
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2013.10.761
AND ENGINEERING
Volume 10, Number 3, June 2013 pp. 761–775

SPATIAL STOCHASTIC MODELS OF CANCER: FITNESS,

MIGRATION, INVASION

Natalia L. Komarova

Department of Mathematics, University of California Irvine

Irvine, CA 92697, USA

Abstract. Cancer progression is driven by genetic and epigenetic events giv-

ing rise to heterogeneity of cell phenotypes, and by selection forces that shape
the changing composition of tumors. The selection forces are dynamic and

depend on many factors. The cells favored by selection are said to be more

“fit” than others. They tend to leave more viable offspring and spread through
the population. What cellular characteristics make certain cells more fit than

others? What combinations of the mutant characteristics and “background”

characteristics make the mutant cells win the evolutionary competition? In
this review we concentrate on two phenotypic characteristics of cells: their re-

productive potential and their motility. We show that migration has a direct

positive impact on the ability of a single mutant cell to invade a pre-existing
colony. Thus, a decrease in the reproductive potential can be compensated by

an increase in cell migration. We further demonstrate that the neutral ridges

(the set of all types with the invasion probability equal to that of the host cells)
remain invariant under the increase of system size (for large system sizes), thus

making the invasion probability a universal characteristic of the cells’ selection
status. We list very general conditions under which the optimal phenotype is

just one single strategy (thus leading to a nearly-homogeneous type invading

the colony), or a large set of strategies that differ by their reproductive po-
tentials and migration characteristics, but have a nearly-equal fitness. In the

latter case the evolutionary competition will result in a highly heterogeneous

population.

1. Introduction. The idea that cancer is an evolutionary process has been applied
successfully by many computational biologists, as it allows them to use methods of
theoretical population biology and ecology [34, 5, 18, 30, 44, 43, 27]. Populations of
cancerous cells within a tumor are heterogeneous, and cells of different phenotypes
compete with one another in a fast-paced evolutionary system. At the molecular
level, mutations are introduced into the tumoral genome; these mutations may be
caused by inherited deficiencies, loss of mismatch repair systems, downregulation
of the proofreading checkpoints, and chromosomal instabilities. Other alterations
come about by epigenetic events. At the cellular level, these alterations introduce
changes in phenotype, some profound (and often deadly for the cell) but many
others more subtle. They generate the flexibility and adaptability of the cancer
disease state.
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In this review we discuss the forces of natural selection that act upon cells in
a heterogeneous tumor environment. In particular, we focus on understanding the
role of spatial constraints and cellular motility in mutant dynamics. What cellular
characteristics make certain cells more fit than others? If a mutant is introduced
in a cell colony, what combinations of the mutant characteristics and “background”
characteristics make the mutant cells win the evolutionary competition?

Here we focus on two types of phenotypic changes induced by mutations. The
first type involves mutations in genes affecting cell proliferation. Activation of some
oncogenes, or inactivation of tumor suppressor genes, change the cells’ reproductive
capacity, and are thought to be early events in the natural history of many cancers
[19]. The second type of genetic change influences the cells’ ability to migrate/move.
Genes of the second type, while commonly associated with metastases, are also
affected in primary tumors [37]. These two types of variation are thought to be
implicated in malignant transformations for many (if not all) types of solid tumors.
How do the two types of change trade-off to create a mutant which is “fitter” than
the background?

Questions of this kind are related to the general theory of fitness landscapes,
first introduced by [45]. Fitness is viewed as a surface in a multidimensional space,
where the dynamics is assumed to be directed toward local fitness maxima. The
global maximum corresponds to the evolutionarily stable strategy [40]. In scenar-
ios where fitness of an individual strategy depends on the current composition of
the population (frequency-dependent fitness), the formalism of fitness generating
functions is used [42].

In this review we concentrate on a specific aspect of the general problem of
fitness landscapes. Namely, we describe a qualitative framework to study the forces
of selection acting within a spatially distributed, stochastic colony of cells, which
can vary with regards to the two above mentioned characteristics. The models
we describe for this purpose are a spatial generalization of the well-known Moran
process, which was first introduced in [29]. This process has been used recently in
cancer modeling (see [31, 25, 33, 28, 21]). The first spatial (1D) generalization of
the Moran process was described in [24], where the processes of one-hit and two-hit
mutant generation and fixation were considered. The simplicity of the (generalized)
Moran process enabled us to study analytically, as well as numerically, the role of
space in the processes of loss-of-function and gain-of-function mutations, see also
[23]. In this spatial Moran process, the cells were allowed to divide in response to
a death of a neighboring cell on a 1D grid. A generalization of the Moran process
which explicitly includes cellular migration was introduced more recently in [41].

Results described here add to the large body of recent literature, where spatial
cancer dynamics is studied by means of cellular automata or agent-based modeling,
see e.g. the reviews [11, 6, 15, 17, 1], and the references therein, and more recent
papers [10, 2, 35, 46, 20, 36, 7, 9, 38, 8, 22]. Rather than modeling many complex
biological factors, in the present paper we focus on understanding how just the two
forces, proliferation and migration, trade-off to influence the overall fitness of cells.

The rest of this review is organized as follows. In Section 2 we present a brief
review of the non-spatial Moran process, which is a basis for the class of models
used here to study cellular reproduction and motility. In Section 3 we describe
the first generalization of the simple model, where cellular interactions acquire a
spatial aspect, nut no cell movement is allowed. Section 4 reviews two Moran-based
models of cell dynamics that include motility. The first model contains explicit
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parameters responsible for cellular movement. The second model includes motility
in an implicit form, and has the advantage of being analytically tractable. Section
5 discusses the issue of cellular selection and argues that the invasion probability is
an appropriate and convenient measure of cellular fitness. It also develops a general
theory of two-component fitness systems subject to external constraints. Section 6
contains discussion.

2. The non-spatial Moran process. The conventional Moran process is formu-
lated as follows. In a population of N cells, each cell is equipped with a nonnegative
replication parameter. The process is a sequence of updates. At each time-step,
one cell is chosen randomly for death and is then replaced by a progeny of another
cell (note that in this process, the probability to be picked for death is the same
for all cells, regardless of their type). To choose which cell reproduces, one weighs
in all cells replication parameters, such that the probability for cell i to reproduce

is given by ri/
∑N

k=1 rk, where rk is the replication parameter of cell k, and the
summation is performed over all cells in the population.

Assume that there are two distinct types in the population, type A with repli-
cation parameter rA and type B with replication parameter rB . We will refer to
parameters rAand rB as reproductive potentials of the two cell types. The stochas-
tic process can be formulated in terms of only one independent random variable,
the number of cells of type B. If there are NA cell of type A and NB cells of type B
(with NA +NB = N), then after one update the following transitions are possible:

• NB → NB + 1 with probability PNB→NB+1 = NA/N × rBNB/(rANA + rBi),
where the first factor is the probability that a cell of type A dies and the
second factor is the probability for a cell of type B to divide;

• NB → NB − 1 with probability PNB→NB−1 = NB/N × rANA/(rANA + rBi),
where the first factor is the probability that a cell of type B dies and the
second factor is the probability for a cell of type A to divide;

• NB → NB with probability 1− PNB→NB+1 − PNB→NB−1.

We will refer to cells of type A as the host, or background, cells, and cells of type
B as mutant cells. In the Moran process as it is formulated (that is, in the absence
of new mutations), only two outcomes are possible: either type A wins and cells of
type B disappear, or type B wins and cells of type A disappear. The probability
for mutants to invade starting from one cell can be calculated analytically and is
given by

ρ =
1− rA/rB

1− (rA/rB)N
. (1)

In the special case where rA = rB , we have ρ = 1/N . This can be obtained from
formula (1) by taking the limit rB → rA. Also, this result follows from symmetry
considerations: in this simple model, if rA = rB then a cell of type B has the same
expansion properties as any of the host cells, and the same probability to invade.
Since inevitably one of the N cells will invade, the probability of invasion is 1/N
for every cell, regardless of their type.

3. A one-dimensional spatial generalization of the Moran process. In [24]
we introduced and analyzed the first spatial generalization of the Moran process.
Consider a 1D space, where all the N cells are placed on a regular grid, at locations
1, 2, . . . , N . As before, we assume that the total number of cells does not change.
Cells are randomly chosen for death. Each cell death is followed by a cell division
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Figure 1. (a) The Moran process generalized to the one-
dimensional space: a cell is chosen for death at random, and is
immediately replaced by a division of one of the two neighboring
cells (chosen proportional to their reproductive potential). (b) The
quantity ρ̃/ρ, formula (2), as a function of λ = rB/rA for N = 1000.
This quantity tells us how much less likely a mutant fixation is in
the 1D spatial model compared to the mass-action model.

of one of its two neighboring cells, which places its daughter cell at the empty slot,
see figure 1(a). Cell death occurs randomly and division is proportional to the
reproductive potential of the cells.

In this spatial model, the probability of mutant invasion in principle depends
on the initial position of the mutant cell. However, if we use periodic boundary
condition, this dependence disappears and we obtain that starting from one cell,
the probability of invasion is

ρ̃ =
2rN−1(1− r)

1 + r + rN−1 − 3rN
, (2)

where r ≡ rB/rA. In figure 1(b) we can see that ρ̃ ≤ ρ, with the equality cor-
responding to the mutants with r = 1. For all other mutants, the probability to
invade is smaller in a spatial model than it is in the space-free Moran process.

Note that both the space-free Moran process and the spatial generalization de-
scribed above depend only on the ratio of the replication parameters rB/rA.

4. Two-dimensional spatial generalizations of the Moran process. Two
different 2D generalizations of the Moran process were introduced and analyzed in
[41].

4.1. The explicit motility model. Suppose that N cells are placed on a rectan-
gular grid in 2D (the algorithm generalizes straightforwardly to 3D), where there is
a cell of type A or B at each node. As in the standard Moran process, the first event
of an iteration is the random selection of one cell to die. Then, one of the two events
are possible: (i) a cell in the immediate proximity of the dead cell divides, placing
its offspring in the empty spot, or (ii) one of the cells in the immediate proximity of
the dead cell migrates into the empty spot. In all cases, the empty spot created by
the initial cell death is filled. If a migration event occurred, a new empty space is
created. The division and migration events occur proportionally to parameters rX
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and mX for X ∈ {A,B} respectively, and are contingent upon the number of each
type, A and B, within nearest neighbors distance of the empty space. If a division
event occurs, the iteration step is complete and a new cell is selected for death. If
a migration event occurs, the migrating cell “trades places” with the empty space
and a new event (division or migration) is selected. Thus, at the beginning and end
of each iteration, the environment is completely filled; however, there may be many
migration steps before a division event ends the step.

The explicit motility model is defined in terms of four cellular characteristics:
the reproductive potential, rX , and the migration potential, mX , of the two cell
types (X ∈ {A,B}). A normalization procedure however reduces the number of
independent parameters to three:

P (A divides) =
NA

K̃
, P (B divides) =

NBλ

K̃

P (A migrates) =
NAkA

K̃
, P (B migrates) =

NBλkB

K̃
,

where kX = mX

rX
, for X ∈ {A,B}, is the ratio of migration over reproductive

potentials, λ = rB
rA

is the ratio of invader to background reproductive potentials,

and K̃ = NA(1 + kA) +NBλ(1 + kB).
Numerical experiments of [41] demonstrated that an increased migration poten-

tial of mutant cells increases their ability to invade. This can be explained intu-
itively. In the case of small mutant motility, mutant cells tend to concentrate in
one region, and the expansion can only occur near the boundary of that region.
An increase in mutants’ motility increases the degree of mixing in the population,
such that mutant cells spread throughout the space. In this case, mutant growth is
enhanced as it can occur throughout the bulk of the colony.

One interesting feature of the simulated dynamics has to be emphasized. Namely,
when studying the probability of invasion, it is possible to find more than one pair of
parameters (kB , λ) which correspond to the same probability of invasion. In other
words, we can see that different strategies–that is, different parameter sets (λ, kB)
relative to a specific background kA–may have the same invasion probability. It is
particularly interesting to investigate these strategies for the probability of invasion
P = 1

N . Prior work (see for example [25]) on the classical Moran process has shown
that this invasion level corresponds to cells which have equal fitness, see Section
2. By plotting the pairs (kB , λ) corresponding to constant probability of invasion
given by P = 1

N , we observe that there is a negative correlation between λ and kB .
In other words, increasing the motility (kB) of invading cells will require a decrease
in their reproductive potential (λ) in order to maintain the same level of invasion
probability. An increase in either (or both) of parameters kB and λ leads to an
increase in invasion probability.

In [41] we defined all strategies corresponding to the invasion probability P =
1/N as neutral to the host cells A. We called the sets of all such strategies “neutral
ridges”.

4.2. The implicit motility model. The advantage of the model described in the
previous subsection is the explicit representation of motility within the cell popu-
lation. A disadvantage is that the relationships for determining equality amongst
strategies were found to be too complex to study analytically. Thus, we designed a
simpler model of motility, in which cell movement is implicitly tied to the survival
of new cell progeny [41]. Following the standard Moran process, at each time-step,
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one cell is selected randomly to die, to be immediately replaced by the progeny of
one of its neighboring cells. As before, the difference between the two phenotypes
A and B is reflected in their reproduction parameters. Suppose that as before, cells
of type A have reproductive potential rA and cells of type B have reproductive
potential rB . We further employ the notion of the division radius. It measures
the distance over which a cell can place its progeny. Suppose that cells of type A
have division radius νA, and cells of type B have division radius νB . From a tech-
nical standpoint, a division radius of 1.0 in a 2D square grid corresponds to nearest
neighbor interactions, while a radius of 1.5 corresponds to next nearest neighbors.
The probability for the empty slot to be filled by either the background (A) type or
mutant (B) type depends on the division radii and reproductive potential of each.

Unlike the model of Section 4.1, this implicit model only tracks net division and
migration events. Further, the model depends only on two parameters: the relative
reproductive potential rB/rA and the relative division radius νB/νA.

To explore how changes in both the reproductive potential and division radius
of a mutant influence its invasion probability, we place a single mutant cell with
reproductive potential rB and division radius νB , into a background of cells with
reproductive potential rA = 2.0 and division radius νA = 2.5. Results are plotted
in figure 2 as contour levels, or level sets, of invasion probability, as a function of
the reproduction and motility characteristics of the mutant type. Instead of using
the parameter νX , the division radius of cells, we found it more convenient to use
the number of neighbors, nX , for each type. By the number of neighbors we mean
the total number of slots in the vicinity of the cell which are within the division
radius ν of the cell. The level sets of mutant invasion probability are presented in
figure 2 as curves in the (nB , rB) space.

First of all, we observe that increasing rB and nB (separately or together) leads
to an increase in the invasion probability. This in itself is not surprising given
that larger values of the reproductive potential and division radius will increase the
mutants’ probability to divide. Thus, if a cell is free to choose any values of rB
and nB , it will lead to an unrestricted growth of both of these parameters, which
corresponds to the cells’ climbing up the “hill” in the fitness landscape of figure 2,
which corresponds to large rB and nB .

In reality though this is hardly possible and there are biological and energetic
constraints on how often a cell divides, and how far it can travel upon division.
Therefore “allowed” strategy trajectories in the (rB , nB) space can be introduced,
such that some external constraints do not allow a simultaneous large increase in
both parameters. For instance, we can envisage the relationship

αrrB + αnnB − d = 0, (3)

where αr and αn are nonnegative weights and d is a constant. An example of such
a constraint is shown by a dashed line in figure 2. We observe from figure 2 that
within such a constraint, the background condition of rA = 2.0 and νA = 2.5 is
able to resist most invasions from mutant strategies which maximize one trait at
the cost of another (high n with low r or vice versa), such that the probability of
mutant invasion is less than 25%. Thus, in this case the mixed strategy is more
fit than those relying heavily on only one trait. Only for a narrow range of mixed
strategies we obtain the probability of invasion greater than 25%.

A special class of level sets of invasion probability is neutral ridges. It was
demonstrated numerically that the reproductive potential and the neighborhood



SPATIAL MODELS OF CANCER: FITNESS, MIGRATION, INVASION 767

r 
 /r B

A

B A
n  /n

Figure 2. The level sets of the mutant invasion probability in the
parameter space (nB , rB). The background parameters are rA = 2
and νA = 2.5. The dashed straight line corresponds to an external
constraint of the form αrrB + αnnB = d.

sizes of phenotypes on the neutral ridge satisfies a very simple relationship:

rE = c/nE , (4)

that is, the reproductive potential and number of neighbors (the square of the divi-
sion radius) of the cells of constant invasion probability are inversely proportional to
each other. We deduce that the neutral ridges satisfy the relationship rAnA = rBnB .
This relationship makes sense from the point of view of the dimensional analysis,
where the probability of reproduction rX is defined subject to space availability,
and this availability is proportional to the number of neighbors, nX .

5. Navigating the fitness landscape: Theoretical considerations.

5.1. Invasion probability vs sell fitness. So far we have been investigating the
probability of invasion of type B starting from one such mutant (this probability
is denoted by ρ). This probability is connected to the relative fitness of type B,
which we denote as W . Relative fitness is a parameter that is related to the rate of
expansion of a phenotype. It is usually defined as the (ensemble-averaged) frequency
of the type in the “next” generation divided by that in the current generation:

W =
Nnext

B

Ncurrent
B

. A related concept of invasion fitness is defined as the exponential

growth rate of the mutant type in a host population. The connection of the relative
fitness parameter (W ) to the probability of invasion (ρ) has the following useful
properties:
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(i) If ρ = 1/N (see Section 2), then W = 1, that is, the cell of type B are
neutral, and the number of such neutral cells stays constant on average, from
generation to generation.

(ii) If W →∞, that is, if the mutants are strongly advantageous, then ρ→ 1.
(iii) The invasion probability and fitness are positively correlated. The types that

have a higher invasion probability ρ will have a higher fitness and vise versa.

The notions of fitness and probability of invasion are both important in theoret-
ical biology, and both have advantages and disadvantages. Arguably, the notion of
invasion probability is more informative in our setting.

The fitness parameter is defined for a particular temporal dynamics. In our
simple model, we use a discrete-time Markov chain. This is an unrealistic way
to treat the mutant dynamics, but it preserves the invasion probabilities. In other
words, if one considers the long-term outcomes of a stochastic process, the dynamics
become unimportant, and can be simplified in the way implemented here. The
expansion rate of cells (equivalent to fitness) is dependent on this simplification and
thus is affected by this (unrealistic) aspect of our model.

The probability of invasion does not depend on the exact way we choose the time-
step for our updates. Thus in this sense it is a better choice of a competitiveness
measure for our system. On the other hand, invasion probability depends on the
total number of cells, N . The probability to invade a very small constant-size
population is higher than that for a large colony. We have investigated how the
probability of invasion depends on N , and found the following.

For non-neutral mutants, probability of invasion is a monotonically decreasing
function of N which saturates for large values of N . In our experiments, we used
2D grid size 21×21. We have also experimented with the size 31×31 (which yields
N more than twice the original size), and found no measurable change in the results
[41]. More precisely, the calculated values of the mean invasion probability for the
larger grid size were within the standard deviation of the mean obtained by the
smaller grid size, and vice versa. This is similar in spirit to our earlier analytical
results for the invasion probability of the space-free Moran process (see equations
(1)), and a 1D Moran process without motility (equation (2)). In that case, as long
as |r − 1|N � 1,

ρ ≈ 1− 1/r, ρ̃ ≈ 2

3

1− 1/r

1− 1/(3r)
.

A more subtle situation arises when the mutant B is neutral. Again using the
example of our earlier analytical findings, we can see that if |r − 1|N � 1,

ρ ≈ ρ̃ ≈ 1/N,

that is, the invasion probability strongly depends on N . Despite this fact, the notion
of invasion probability retains a degree of universality even in the case of neutral
mutations. Namely, we found numerically that the expressions for the neutral
ridges given by functions rBnB = c are N -independent, that is, the proportionality
constant c does not change withN . This is consistent with the parabolic dependence
of the level sets for the invasion probability.

Ultimately, we are interested in the probability of invasion as long as it is equiv-
alent to the probability of mutants to thrive. When considering cancer, it is ir-
relevant whether exactly all the host cells in an organ have been replaced by the
mutants (which is equivalent to invasion, rigorously speaking). An important no-
tion is whether a mutant colony expands and persists inside an organ for a long



SPATIAL MODELS OF CANCER: FITNESS, MIGRATION, INVASION 769

time, which, for large values of N and for advantageous mutants, is very close to
the probability of invasion. This notion is more universal than the fitness of mutant
cells because it is independent of the time-evolution or the system size. Another
meaningful concept is neutrality, which is basically a symmetry property: a neutral
mutant behaves just like any host cell, and has the same invasion probability as any
other cell (1/N). Its fitness is 1 and its expansion rate (invasion fitness) is zero,
which is extremely hard to measure. Instead, measuring the invasion probability
gives us a useful tool to identify the class of neutral mutants.

In the rest of this section we will discuss the probability of invasion and make
some inferences about the fitness of the mutants. As explained above, the two
notions are positively correlated, so all the arguments resulting from considering
the level sets of the invasion probability hold for the mutant fitness.

5.2. The optimal mutant strategy. In Section 4.2 we saw that for cells of a
given invasion probability, the simple relationship r ∝ 1/n holds, which means that
the fitness function ρ (defined as the probability of type B to invade) satisfies

ρ(rB , nB) = ρ(rBnB).

Its levels correspond to a family of hyperbolas rBnB = c. Using the arguments of
Section 5.1, we deduce that the same holds for the fitness function:

W (rB , nB) = W (rBnB).

Moreover, we know that the function W is a monotonically increasing function of
its argument, because the fitness increases both with the reproductive potential and
the division radius. Thus we have

W ′ ≥ 0.

The simple hyperbolic shape of the level sets is a characteristic feature of the
implicit motility model, and it does not necessarily hold for other, more realistic
models. We can however conjecture that the following, weaker law holds for more
general systems. If the fitness function depends on the reproductive potential and
the motility parameter, W = W (rB , nB), then we have

∂W

∂rB
> 0,

∂W

∂nB
> 0,

that is, increasing either of these parameters leads to an increase in fitness. In figure
3 level sets of the fitness function are drawn schematically in the (nB , rB) space.
Using this minimal information we can make some progress in identifying likely
evolutionary strategies of mutants which aim to maximize the function W . Let
us suppose that external biological and energetic constraints impose a relationship
between the allowed values of rB and nB , which we can write in the form

f(rB , nB) = 0

(equation (3) is an example of such a relationship). We further assume that this
equation can be solved for rB to obtain

rB = g(nB),

and thus the characteristic levels of the function W are given by

W (nB , g(nB)) = c.

We can further safely assume that g′ ≤ 0, because of the nature of the constraints
we consider. Simply speaking, an increase in the reproductive potential must lead
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to a somewhat reduced division radius, thus making the function g monotonically
decreasing. In the example of constraint (3), we have g(nB) = (d−αnnB)/αr, and
g′ = −αn/αr < 0. Note that the absolute value of the derivative in this case is
given by the ratio of the weights αn and αr.

It further follows that in general, the composite function W (nB , g(nB)) can take
a variety of shapes. Here we restrict ourselves to the cases where it has at most
one internal extremum. Multiple minima and maxima could occur, but they are
a result of specific biological factors which we cannot specify at the present level
of generality. Thus we focus on the simplest types of generic behavior, keeping in
mind that other functions can be studied in a similar way. To find the maximum
of function W (nB , g(nB)) we consider the derivative

dW

dnB
=
∂W

∂nB
+ g′

∂W

∂rB

∣∣∣∣
rB=g(nB)

. (5)

The first term in this expression is positive and the second is negative. With at
most one internal extremum, there can be the following cases:

• The function W (nB , g(nB)) has an internal maximum. This means that the
optimal strategy is to find an intermediate value of reproductive potential and
division radius, instead of maximizing them both. This case is demonstrated
in figure 2, the dashed line, and is also presented schematically in figure 3(a),
where the constraint is shown as a dashed black line, and the most advanta-
geous (the fittest) phenotype is near the letter “A” in the (nB , rB) space.

• The function W (nB , g(nB)) is monotonically decreasing, see figure 3(a), where
the medium-grey dashed line indicates the constraint. Then, the maximum of
W is achieved for the smallest possible values of nB and the largest possible
values of rB (both within the constraint; the fittest region is indicated by the
letter “B” in the figure). In other words, the optimal strategy is maximizing
the reproductive potential (within the allowed range) at the cost of the division
radius. This situation could arise in the following scenario: suppose that
increasing n is “expensive”, that is, the constraint function f(rB , nB) depends
stronger on nB than it does on rB . Then, the value of the derivative, |g′|,
is relatively large, which shifts the location of the maximum of the function
W (nB , g(nB)) to the left. If the dependence of nB is sufficiently strong, then
this can drive the location of the maximum outside the allowed domain of
nB . As a result, the optimal strategy will be to find the smallest possible nB
(within the constraint).

• The function W (nB , g(nB)) is monotonically increasing in the allowed domain
(relatively small values of |g′|, see figure 3(a), where the light-grey dashed line
indicates the constraint. ). Then, the maximum of W is achieved for largest
possible values of nB and the smallest possible values of rB (near letter “C”
in the figure). Analogous to the previous argument, such scenarios could arise
when increasing nB is “cheaper” than increasing r.

Whether the optimal phenotype (the phenotype of the highest fitness) corre-
sponds to a single point in the (nB , rB) space, or can be considered a “quasispecies”,
or an extended set of many different points in the space of roughly equal fitness,
depends on the shapes of the fitness landscape levels, as well as the constraint. For
example, the constraint represented by a dashed black line in figure 3 follows very
nearly an equal-fitness line near the letter “A”, which means that a whole range
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of phenotypes will have almost the same high fitness. On the other hand, the con-
straint represented by a black dotted line points to a clear fitness maximum near
the point “A*”. In this case, the population of “winners” is relatively homogeneous.

The examples of constraints presented in figure 3(a) and described by equation
(5) are all one-dimensional sets. Alternatively, one can envisage constraints which
are two-dimensional regions in the (nB , rB) space, figure 3(b). In principle the
choice of the fittest strategy under such two-dimensional constraints does not differ
much from the case of one-dimensional constraints. For the constraint marked by
“1” in figure 3, the region near the letter “E” can be considered an extended set
of nearly-equally fit phenotypes, because the boundary of the corresponding 2D
constraint runs close to a level set of the fitness landscape. On the other hand, the
point “D” represents more or less a single winner of the evolutionary competition
under constraint “2”.

To summarize, we find that the reproductive potential and the division radius are
two components of fitness which both play a role in the probability of mutant inva-
sion and the fitness of mutants. The fitness increases with both of these parameters
(in the case of the implicit motility model, the fitness landscape has hyperbolic level
sets in terms of the reproductive potential and the number of neighbors). A mixed
strategy is optimal unless one of the two fitness components (the reproductive po-
tential or the number of neighbors) is relatively more evolutionary “expensive”. In
the latter case the less expensive characteristic should be maximized at the expense
of the other. Depending on the curvature of the levels of the fitness landscape and
the shape of the constraint, the optimal phenotype could be just one single strategy
or a large set of strategies that differ by their reproductive potentials and migration
characteristics, but have a nearly-equal fitness.

6. Discussion. A central idea of this paper is that the cell with the fastest intrinsic
growth rate is not always the most fit one. Rather, it is the combination of ability
to divide with increased opportunity to do so that defines the cell’s success in the
evolutionary competition. The cell’s characteristics responsible for divisions and
migration must be balanced, depending on the relative costs of both adaptations
for a cell.

We have demonstrated how relatively simple, two-component, models can help
explore the complicated phenomenon of genetic heterogeneity. With the multiphasic
nature of fitness presented here, it becomes possible that many different strategies
will have equal or nearly equal fitness. As the number of traits under consideration
increases, so too will the possible combinations of strategies which lead to equal
fitness. This would correspond to the existence of multidimensional sets equivalent
to “neutral ridges” described here.

The genetic heterogeneity of cancer is a primary source of its resistance to modern
medicine. Tumors behave as fast evolutionary systems, with many subtly different
phenotypes coexisting and competing with each other in the tumor environment.
Changes in phenotypes arise from altered gene expression profiles, rapid cell pro-
liferation outpacing DNA repair mechanisms, loss of repair systems or checkpoints,
loss of chromosomal integrity and epigenetic events. Addition of therapy (chemi-
cal, radiation) to this system changes the selective forces acting upon the various
phenotypes, destroying many but selecting a few which soon become dominant as
the tumor regrows. This level of adaptability underlies the difficulty in studying,
understanding, and treating this complex disease. A better understanding of how
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Figure 3. A schematic of a fitness landscape in the (nB , rB) space,
together with several types of constraints. (a) One-dimensional
constraints are represented by dashed and dotted lines, and the
optimal phenotypes are marked by “A”, “A*”, “B”, and “C” in the
four cases shown. (b) Two-dimensional constraints are represented
by shaded regions “1” and “2”, and the optimal phenotypes are
marked by “D” and “E” in the two cases.

mutants penetrate the pre-treatment tumor, how their phenotype survives in the
milieu of many thousands of subtle variants, is critical for designing new therapy
strategies which minimize the emergence of resistance.

The simplified textbook notion of microevolution, where one mutant type is
selected for proliferation by the collective sum of forces within the tumor, offers
little detail about how a great variety of mutants manages to survive. To explain the
observed heterogeneity of tumors, we speculate that multiple phenotypes expressed
within a tumor are more or less equally fit, but they achieve this level of fitness
through different mechanisms. We have formulated and presented mathematical
models which show how fitness relates to two separate cellular characteristics, and
how those characteristics might be combined in different measures to create cells
with different phenotypes but approximately equal fitness.

In the implicit migration model considered here we found that the fitness of cells
depends on two parameters, the reproductive potential and number of neighbors.
Moreover, we demonstrated that it depends on the product of the two. This is
not an unusual finding in evolutionary biology. Another example comes from virus
dynamics, where the fitness of viruses (measured in terms of their basic reproductive
ratio) can be calculated as a function of various parameters in predator-prey type
models. It is typically proportional to the product of two quantities: the infectivity
of the virus and the inverse of the death rate of infected cells. The former parameter
can be roughly related to the “motility” of the virus, or to how efficiently it infects
new cells, and in this sense it is roughly analogous to our division radius. The
inverse death rate of infected cells is in some sense similar to our reproductive
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potential. This is because a decrease in the cell’s lifespan (a decrease in the inverse
death rate) leads to a decrease in the total number of viruses produced. Similarly,
a decrease in r leads to a decrease in the number of offspring produced. Therefore
we can see a strong correspondence between our model and the virus dynamics
model which is well studied in the literature. Several papers have been devoted
to studying optimal viral strategies, especially given that the two components of
fitness are not independent [3, 32, 26, 13, 16, 14, 39, 4]. In spirit, our approach
is similar to that. While there has to date been little investigation into this area,
it seems reasonable to assume that energy availability limits the total growth and
migration ability of an invasive cancer cell. Since both growth and migration are
energy-intensive processes, an invasive cell will have to ‘budget’ its energy to each.

In this paper we obtained numerical and analytical results for two particular
models of migration, and based on these insights, developed a fairly general de-
scription of systems whose fitness is a function of not just one but two factors
(reproductive potential and migration characteristics). We showed that depending
on the shape of external constraints, the evolutionary system will chose one or more
optimal phenotypes, which can outcompete the resident population and form the
population of the growing tumor.
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