
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2013.10.777
AND ENGINEERING
Volume 10, Number 3, June 2013 pp. 777–786

EQUILIBRIUM SOLUTIONS FOR MICROSCOPIC STOCHASTIC

SYSTEMS IN POPULATION DYNAMICS

Miros law Lachowicz

Institute of Applied Mathematics and Mechanics
University of Warsaw

2, Banach Str., 02–097 Warsaw, Poland

Tatiana Ryabukha

Institute of Applied Mathematics and Mechanics

University of Warsaw

2, Banach Str., 02–097 Warsaw, Poland
and

Institute of Mathematics

National Academy of Sciences of Ukraine
3, Tereshchenkivs’ka Str., 01601, Kyiv-4, Ukraine

Abstract. The present paper deals with the problem of existence of equi-

librium solutions of equations describing the general population dynamics at

the microscopic level of modified Liouville equation (individually–based model)
corresponding to a Markov jump process. We show the existence of factorized

equilibrium solutions and discuss uniqueness. The conditions guaranteeing

uniqueness or non-uniqueness are proposed under the assumption of periodic
structures.

1. Introduction. In many animal societies individuals placed together in a group
enter into self–organizing process leading to the formation of hierarchies in domi-
nation (see [14] and references therein). Such process occurs through dominance–
subordination interactions (usually pairwise) between individuals. The interested
reader is addressed to mathematical and computer models that base on empirical
data in a primitive wasp society (Polistes dominulus) — see [14] and references
therein. The self-organizing processes involve a double reinforcement mechanism:
winners reinforce their probability of winning and losers reinforce their probability
of losing, see [5, 14, 15] and references therein.

This leads to the conclusion that the adequate mathematical model should take
into account the individual state and its time evolution. In other words the mi-
croscopic description becomes more satisfactory than the standard macroscopic de-
scription in terms of densities.

Similar situation may be observed in the case of cancer — immune system com-
petition when every entity (cell) may be characterized by a level of activity. The
microscopic model takes into account the individual states (activities) of interacting
entities of the system.
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In the simple situations of anonymous organisms a mathematical model at the
mesoscopic level — a nonlinear Boltzmann–type integro-differential equation —
describing the time evolution of the distribution of dominance parameter u ∈ [0, 1]
was proposed by Jäger and Segel [6] and related to a large population of bumble bees.
A Boltzmann–type equation for periodic functions was proposed in paper [7] for the
one–dimensional angular distribution in the context of angular self–organization of
the actin cytoskeleton in the process of instant changing of filament orientation in
the course of specific actin–actin interactions.

The mesoscopic population dynamics models were considered and extended to
various situations in biology, medicine and other applied sciences in [1, 2, 4, 9, 10, 11,
12] (see references therein). An interesting approach of modelling the competition
between cancer and immune system was proposed by Bellomo and Forni [3] (see
also [4]). The general bilinear equations of the Boltzmann–type were studied in [12]
(see also [9]).

In Refs. [9, 10, 11] a general framework for the program of finding possible
transitions between the different levels of description — microscopic (individually–
based) (Mi), mesoscopic (Me), and macroscopic (Ma) was discussed. The levels
are

(Mi) – the level of interacting entities (“micro–scale”), in mathematical terms of
jump Markov processes, that lead to continuous (linear) stochastic semigroups
that is related to the modified Liouville equation;

(Me) – the level of the statistical description of a test–entity (“meso–scale”), in
terms of continuous nonlinear semigroups related to the solutions of nonlinear
Boltzmann–type;

(Ma) – the level of densities of subpopulations (“macro–scale”), in terms of dy-
namical systems related to nonlinear systems of ODEs or reaction–diffusion
(–chemotaxis) equations.

Refs. [9, 10, 11] consider some important examples for various situations of bi-
ological interest, in particular a large class of models that correspond to ODEs of
Lotka–Volterra–type and reaction–diffusion systems (with small diffusion), reaction–
diffusion–chemotaxis systems (i.e. reaction–diffusion equations with a chemotaxis–
type term) in the context of tumour invasion at the macroscopic level. Ref. [10]
studies the microscopic and mesoscopic models that correspond to very well known
models in biomathematics: the Verhulst logistic equation and the Lotka–Volterra
system of equations. The asymptotic time behaviour for the mesoscopic model
corresponding to the Verhulst logistic equation is defined. The mesoscopic model
corresponding to the Verhulst equation is modified to a mesoscopic model of DNA
denaturation. Ref. [11] generalizes the previous approach resulting in bilinear equa-
tions of the Boltzmann–type at the mesoscopic level and then related to the bilinear
models at the macroscopic level to the general nonlinear case. These methods may
lead to new and more accurate modelling of complex processes.

The present paper is devoted to identification of the equilibrium solutions of
equations describing the general population dynamics at the microscopic level of
modified Liouville equation. It is an individually-based model of finite number of
entities (individuals) in terms of a Markov jump process. We show the existence
of a factorized equilibrium solution and discuss its uniqueness. The conditions
guaranteeing uniqueness or non-uniqueness are proposed under the assumption of
periodic structures. In particular the conditions guaranteeing the existence of non–
factorized equilibrium solution are stated.
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The paper is organized as follows. In Section 2 we introduce the modified Liou-
ville equations representing a population dynamics model with binary interactions
of individuals at the microscopic level. In Section 3 the corresponding bilinear
Boltzmann–type equation is introduced. In Section 4 the existence of factorized
equilibrium solutions for the microscopic model is proved. Section 5 deals with
possible uniqueness of the equilibrium solution. Under the assumption on periodic
structures we propose the conditions guaranteeing uniqueness or non-uniqueness.
In Section 6 we discuss a possibility of generalizations to the case of multiple inter-
actions.

2. Microscopic population dynamics models. Following [9, 10, 11] we con-
sider a stochastic system of (large) number N of entities (individuals) of various
sub–populations. Every n–th entity, n = 1, . . . , N, is characterized by the pair of
parameters

(jn, un) ≡ un ∈ U ≡ J × U ,
where the variable jn ∈ J , J ⊂ N, represents the sub–population of n–th entity
and un ∈ U ⊂ Rd, d ≥ 1, is its biological (or physical) inner state (a dimensionless
variable). We assume that each entity changes its population and/or state at a
random time.

We consider the probability density

fN = fN (t,u1, . . . ,uN ) ,

fN : [0,∞)×UN → [0,∞) .

We assume that such a stochastic system is defined by the Markow jump processes
of N entities through the following generator (see [9, 10]) — a modified Liouville
operator —

Λ∗Nf
N (t,u1, . . . ,uN ) =

1

N

∑
1≤n,m≤N
m 6=n

(∫
U

A(un; v,um) a(v,um)

× fN (t,u1, . . . ,un−1,v,un+1, . . . ,uN ) dv − a(un,um)fN (t,u1, . . . ,uN )
)
.

(1)

We adhere here to the following convection∑
j∈J

∫
U

. . . du =:

∫
U

. . . du , (2)

and “for a.a. u ∈ U” means “for all j ∈ J and a.a. (with respect to the Lebesgue
measure) u ∈ U”.

The microscopic model is defined by functions a = a(u,v) and A = A(u; v,w),
where

• a = a(u,v) is the rate of interaction of an entity of j ∈ J sub–population and
with state u ∈ U , where u = (j, u), and an entity of k ∈ J sub–population
and with state v ∈ U , where v = (k, v); a is a measurable, bounded function

a : U2 → [0,∞) ; (3)

• A = A(u; v,w) is the transition probability function into j–th sub–population
and with state u, u = (j, u), of an entity of k–th sub–population and with
state v, v = (k, v), due to the interaction with an entity of l–th population
and with state w, w = (l, w); A is a measurable function

A : U3 → [0,∞) , (4)
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such that for a.a. v,w ∈ U∫
U

A(u; v,w) du = 1 . (5)

The stochastic model (at the microscopic level) will be completely determined
by the choice of functions a and A.

Let L1,N = L1
(
UN

)
be the Banach space of integrable functions and equipped

with the norm

‖fN‖L1,N =

∫
U

· · ·
∫
U

∣∣fN (u1, . . . ,uN )
∣∣du1 · · · duN .

The probability density satisfies the Cauchy problem for the modified Liouville
equation

∂tf
N = Λ∗Nf

N , in (0,∞)×UN ,

fN
∣∣∣
t=0

= FN , in UN .
(6)

The operator Λ∗N is a bounded linear operator in L1,N . Therefore there exists a
continuous semigroup that defines the solutions to Eq. (6) in L1,N for t > 0

fN
(
t,u1, . . . ,uN

)
= exp

(
tΛ∗N

)
FN
(
u1, . . . ,uN

)
.

It is easy to see that for any t > 0 the function exp
(
tΛ∗N

)
FN is a probability density

provided that FN is a probability density. Therefore the semigroup is a continuous
(linear) semigroup of Markov operators — a continuous stochastic semigroup.

3. Mesoscopic population dynamics models. In the limit N → ∞ the lin-
ear problem (6) results ([9, 11]) in a bilinear Boltzmann–like integro–differential
equation (Generalized Kinetic Models) – that can be related to the mesoscopic de-
scription. In fact assuming that the process starts with a chaotic (i.e. factorized)
probability density

FN = F ⊗ . . .⊗ F︸ ︷︷ ︸
N×

, (7)

F ⊗ . . .⊗ F︸ ︷︷ ︸
N×

(
u1, . . . ,uN

)
=

N∏
n=1

F (un) ,

i.e. N–fold outer product of a probability density F , one may rigorously relate (6)
with the solution of

∂tf = Γ[f ] , for t > 0 , u ∈ U ,

f
∣∣∣
t=0

= F , for u ∈ U ,
(8)

where
Γ[f ](t,u) =

∫
U

∫
U

A(u; v,w)a(v,w)f(t,v)f(t,w) dv dw

− f(t,u)
∫
U

a(u,v)f(t,v) dv .

In the context of biological or medical processes various Boltzmann–like equations
were considered by various authors – see e.g. [2, 4, 6, 9, 10, 11] and references
therein.

The existence and uniqueness theory (in L1,1) for Eq. (8) is standard [9, 12].
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4. Equilibrium solutions. We are interested in the solution of the following equa-
tions

Λ∗Nf
N (u1 . . . uN ) = 0 , (9)

and

Γ[f ](u) = 0 , (10)

in the sets of all probability densities D(N) in L1,N , and D(1) in L1,1, respectively,
i.e. the equilibrium solutions of Equations (6) and (8), respectively, where

Definition 4.1.

D(N) =
{
fN ∈ L1,N : fN ≥ 0 and

∫
UN

fN (u1, . . . ,uN ) du1 . . . duN = 1
}
.

Arlotti and Bellomo [1] studied problem (10) and, by the Schauder fixed point
theorem, they proved that for |J | = 1, U = [0, 1], a – constant, and A – continuous
on [0, 1]3 there exists a solution of (10) in D(1). It is easy to see that their proof
holds true in the case of |J | <∞ and any compact U . The theorem does not deliver
the uniqueness of equilibrium solution.

Lachowicz and Wrzosek [12] studied problem (10) for the periodic functions and
the interactions in terms of convolution operators. Under some conditions they
proved the existence of unstable equilibrium solutions which are inhomogeneous
with respect to u–variable additional to the homogeneous (i.e. constant) solution.
The set of equilibrium solutions is finite but as large as we want. On the other hand
the condition that guarantees the existence of the only homogeneous (i.e. constant)
equilibrium solution was stated.

We use the similar idea of [1] in the case of the microscopic equation (6). Instead
of the C0–setting we are using here the L2–setting. We are looking for the solution
of Eq. (10) in the factorized form

fN = f ⊗ . . .⊗ f︸ ︷︷ ︸
N×

, (11)

with f ∈ D(1).
We need a stronger assumption than (3)

Assumption 1.

a(u,v) > 0 , for a.a. u,v ∈ U ,

as well as

Assumption 2.

|J | <∞ , U is a compact set in Rd .

Under Assumption 1 if∫
U

A(u; v,w)a(v,w)

a(u,w)
f(v) dv = f(u) , for a.a. u,w ∈ U , (12)

for some f ∈ D(1), then fN ∈ D(N) given by (11) is a solution of Eq. (9) and
therefore an equilibrium solution of Eq. (6).

The problem reduces to showing that function f ∈ D(1) satisfying Eq. (12) exists.
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Assumption 3. We assume that A(u;v,w)a(v,w)
a(u,w) is independent of variable w, for

a.a. u,v,w ∈ U, i.e.

A(u; v,w)a(v,w)

a(u,w)
=: α(u,v) , for a.a. u,v,w ∈ U . (13)

Moreover α satisfies ∫
U

α(u,v) du = 1 , for a.a. v ∈ U , (14)

and ∫
U

∫
U

(
α(u,v)

)2

du dv <∞ . (15)

Under Assumptions 1 and 3 the linear operator defined by the LHS of Eq. (12)
is an integral operator acting in L2(U) ∩ D(1) and it is compact as an operator in
L
(
L2(U), L2(U)

)
. Thus the conditions of the Schauder fixed point theorem are

verified and there exists a fixed point of the operator defined by the LHS of Eq.
(12). Therefore we have

Theorem 4.2. Let Assumptions 1, 2, 3 be satisfied. Then there exists a solution
fN ∈ D(N) of Eq. (9).

We may note that various applications are consistent with Assumption 3 — e.g.
the microscopic equation corresponding to the Verhulst logistic growth — see [9, 10].

5. Uniqueness. Theorem 4.2 does not deliver uniqueness of the equilibrium solu-
tion even in the class of factorized functions. In general uniqueness actually can be
a quite difficult problem as Example 1 below shows.

Following [12] we may discuss the number of equilibrium solutions directly to Eq.
(6), i.e. solutions of Eq. (9). We assume that both A and a are periodic functions
with respect to each variable on Z × Rd with period (p, 1, . . . , 1) ∈ Z × Rd, where
p > 0 is an integer. This leads to the assumption that U = Zp × Td, where Zp is
the group of integers Z modulo p and Td is a d–dimensional (normalized) torus.

The periodic structures in the mesoscopic description (Eq. (8)) were considered
e.g. in [7, 8, 13], see also examples in [12]. In paper [7] the equation of type (8) for the
one–dimensional angular distribution was proposed in the context of angular self–
organization of the actin cytoskeleton in the process of instant changing of filament
orientation in the course of specific actin–actin interactions. The mathematical
properties of the model were studied in [8, 13].

Assumption 4.

0 ≤ a(u,v) = ã(u− v) ,

0 ≤ A(u; v,w) = Ã(u− v) ,
(16)

for a.a. u,v,w ∈ Zp × Td, where ã, Ã are given measurable functions defined on
Zp × Td; and ∫

Zp×Td

Ã(u) du = 1 . (17)
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As in [12] we use some elements of Fourier analysis. For any function
f ∈ L2

(
(Zp × Td)N

)
we define the Fourier transform FNf(

FNf
)

(y1,...,yN )
=

∫
(Zp×Td)N

exp
(
− 2π i

N∑
k=1

yk,p · uk
)
f(u1, . . . ,uN ) du1 . . . duN ,

where i =
√
−1, and (y1, . . . ,yN ) = (y1,0, y1, . . . , yN,0, yN ) ∈ (Zp × Zd)N is the

Fourier variable, yk,p = (
yk,0

p , yk), uk = (jk, uk), yk,p · uk =
yk,0

p jk + yk · uk.

Example 1. Let a = const > 0 and α be given by (13) such that

α(u,v) = α̃(u− v) ,

where α̃ is a periodic function with respect to each variable on Z×Rd with period
(p, 1, . . . , 1) ∈ Z× Rd. We assume that α̃ is non–negative and Eq. (14) is satisfied.
The operator defined by the LHS of (12) is expressed by means of convolution and
Eq. (12) takes the form

α̃ ? f = f . (18)

It is easy to see that the (positive normalized) constant function is a solution of Eq.
(18). Assume now that

α̃ ∈ L2(Zp × Td) .
We consider the Fourier transform F1f of any function f ∈ L2(Zp × Td) with the
Fourier variable y ∈ Zp × Zd. The function f ∈ L2(Zp × Td) satisfies Eq. (18) if
and only if (

F1α̃
)
y

= 1 or
(
F1f

)
y

= 0 , (19)

for any y ∈ Zp × Zd . Therefore introducing

S(f) =
{

y ∈ Zp × Zd :
(
F1f

)
y
6= 0
}
,

and

K(α̃) =
{

y ∈ Zp × Zd :
(
F1α̃

)
y

= 1
}
,

we see that the condition for f to be a solution of Eq. (18) is

S(f) ⊂ K(α̃) . (20)

Condition (20) defines the number of possible solutions of Eq. (18). In particular,
if K =

{
0
}

then only the (positive normalized) constant function is a solution of

Eq. (18) in D(1).

Under Assumption 4 problem (9) reads∑
1≤n,m≤N
m 6=n

(
(F1Ã)yn

− 1
)

(FNHn,mf)(y1,...,yN ) = 0 , (21)

where
Hn,mf(u1, . . . ,uN ) = ã(un − um)f(u1, . . . ,uN ) .

Let

SN (f) =
{

(y1, . . . ,yN ) ∈ (Zp × Zd)N :
(
FNf

)
(y1,...,yN )

6= 0
}
,

KN (Ã) =
{

(y1, . . . ,yN ) ∈ (Zp × Zd)N : (F1Ã)yn = 1 ∀ n = 1, . . . , N
}
,

K̃N (Ã) =
{

(y1, . . . ,yN ) ∈ (Zp × Zd)N :

N∑
n=1

(F1Ã)yn
= N

}
,
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and

Hn,m(ã, f) =
{

(z1, . . . , zN ) ∈ (Zp × Zd)N :

zk = yk + w̄k , ∀ k = 1, . . . , N , (y1, . . . ,yN ) ∈ SN (f) ,

w̄n = wn , w̄m = −wn , w̄r = 0 , ∀ r 6∈ {n,m} , wn ∈ S1(ã)
}
.

By Assumption (17) it follows that KN (Ã) 6= ∅, in fact

(0, . . . ,0) ∈ KN (Ã) .

Moreover, if Ã ∈ L2(Zp × Td) then |KN (Ã)| <∞.

Then we have

Theorem 5.1. Let Assumption 4 be satisfied and

Ã, ã ∈ L2(Zp × Td) .

If f ∈ L2
(
(Zp × Td)N

)
is such that

Hn,m(ã, f) ⊂ KN (Ã) , ∀ n 6= m, (22)

then f is a solutions to Eq. (9).

Corollary 1. If ã = const and Ã satisfies Assumption 4 then f ∈ L2
(
(Zp ×Td)N

)
satisfies Eq. (9) if and only if

SN (f) ⊂ K̃N (Ã) . (23)

Remark 1. In paper [12] the existence of non–negative continuous function Ã :
T1 → R1

+ that satisfies (
F1Ã

)
0

= 1 (24)

together with (
F1Ã

)
ξ

= 1 for ξ ∈ Z \ {0} (25)

was proved. Therefore from Corollary 1 it follows that the corresponding Fourier
coefficient

(
FNf

)
(ξ,...,ξ)

of a function f ∈ L2
(
(T1)N

)
satisfying Eq. (9), may be

arbitrary. Thus one may construct nonconstant and nonfactorized equilibrium so-
lutions in D(N). For example the function

f(u1, . . . , uN ) = 1 + c1 cos
(
2πξ

N∑
j=1

uj
)

+ c2 sin
(
2πξ

N∑
j=1

uj
)
,

where the constants c1, c2 are such that max{|c1|, |c2|} < 1√
2
, belongs to D(N) and

satisfies Eq. (9).

Corollary 2. Let Assumption 4 be satisfied, ã = const and

Ã ∈ L2
(
Zp × Td

)
.

Then

1. the normalized constant function is a solution of Eq. (9)
2. f ∈ L2

(
(Zp × Td)N

)
is a solution of Eq. (9) if and only if

SN (f) ⊂ KN (Ã) .

Therefore, if |K̃N (Ã)| = 1, i.e. K̃N (Ã) = {(0, . . . ,0)}, then only the constant
normalized function is a solution of Eq. (9) in D(N).
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Similarly as in the case of mesoscopic equation (6) — see [12] — we may formulate
the negative result concerning the asymptotic stability of equilibrium solutions to
Eq. (6), given by condition (22). In fact under the assumption that |KN (Ã)| ≥ 2
and under suitable assumption on ã, there exist equilibrium solutions arbitrary
close to the given one (the corresponding Fourier coefficients may be arbitrary).
Therefore, for any of the norms L1, L2, or C0, none of the equilibrium solutions
given by (22) can be asymptotically stable.

6. Generalizations. Ref. [11] generalizes the previous approach ([9, 10]) resulting
in bilinear equations of the Boltzmann–type at the mesoscopic level to the general
nonlinear case. The general framework is applied to propose the microscopic and
mesoscopic models that correspond to well known systems of nonlinear equations
in biomathematics.

We may note that the result of the previous section may be repeated in this
general case.
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