not well-defined, the
quantitative analysis focuses on HCV transmission among currently injecting drug
users.

4.1. Parameters values. The baseline parameter estimates are summarized in
Table 1. The baseline values were derived as follows. The removal rate µ consists
of natural death and cessation of high-risk activity (e.g., injecting drug use). We
set the natural death to 0.02 per year, implying that the average life expectancy of
this population is 50 years. Estimates of the duration of injecting drug use vary,
ranging from 8 to 41 years [29]. We assume that it is 14 years [15]. Thus, µ = 0.09
(= 0.02 + 0.07) per year.

According to data from the National Household Survey on Drug Abuse an esti-
mated 440,000 persons reported IDU within the past year during the period 1979–
2002 [6]. Assuming a steady state, this implies Λ = 39, 600 per year.

The rate of recovery from acute infection σ is estimated at 0.5 per year and the
rate of progression to chronic infection ε at 1.5 per year, which is equivalent to a
mean duration of acute infection of 6 months and an overall rate of clearance of
25% [51]. The rate of recovery from chronic infection δ is estimated at 0.002 per
year [8].

Reinfection occurs in approximately 50% of IDU who previously spontaneously
controlled primary HCV infection, suggesting a ψ value of 0.5 [42]. Another study
found that the odds of developing infection among persons previously cleared HCV
infection compared with those infected for the first time is 0.23 (confidence interval,
0.10–0.51) [25]. Also, rates of viral clearance among reinfected patients are approx-
imately 3.3 times faster than rates of clearance of primary infections [42]. Thus, we
can assume α = η = 3.3, and κ = 1/3.3.

Rate of antibody loss is low. One study estimated it at 0.6 per 100 person-years
whereas another study found that antibodies were undetectable in 50% of patients
18–20 years after recovery [1, 46]. Thus, γ can range from 0.006 to 0.035. We choose
the average of the two estimates and assume the average life span of antibodies is
four decades (γ = 0.025).

Mainly because of lack of diagnosis and follow up, only a minority of chronically
infected patients receive treatment. Estimates of annual treatment rates among
IDUs in the US are as low as <1% [37]. Other estimates from other US populations
vary from 2.6% of all prevalent cases to 11.8% among prevalent diagnosed cases
[11, 48]. Because more than half of chronic infections are not diagnosed, an assumed
value of τ and φ of 4% lies in the middle of the range of estimates of treatment
rates.

The duration of treatment and its success depend on the regimen type. The
combination of a pegylated interferon alfa and ribavirin is recommended for 48
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weeks, with patients who have detectable HCV-RNA after 24 weeks stopping treat-
ment [24]. To simplify we assume that all failures occur by week 24. Denoting
the proportion failing treatment by f , average treatment duration is calculated as
24f + 48(1 − f) weeks. The probability of achieving an SVR (i.e., considered per-
manently cured) using the combination of a pegylated interferon alfa and ribavirin
in treatment-näıve patients (1−f) is approximately 45%. Thus, the mean duration
of treatment is 34.8 (=0.55*24+0.45*48) weeks. Noting that θ+ ρ is the reciprocal
of the mean duration of treatment in years (1 year = 52 weeks), we have

θ + ρ =
52

24f + 48(1− f)

or θ+ ρ = 1.49 per year. Because duration of treatment is assumed to be exponen-
tially distributed, the probabilities of success and failure are related to the rates ρ
and θ according

1− f =
θ

θ + ρ

(
1− e−(θ+ρ)48/52

)
,

f =
ρ

θ + ρ

(
1− e−(θ+ρ)48/52

)
.

These two equations yield θ = (1− f)(θ + ρ) and ρ = f(θ + ρ). We assume ρ = ζ.
Using the formula for θ + ρ, and relating the 3 parameters to the probability of
failing to achieve SVR f , we have

θ =
52(1− f)

48(1− f) + 24f
,

ρ = ζ =
52f

48(1− f) + 24f
.

This gives θ = 0.67 (=0.45*1.49) and ρ = 0.82 for the base case. In the uncertainty
analysis, variability in θ, ρ, or ζ results from varying f only.

The infectivity of patients during the chronic phase of infection relative to acute
infection is not known. One can use the relative magnitude of HCV RNA titers
during the two phases to postulate how much infectivity falls during the chronic
phase. This may be supported by some of the studies that have established a
direct correlation between serum HCV viral titers and risk of HCV transmission
[41]. One study found that the odds of HCV transmission increase by 1.05 fold
for each 105 increase in HCV viral load [21]. Risk modeling can also be used to
predict the probability of viral transmission from a single transfusion given viral
load of the donor [49]. Here we make simple assumptions regarding the relative
infectivity of persons in classes I, P , W , V , T , and Q. According to data from
animal experiments, chronic phase plasma may be 75- to 100-fold less infectious
than acute phase plasma [31]. Thus , we assume π = 0.01. Experimental data from
reinfection of chimpanzees that have cleared HCV suggest that viremia levels are six
to seven log fold lower compared with viremia levels during primary infection [33].
Thus, we assume ν = ω = 1/6.5. Because about half of patients on treatment with
pegylated interferon alfa and ribavirin have undetectable HCV-RNA, we assume
that they are 50% less infectious compared with untreated patients in the chronic
phase. Thus, χ = 0.5.

Estimates of the contact rate β can be inferred from data on incidence and sero-
prevalence of HCV among IDUs in the absence of widespread treatment. Estimates
of HCV seroprevalence in the US vary widely, ranging from 18% to 90% [2]. Also,
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HCV incidence among IDUs was high in the 1990s (10%–35% per year), but appears
to have declined over the last decade. We use a recent estimate for seroprevalence
of 34% [2]. The contact rate implied by the chosen baseline parameters and sero-
prevalence rate is β = 2.68. This yields a basic reproduction number R0 of 1.49.
The implied R0 value is similar to other estimates in the literature [36, 43].

All parameters are included in the uncertainty and sensitivity analyses [9]. Be-
cause of lack of data to inform the choice of the distribution of parameters values,
we assumed all parameters are uniformly distributed, with range of values given
by ±10% of the baseline values. Uncertainties in the reinfection and treatment pa-
rameters (ασ, ηδ, κε, ωπ, χπ) are propagated through uncertainties in the relative
parameters (α, η, κ, ω, χ) as well as the primary infection parameters (σ, δ, ε, π,
π).

Most influential parameters are determined by calculating the partial rank corre-
lation coefficient (PRCC) between each input parameter and the measure of public
health impact [9, 34]. A higher absolute value of PRCC indicates a strong rela-
tionship between that parameter and the variable of interest. The nature of the
qualitative relationship between each input and each variable is determined by the
sign of the PRCC.

4.2. Numerical simulations. Using the baseline parameters values in Table 1, we
numerically solve the model (1) assuming the system is initially in a steady state
before treatment. Figures 2 and 3 show the reductions in incidence and prevalence
relative to pretreatment values for three values of the reinfection parameter ψ: 0,
0.5, and 1. With low and baseline values of ψ, both HCV incidence and prevalence
fall following treatment. The results also reveal that with high values (in this case
ψ = 1), treatment can result in higher HCV incidence (Figure 2). This is because,
by curing chronically infected patients, treatment increases the pool of susceptibles
especially if ψ is high. However, despite the increase in incidence following treat-
ment, HCV prevalence is lower (Figure 3). This is important because it is chronic
infection that leads to disease, not acute infection. Thus, we may have situations
where treatment increases incidence of HCV infections, but results in lower overall
HCV prevalence and fewer cases of HCV-related disease.

The uncertainty in the results of the public health impact of treatment is sum-
marized in plots of the cumulative number of infections prevented and % reduction
in prevalence compared with no treatment as a function of time since initiation of
treatment (Figures 4, 5). There is wide variation in the estimates of impact over
time. For example, the cumulative number of infections prevented over 30 years
ranges from –12,151 (indicating an increase in the number of cases) to 19,381. The
mean number of cases prevented is 4,000. The cumulative number of infections
prevented over 30 years is positive in 78.5% of the 10,000 simulations. Likewise, the
mean % reduction in prevalence is 15.2% (range: 10.4–23%). All simulations show
positive reduction in prevalence (Figure 5).

The sensitivity analysis identifies the most influential parameters in the impact of
treatment by calculating PRCC between each input parameter and the two measures
of public health impact (Table 2). Of all 18 parameters, 14 are highly influential in
determining the cumulative number of infections prevented over 30 years. Also, the
% reduction in prevalence is highly influenced by all parameters, with the exception
of Λ, κ, ω, η, and φ. The cumulative number of infections prevented increases with
higher values of ε, σ, π, τ , Λ, α, and κ; and decreases with higher values of β, ψ, µ,
γ, f , ν, and χ. The ranking (from high to low) of relative importance (as measured
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by the magnitude of the absolute value of PRCC) of each input in influencing the
number of infections prevented is: β, ε, σ, π, ψ, µ, γ, τ , Λ, f , ν, χ, α, and κ. The
ranking of each input in influencing the % reduction in prevalence is: f , β, τ , µ, ε,
σ, π, γ, ψ, α, ν, δ, and χ. Of note is the lack of association between public health
impact and treatment uptake among chronically reinfected persons φ. This is due
to the assumption that chronic reinfection has higher spontaneous viral clearance
rate and lower infectiousness compared with primary chronic infections. The highly
significant influence of treatment failure on the % reduction in HCV prevalence indi-
cates that treatment regimens with better efficacy holds great promise for lowering
the public health burden of HCV disease.

Figure 2. Simulated % reductions in incidence as a function of
time with three values of the reinfection parameter ψ: top black
curve (no reinfection, ψ = 0), middle dashed curve (baseline, ψ =
0.5), bottom gray curve (no immunity, ψ = 1).

5. Discussion. This paper presents a deterministic mathematical model of HCV
infection transmission in a homogeneously mixing population. The model includes
realistic features of HCV transmission such as partial immunity and reinfection. We
derive explicit formula for the reproduction numbers that characterizes whether the
epidemic will be contained following treatment or not. The importance of various
properties of antiviral therapy in determining the impact of treatment was analyzed
using a summary measure derived from the reproduction numbers.

By constructing suitable Lyapunov functions, we are able to resolve the global
stability of system (4). We prove that the global dynamics of this model are deter-
mined by the reproduction number Rc. If Rc is less than unity, there is a unique
infection-free equilibrium which is globally asymptotically stable. For Rc greater
than unity, the infection-free equilibrium is unstable, and there is a unique endemic
equilibrium which is globally asymptotically stable. However, the task of establish-
ing the global stability of equilibria of the full model (1) is left for future research.

The paper addresses a number of key issues related to the epidemiologic conse-
quences of treatment. Valuable insights are obtained from the numerical analysis
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Figure 3. Simulated % reductions in prevalence as a function of
time with three values of the reinfection parameter ψ: top black
curve (no reinfection, ψ = 0), middle dashed curve (baseline, ψ =
0.5), bottom gray curve (no immunity, ψ = 1).

Figure 4. Range of cases of infection prevented as a function
of time: top black curve (95% percentile), middle dashed curve
(mean), bottom gray curve (5th percentile). The shaded area in-
dicates the range of infections prevented from 10,000 Monte Carlo
simulations.

of the model. It is shown that depending on the values of the reinfection parameter
ψ, HCV incidence can rise or fall following treatment. However, regardless of the
value of ψ HCV prevalence is lower compared with the case without treatment.
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Figure 5. Range of % reductions in prevalence as a function
of time: top black curve (95% percentile), middle dashed curve
(mean), bottom gray curve (5th percentile). The shaded area in-
dicates the range of % reductions in prevalence from 10,000 Monte
Carlo simulations.

The model could be elaborated to take into account other factors that are impor-
tant for the transmission of HCV infection. Such risk factors include age and het-
erogeneity of mixing between different types of IDUs. Other major modes of HCV
transmissions such as unsafe therapeutic injections and transfusions, especially in
developing countries, were also excluded from the model. Further, the model does
not incorporate some important aspects of the natural history of HCV infection
and HCV-related diseases. It is well known that chronic infection with HCV leads
to many diseases, including cirrhosis and hepatocellular carcinoma. Most of these
diseases progress through different stages with rates of progression and disease-
induced mortality varying by stage. A natural extension of this work is to include
heterogeneity in mixing between different social groups and allow for progression of
infection along various disease states.

The standard of care for patients with chronic HCV infection is antiviral therapy
with pegylated interferon alfa and ribavirin. Despite its demonstrated clinical ben-
efits antiviral dual therapy has its limitations because of modest efficacy and the
risk of severe adverse events. Two first-generation HCV protease inhibitors, to be
used in combination with pegylated interferon and ribavirin, were approved for the
treatment of chronic hepatitis C genotype 1 infection in 2011 [23]. Several antiviral
therapy candidates with potentially better product profiles are currently in develop-
ment [20]. In part because of advances in HCV care and treatment, the Centers for
Disease Control and Prevention (CDC) has expanded its risk-based (e.g., history
of injection-drug use) HCV testing recommendations, to include any person born
during the years 1945–1965 [14].

This study provides useful tools for assessing the effectiveness and analyzing the
potential population level impact of treatment. The study highlights important key
parameters to be considered in assessing the public health impact of treatment.
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Parameter Infections % reduction
prevented in prevalence

Contact rate, β – 0.97 – 0.91
Rate of progression to chronic infection, ε 0.95 0.88
Recovery from acute infection, σ 0.77 0.56
Relative infectivity of chronic infection, π 0.44 0.24
Relative susceptibility of recovered population, ψ – 0.43 – 0.14
Death or retirement rate from the population, µ – 0.36 – 0.88
Rate of waning immunity, γ – 0.30 – 0.22
Treatment rate of chronically infected population, τ 0.27 0.89
New recruits into the population, Λ 0.24 0.01∗

Treatment failure rate, f – 0.24 – 0.92
Relative infectivity of acute reinfection, ν – 0.17 – 0.07
Relative infectivity of treated population, χ – 0.11 – 0.05
Recovery from acute reinfection, α 0.11 0.11
Relative rate of progression to chronic reinfection, κ 0.04 0.00∗

Relative infectivity of chronically reinfected – 0.01∗ 0.02∗

population, ω
Treatment rate of chronically reinfected – 0.01∗ – 0.02∗

population, φ
Relative rate of recovery from chronic reinfection, η – 0.01∗ 0.00∗

Recovery from chronic infection, δ 0.00∗ – 0.05
Table 2. The partial rank correlation coefficients (PRCC) mea-
suring the association between the input values of the parameters
and cumulative cases prevented and percent reduction in preva-
lence over 30 years with 10,000 Monte Carlo simulations. The (*)
indicates that the association is not statistically significant at the
confidence level of 5 percent or lower.
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