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Abstract. In this paper we introduce a new growth model called T growth
model. This model is capable of representing sigmoidal growth as well as

biphasic growth. This dual capability is achieved without introducing addi-

tional parameters. The T model is useful in modeling cellular proliferation or
regression of cancer cells, stem cells, bacterial growth and drug dose-response

relationships. We recommend usage of the T growth model for the growth
of tumors as part of any system of differential equations. Use of this model

within a system will allow more flexibility in representing the natural rate of

tumor growth. For illustration, we examine some systems of tumor-immune
interaction in which the T growth rate is applied. We also apply the model to

a set of tumor growth data.

1. Introduction. In biomedical sciences, the analysis of growth is usually charac-
terized by a rate at which the population size changes. The choice of an appropriate
growth model is an integral part of the analysis of the biological systems and will
eventually aide the researcher in having a better understanding of the interaction
between tumor cells and immune cells as well as the effect of different treatments
on cancer growth or inhibition.

Foreign or invader cells found within the body will provoke an automatic immune
response from the immune system. Although malignant cancer cells have developed
from the cells produced in the body, the immune system is often able to recognize
these cells as harmful due to the expression of antigens on the cell surface. Triggering
this immune response against the cancer cells enlists the resources of the immune
system into the effort to eradicate the tumor. While in certain cases this immune
response may be enough to eliminate all of the tumor cells, in many cases the
tumor continues to grow, although its progress has been inhibited by the immune
response. This potential to trigger an immune response which can either retard the
growth of the tumor or eradicate it entirely makes immunotherapy an important
area in the treatment of malignant cancers. We are particularly concerned with
relations between the tumor cell rate of growth and the response of the effector
cells. When representing the overall rate of growth of a tumor, it is important
to account for the immune response. And when designing therapies to combat the
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tumor growth, it may be helpful to use the perspective of supplementing the natural
immune response.

Among the numerous uses of mathematics in the modeling of cancer, the ap-
proach which uses systems of ordinary differential equations to model the inter-
actions among tumor cells and immune cells has been the focus of much work in
the previous decades. This approach is particularly well suited to modeling of the
tumor immune interactions, and these models have proven successful in represen-
tation of important aspects of the underlying biological events and in achieving a
deeper level of understanding. We note that use of systems of ODEs to model the
interaction of tumors with the immune system and the associated immunotherapy
has a basis primarily in two aspects of these models. First the systems use multiple
variables to represent the interacting cells, and appropriate terms to represent these
interactions. The second point is that the use of differential equations is based upon
the understanding that the temporal dynamics of tumor growth are determined by
an accurate representation of the rate of growth. This approach using systems of
ODEs allows the rates to be determined using all of the variables in the system.

An early model of the dynamics of immune tumor interactions was given in
Kuznetsov, et al. (1994), and a nice extension to three variables can be found in
Kirschner and Panetta (1998). Beyond the variables in the system, sometimes terms
representing particular therapies, such as chemotherapy or immunotherapy, can also
be included. This direction of modeling has progressed in numerous directions,
modeling important biological issues including issues such as evasion of the immune
response, the effects of various therapies, and the role of myeloid cells in specific
immune responses. The model of Simeoni et al. (2004) studies tumor growth
dynamics in relation to varying regimens, schedules, and dosages of anti-cancer
drugs. The newer approach of treating cancer through virotherapy has also been
modeled by Bajzer, et al. (2008), and the work of Dingli, et al. (2006) extends to
a combined treatment with radiation and virotherapy. The study of Feizabadi and
Witten (2010) investigates the effects of chemotherapy on a system incorporating
both tumor cell growth and the effects of aging. Immunotherapies also play an
important role in improving the cancer immune response, and the paper of Kirschner
and Panetta (1998) studies the dynamics between tumor cells, effector cells, and IL-
2, explaining both short term oscillations and long term relapse. The more recent
paper of Cappuccio, et al. (2006) produces a mathematical model studying the
effects of IL-21 on elimination of a tumor through action of NK and CD8+ T cells.

One recent model DeConde, et al. (2005) represents the immune-tumor dynam-
ics after bone marrow transplant in leukemia patients that models the effect of
transplanted stem cells and that accounts for the progression of cells through dif-
ferent modes of behavior. The study of tumor-immune interactions in the model of
Arciero, et al. (2004) includes the level of antigenicity of the tumor, as well as the
dual influence of TGF-â in stimulating tumor growth and inhibiting the immune
response. The study of Kareva, et al. (2010) deals with the role of myeloid cells in
activating a specific immune response, and this model includes the inhibitory effect
of tumor growth on the maturation of myeloid cells, thus diminishing the immune
response as the tumor develops.

Another important direction in this field of research is the application of opti-
mal control theory to these systems. The work of Burden, et al. (2004) applies
optimal control theory to a system representing immunotherapy with IL-2 to better
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understand conditions under which the tumor can be eliminated. The work of Cas-
tiglione and Piccoli (2006) applies optimal control to find an optimal schedule for
delivery of immunotherapy. The work of Ledzewicz, et al. (2011) applies optimal
control to a system representing cancer-immune interactions under chemotherapy
and address the problem of moving from initial conditions in the malignant state
space into the benign region. The work of d’Onofrio, et al. (2009) applies opti-
mal control to a mathematical model for a combined treatment with chemotherapy
and an angiogenic inhibitor, and a similar problem is studied in Ledzewicz, et al.
(2011). Another study of Schättler, et al. (2011) demonstrates that the optimal
control problem for minimizing tumor volume in a class of models using tumor
anti-angiogenesis give optimal controls that are robust with respect to variation in
the modeling of vascular support. We mention that for the type of optimal control
minimizing tumor volume, as mentioned in the above papers, the assumed rate of
growth for the tumor cells plays an important role.

Although the models mentioned above have studied the effects of adjusting indi-
vidual terms or inclusion of additional terms, there remains the possibility to adjust
the assumptions in these models for the rates of growth for individual tumors. It
is well known, for instance, that the use of exponential versus logistic growth as-
sumptions can have a considerable effect upon the behavior of a system. Our focus
in this paper will be the effects of use of alternative assumptions for tumor growth
in a simple system, such as the two by two system in Kuznetsov, et al. (1994). We
note that the paper of Ledzewicz, et al. (2011) also considers a model of tumor
growth with a wider range of growth rates, including cases of Gompertzian or lo-
gistic form, while the model of de Vladar and González (2004) explores the value
of Gompertzian growth assumption within a system. Our primary concern will be
treatment of one such representative system in which the T model of growth is used.
The T model of growth is first introduced in the current article, in Section 2 below,
and the ability to represent sigmoidal or biphasic growth, the potential for multiple
points of inflection, and flexibility in location of any point of inflection are some
important features of this T model of growth. This novel model is directly related
to the hyperbolastic growth models H1, H2, and H3 of Tabatabai, et al. (2005), and
we also consider briefly the use of these models within a system for immune and tu-
mor dynamics. The motivation for inclusion of the hyperbolastic or the T model for
the growth rate in a system of ODEs is the exploration of tumor-immune dynamics
for these models which have demonstrated their accuracy in the representation of
cellular growth.

The hyperbolastic models H1 to H3 were introduced by Tabatabai, et al. (2005)
in the context of developing models with more versatility in representing actual
growth rates from experimental data. The models have proven to be highly accu-
rate in the representation of biological growth, with close approximations to exper-
imental results. These models have been particularly accurate in representation of
cellular growth, such as growth of tumor cells in Eby, et al. (2010) or growth of
stem cells Tabatabai, et al. (2011). Inclusion of these models in the system will
allow exploration of the effects for the tumor-immune dynamics.

The new model of growth which we first present in this paper is also designed
to be versatile in representing actual growth rates for experimental data, but in
this case the primary goal is to represent the biphasic characteristic sometimes
observed in growing tumors. Use of appropriate ranges for the parameters in this
model makes possible the representation of biphasic growth. Biphasic growth is
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not uncommon to observe in tumors and can occur due to a temporary decrease
in growth rate. It is observed, for instance in the study of Yuri, et al. (2006) that
human breast carcinoma cells have a biphasic response to zeranol. The study of
Tao, et al. (2008) on the murine tumor cell line 4T1 which exhibits the capacity
to metastasize, observes biphasic growth with regression of growth associated with
necrosis and infiltration of leukocytes. In the study of Takeda, et al. (2006) a
biphasic effect is noticed in the growth of CD34+ hematopoietic cells treated with
NUP98-HOXA9, which is attributed to a rise in the number of self-renewing cells.
Clearly biphasic growth is a common occurrence in tumor growth, and introduction
of this new model into the systems of ODEs will allow us to study its effects within
the tumor-immune dynamics.

2. T growth model. The T growth model has an equation of the form

S(x) =
M

1 + αExp[− sinh(βx)]
(1)

where S(x) is the population size, M and β representing carrying capacity and
intrinsic growth rate respectively. The parameter α and M are positive. For x=0,
α can be interpreted as the number of times initial size S0 must grow to reach
its carrying capacity M. Taking the derivative of the equation (1) with respect to
variable x gives the growth rate in the form

dS(x)

dx
= βS(1 − S

M
)

√
1 +

[
ln

(
αS

M − S

)]2
(2)

with the initial condition S(x0) = S0, where the positive parameter α can be written
as

α =
(M − S0)Exp [sinh(βx0)]

S0

where sinh(·) is the hyperbolic sine function.
For β > 0, S(x) grows as x increases its value until it reaches its limiting point,

and

lim
x→∞

S(x) = M and lim
x→−∞

S(x) = 0

For β < 0, S(x) decays as x increases its value until it reaches zero, and

lim
x→∞

S(x) = 0 and lim
x→−∞

S(x) = M

The inflection point(s) x=x∗ of the growth function S(x) can be found by solving
the following equation:

exp [sinh(βx)] − α

exp [sinh(βx)] + α
= tanh(βx) sech(βx).

The doubling time xDouble from size S=S(x0) to size S=2S(x0) is given by the
equation

xDouble =
arcsinh

[
ln
(

2αS0

M−2S0

)]
β

,

where arcsinh(·) is the inverse hyperbolic sine function.
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Figure 1. Plot of the growth curve, derivative and acceleration
using T Model with parameters (M,α, β) = (3, 0.5, 1)

In general for the positive number k, the time required for the size S=S(x0) to
reach the size S=kS(x0) is denoted by xk and is formulated as

xk =
arcsinh

[
ln
(

kαS0

M−kS0

)]
β

.

For instance, if S0represents the volume of multi-cellular tumor sphere at time
x=x0, then xk gives the time required for the tumor size to reach from S0size to size
kS0. If k=0.50, then x0.50 gives the time required for the current size to reduce to
its half size.

The T growth model can be generalized as:

S(x) = k +
M − k

(1 + αExp [−θ sinh (β (x− h))])
1
δ

Where h and k are shift parameters, (θ, β)jointly represent the intrinsic growth
rate and δ is positive. In practice one may start with a T model which may only
involve in three parameters M, α, and β. Then if the fit is not good, we suggest
adding extra parameter or parameters if necessary.

Figures 1-3 show the graph of the functions S(x), S’(x) and S”(x) for different
values of parameters. The dotted curves represent the growth curve. The dashed
curve is the graph of the growth rate, or velocity. The solid curve is the acceleration
of growth.

3. Some tumor system models. Mathematical systems of differential equations
for cancers can assist the researchers to investigate the interaction of a growing
tumor with the body’s immune system. It can also help to discover the effect of
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Figure 2. Plot of the growth curve, derivative and acceleration
using Model with parameters (M,α, β) = (4, 1, 2)
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Figure 3. Plot of the growth curve, derivative and acceleration
using Model with parameters (M,α, β) = (3, 0.1, 1)
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different treatments on tumor growth or inhibition in interaction with the immune
system. The T growth model can be used to represent the tumor growth as part
of any system of differential equations which investigate tumor growth. Tumor
differential systems may involve only the immune system or it may involve in the
interaction of treatment(s) with tumor and immune system. The cancer system may
include only a single type of treatment such as radiation therapy, chemotherapy,
immunotherapy, hyperthermia, photodynamic therapy, or stem cell transplant such
as bone marrow, cord blood transplants or peripheral blood. The system may also
include a mixed combination of some of the above mentioned treatments.

Consider the nonlinear autonomous system of differential equations describing
the interaction between the effector cells and the tumor cells found in Kuznetsov,
et al. (1994). The effector cells are the activated immune system cells which are
responsible for eliminating the tumor cells. Let T be the population size of tumor
cells at time t and E be the size of the effector cells population at time t. Here
we assume that the tumor cell population grows according to the model (1). The
model is:

dT

dt
= βT

(
1 − T

M

)√
1 +

[
ln

(
αT

M − T

)]2
− c2ET (3)

dE

dt
= S1 +

rET

σ + T
− c1ET − dE.

The initial conditions are: E(0)=E0,T(0)=T0.Parameter r is the clearance rate
of tumor cells as the result of interaction between effector cells and tumor cells.
S1is the external effector cells source rate, d is the effector cells death rate, c1 is
the tumor deactivation rate, c2 is the effector kill rate of tumor cells and σis the
half-saturation for cancer clearance.

The equilibrium point(s) can be obtained by solving the following system of
equations:

βT

(
1 − T

M

)√
1 +

[
ln

(
αT

M − T

)]2
− c2ET = 0

S1 +
rET

σ + T
− c1ET − dE = 0.

To get a linear approximation for system (3) about the equilibrium point
(
E∪, TS

)
and for the purpose of analyzing the stability of the system (3) near the equilibrium
point, we have evaluated the Jacobian matrix which is given by:

β
(
M−2T+M ln( αT

M−T )+(M−2T )[ln αT
M−T ]

2
)
−M

√
1+[ln( αT

M−T )]
2
c2E

M
√

1+(ln( αT
M−T ))

2
−c2T

(rσ−(T+σ)2c1)E
(T+σ)2

−d+ rT
T+σ − c1T


The eigenvalues for model (3) can be obtained by solving the characteristic poly-

nomial equation.
For illustrative purposes we consider model (3) with arbitrarily selected param-

eter vector of the form: (M,α, r, σ, c1, c2, d, s1, β) = (3, 1, 3, 5, 0.3, 1, 0.2, 0.3, 0.5)

dT

dt
= 0.5T

(
1 − T

3

)√
1 +

[
ln

(
T

3 − T

)]2
− ET (4)

dE

dt
= 0.3 +

3ET

5 + T
− 0.3ET − 0.2E.



932 TABATABAI, EBY, SINGH AND BAE

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4. Phase diagram of T model

The initial conditions are arbitrary selected as: E(0)=0, T(0)=2.
For system (4) the equilibrium point is

(
E∪, TS

)
= (1.73416, 0.0934476) and its

associated Jacobian has numerical value

(
−0.53585 −0.0934476
0.482419 −0.172994

)
.

The characteristic polynomial equation is y2 + 0.708845y + 0.13778 = 0 and the
eigenvalues are (λ1, λ2) = (−0.354422 + 0.110294i,−0.354422 − 0.110294i).

The phase portrait for system (4) is given in figure 4. The equilibrium point
is a locally stable spiral because eigenvalues are complex conjugates with negative
real parts. Figure 5 shows the trajectory of model (4) when starting with the given
initial point and ending at the equilibrium point.

If one adds the size of the normal cells population to the model (3) it results in
the following three-population model of the form

dT

dt
= β1T

(
1 − T

M1

)√
1 +

[
ln

(
α1T

M1 − T

)]2
− c1ET − c2NT
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Figure 5. Trajectory of T model for (4)

dN

dt
= β2N(1 − N

M2
)

√
1 +

[
ln

(
α2N

M2 −N

)]2
− c3NT (5)

dE

dt
= c

4
+

c
5
ET

c6 + T
− c7ET − c8E,

with initial conditions E(0)=E0, T(0)=T0,N(0) = N0,and the model parameters
M1,M2, α1, α2, β1, β2, c1, ...c8. Again we assume that both normal cells N and the
tumor cells follow the T model (1). We suggest the usage of model (1) in systems in-
volving immunotherapy to boost the immune system to fight tumor cells. Kirschner
and Panetta (1998) is one good example of such a system. We recommend the usage
of model (1) for tumor growth in immunotherapy system which describes the inter-
action between the tumor cells, the effecter cells and cytokine interleukin-2 (IL-2).
The resulting model would have a form

dT

dt
= βT

(
1 − T

M

)√
1 +

[
ln

(
αT

M − T

)]2
− c1ET

c2 + T
(6)

dE

dt
= c

3
+ c4T +

c5EI

c6 + I
− c7E
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dI

dt
= c8 +

c
9
ET

c10 + T
− c11I,

where the model parameters are M, β,α ,c1, ...c11 and the initial conditions are:
E(0)=E0, T(0)=T0,I(0) = I0.

4. Example with tumor growth. In applying our model, we analyze data from
a recent study of Song, et al. (2011) exploring how RNA interference may be
used as a treatment to inhibit the growth of nasopharyngeal carcinoma cells. The
nasopharyngeal cancers form a common malignant tumor in Southern China for
which there are certain limitations or drawbacks to the usual treatments, such
as radiotherapy, chemotherapy, immune therapy, surgery, or traditional Chinese
medicine. In the search for new therapies, RNA interference technology has been
applied to genes involved in the nasopharyngeal caner. The work of Song, et al.
illustrates the potential to attain a greater combined effect when applying RNA to
silence multiple genes involved in the cancer, as compared to silencing only one.
Their results clearly show a significant effect in slowing the tumor growth for each
of the four target genes considered in the study: VEGF, C-myc, Survivin, and
hTERT. The case where all four of these genes were targeted by RNA interference
shows an even larger combined effect on the tumor growth. We mention that a
more in depth quantitative analysis of these growth rates of the tumors and the
effect of the treatments by RNA inference can be made using either the T-model of
this paper or the hyperbolastic model of Tabatabai, et al. (2005). We mention the
paper Eby, et al. (2010) in which the hyperbolastic model H3 was applied to give
a comparative analysis of tumor growth rates under several treatments, including
a combined treatment. See Figure 6, which illustrates the growth curves for the
tumor in the cases of no treatment, treatment of RNA interference with VEFG,
and the combined treatment in which the RNA interference targets all four genes
VEFG, C-myc, Survivin, and hTERT.

Although it is possible to represent the growth curves with any available growth
model, the accuracy of the representation will be affected by the model chosen and
how well it fits the data. The T-model was developed as a simple two parameter
model which is more flexible than the logistic model and thus will yield growth
curves better representing the data. One of the special features of the T-model is the
capability to represent biphasic data, which is not uncommon in cancer growth. In
the following we focus on the group representing treatment by RNA targeting VEGF
alone and make a comparison with the logistic growth model and the Gompertz
model, two other models commonly used to represent cancer growth.

In each of the cases of the logistic model, the Gompertz model, and the T-model,
the two parameters were estimated using nonlinear regression. Using SPSS we found
the parameter estimates that best fit the data and also the R2 values and the MSE
of the residuals, representing the accuracy of the model in representing the given
experimental data. The T-model had the most accuracy from among the group of
models tested, with significantly more accuracy than the other two. The logistic and
Gompertz models were on a comparable level, both yielding a reasonably accurate
representation of the data. The R2 for the T-model is 0.999, while the residual MSE
is 0.000. This compares to an R2 of 0.990 and residual MSE of 0.001 for logistic
and R2 of 0.980 and residual MSE of 0.002 for Gompertz. Thus, the T-model does
provide an increased level of accuracy with the same number of parameters for data
sets such as this one.
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Figure 6. Growth curves for Tumors in Cases of Control and RNA Interference
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Figure 7. Comparison of T-model with Logistic and Gompertz

With these parameter estimates, the growth curves representing the data are
given by the following functions. The T-model gives the function

PT (t) =
0.626

1 + 0.626−0.070
0.070 exp (− sinh(0.467t) + sinh(0.834))

,

while logistic and Gompertz give

PL (t) =
0.737

1 + 0.737−0.070
0.070 exp(−1.032(t− 2))

,
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and

PG (t) = 0.07 exp(−6.411(exp(−0.432t) − exp(−0.864))).

The comparison among these models is represented in Figures 7 and 8, and we can
easily see that both the logistic and Gompertz models have some variance between
the data points and the curve, while the curve for the T-model contacts the data
points. Clearly the T-model gives a more accurate representation and furthermore
gives a better overall representation of the shape of the growth curve.

5. Conclusion. The T growth model introduced in this paper follows the tradition
of the hyperbolastic growth models in which hyperbolic functions are introduced
into the growth model for the purpose of adding to the flexibility of the model and
enabling the model to represent certain patterns of growth common to biological
settings. This model is introduced with the dual goals of improving the represen-
tation of certain patterns of biological growth, particularly biphasic growth and
also the goal of providing a flexible but accurate growth model with a small num-
ber of parameters that can easily be incorporated as the growth assumptions in a
system of differential equations. In this context we are particularly interested in
systems representing tumor-immune interactions, but can function equally well in
other systems.

This new growth model displays a number of important characteristics that will
make it very useful for modeling in mathematical biology. This single model has the
ability to represent either sigmoidal or biphasic growth, and it is thus very flexible
to represent a variety of growth patterns that are common in tumor growth. This
increase in flexibility and in ability to accommodate both sigmoidal and biphasic
growth is achieved with the same number of parameters as the logistic and Gompertz
models of growth. As a consequence of the flexibility of this model, we find the
potential for multiple inflection points within the growth curves represented by the T
growth model. Furthermore, in contrast to the case of logistic growth assumptions,
there is flexibility in the location of these points of inflection. This flexibility in the
location of one or more inflection points provides the opportunity to analyze the
time of the maximum or minimum rate of change of number of cells and how it
relates to the underlying biological events. Overall we find an increased flexibility
in the patterns of growth in the curves represented by the T growth model, allowing
the model to accommodate different growth patterns, which is comparable to the
value of the hyperbolastic models in representing biological growth.

Our other goal in introducing the T model of growth is for inclusion as as-
sumptions for growth rate for tumor cells within a system of differential equations,
particularly those systems of ODEs representing the tumor-immune interactions.
Such growth assumptions allow for more flexibility of the model in accommodating
the natural rate of growth of the tumor while using the same number of parameters
as in logistic growth assumptions. This is in the same tradition as the hyperbolastic
growth models, which have been demonstrated to be more accurate than logistic
growth models for biological growth, for which the location of the point of inflection
requires more flexibility. In substituting the T model of growth into the growth as-
sumptions in a representative system, we were able to demonstrate how easily this
model can be applied in the standard analysis of equilibrium points and their sta-
bility and phase portrait analysis. Thus we present the T growth model for use
in systems as a tool that can assist in analysis of the effectiveness of treatments
represented in these systems.
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6. A sample SAS program for “T” model.
data growth;
input t p;
datalines;

2 0.0700
3 0.1306
4 0.3257
5 0.5413
6 0.6265
;
TITLE ‘T Model’;
PROC NLIN DATA=growth Method=marquardt;
*M: is the max of p:Population size;Bounds M>=0;
*t: time;
*initializing the parameters;
Parameters M=1 beta=.3;
p0=0.0700; t0=2; *initial volume size of p0=0.0700, initial time of t0=2 in this
example;
MODEL p=M/(1+(M-p0)*exp(sinh(t0*beta)-sinh(t*beta))/p0);
output out=growthb predicted=yp;
run;

*Scatter plot;
proc sgplot data=growthb noautolegend;
scatter y=p x=t;
series y=yp x=t;
run;

proc gplot data=growthb;
plot p*t yp*t/overlay;
symbol1 v=star c=blue I=none;
symbol2 v=none c=red I=spline;
run;
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