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Abstract. As follows from experiments, waves of calcium concentration in bi-

ological tissues can be easily excited by a local mechanical stimulation. There-
fore the complete theory of calcium waves should also take into account cou-

pling between mechanical and chemical processes. In this paper we consider the

existence of travelling waves for buffered systems, as in [22], completed, how-
ever, by an equation for mechanical equilibrium and respective mechanochem-

ical coupling terms. Thus the considered, coupled system consists of reaction-

diffusion equations (for the calcium and buffers concentrations) and equations
for the balance of mechanical forces.

1. Introduction. One of the most important mechanisms by which cells control
their activity and coordinate it with their neighbours are calcium oscillations and
waves. According to their speed, they can be divided into the following classes:
ultraslow (speed range from 0.1 to 1 nm/s), slow (speed range from 0.1 to 1 µm/s),
fast (speed range from 1 to 50 µm/s), ultrafast (speed range from 10 to 100 cm/s)
(see [8] and the webpage of Jaffe & Creton). The ultraslow waves are rather hy-
pothetical, whereas the ultrafast calcium waves are electrically supported. In this
paper we will be interested in the analysis of slow and fast waves. From experi-
mental observation, we know that mechanical forces can influence or even generate
the calcium waves propagation (see, e.g. [7], [10],[15],[25]). It is agreed that the
mechanical stimulation of a sufficiently large amplitude evokes the release of cal-
cium from internal stores, and initiates a wave propagation by the autocatalytic
mechanism (calcium induced calcium release abreviated as CICR). In [9], the ex-
perimental evidence and a physical explanation concerning the possibility of another
mechanism calcium induced calcium influx - CICI) supporting a new class of fast
waves, by stretch-activated calcium channnels on the surface of the cell membrane,
is reported. The speed of these waves ranges from 100 to 1000µm/s. In conclu-
sion, we assert that the mechanics influences calcium concentration. In fact, the
cytosolic calcium concentration influences also the deformation field of the medium.
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Treating tissue as a visco-elastic medium and having in mind that the deformation
accompanying the calcium waves is relatively small, we can describe the balance of
the mechanical forces by the equation ∇ · σ = ku, i.e.

∇ ·
{

E

1 + ν

[
ε +

ν

1− 2ν
θI

]
+ µ1

∂ε
∂t

+ µ2
∂θ

∂t
I + τ (c)

}
= ku. (1)

(see [16] p.591). In the above equation inertial forces are absent, because, taking
into account the low speed of calcium waves, it can be shown that they are by ten
orders smaller than the elastic forces. The quantities in Eq.(1) have the following
meaning: u = u(x, t) - displacement, ε - strain tensor, i.e. ε = 1/2(∇u + ∇uT ),
θ = ∇ · u - dilation, E - Young modulus, ν - Poisson ratio, µ1, µ2 - shear and
bulk viscosities, I - unit matrix, c - calcium concentration, τ (c)-active concentration
stress tensor resulting from the actomyosin traction. The external forces ku measure
the strength of the attachment of cells to the surrounding medium. They appear
within the Winkler model approximation, where the considered layer of material or
a cell is fastened to some sort of immobile foundation. In the paper, however, we
will confine our attention to the case when these forces are negligible, i.e. k = 0.

As the coefficients of the mechanical equation (including τ ) depend on c, the
variation in calcium concentration across the wave profile will in general cause the
mechanical response of the tissue.

The aim of the present paper is to analyze the existence and properties of
mechano-chemical calcium travelling waves propagating in either of the following
specific geometrical structures:

: a. plane waves in a 3-dimensional bulk tissue, which can be considered as
a limit of spherical waves far from the centre of propagation. In this case
we assume that the displacements of the medium can have only x1-direction.
Consequently, εij = 0, except for ε11 and thus θ = ε11.

: b. ‘plane’ waves in a thin quasi two dimensional layer of tissue perpedicular to
x3-axis (ε22 = 0).

: c. waves in thin biological fibers (e.g. long cells as myocytes) oriented in
agreement with x1.

In cases b. and c. we assume that the lateral boundaries are free, mechanically
unloaded surfaces, i.e. if n is the unit vector perpendicular to the surface, then∑
j=1,2,3 σijnj ≡ 0
In the derivation of simplified equations governing the propagation of mechano-

chemical calcium waves in thin 2-d layers or in thin fibers, we use the asymptotic
approach to the equation for mechanical deformation, using power expansion of the
displacement field in the direction perpendicular to the lateral boundary. By a suit-
able truncation [18],[11] we can make the stress tensor independent of the variable
perpendicular to the lateral boundary, although, in general, we have the motion
of the material in this direction. This motion influences the solution contribut-
ing to the dissipation of energy and, as will be seen later, through the coupling of
chemical (diffusion and release of calcium) and mechanical processes influences also
the speed of propagation of the calcium wave. The advantage of this asymptotic
approach consists in the fact that it retains the mechanical effects, although the
components of the travelling wave solution (such as calcium concentration and the
entries of the stress) depend only on the wave variable x1− qt, where q is the speed
of the travelling wave. For example, in the case of thin fibers we have to do also
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K µ τ τ ε

bulk medium
E(1−ν)

(1+ν)(1−2ν)
µ1 + µ2 τ11 diag(τ11, τ11, τ11) diag(ε11, 0, 0)

thin layer E
(1+ν)(1−2ν)

2µ1 + µ2 τ11 + τ33 diag(τ11, τ11, τ33) diag(ε11, 0, ε33)

thin fiber E
1−2ν

3µ1 + µ2 τ11 + 2τ33 diag(τ11, τ33, τ33) diag(ε11, ε33, ε33)

Table 1. The coefficients K, µ and τ in Eq.(2)

with the radial motion of the material, despite of the fact that the stress tensor de-
pends only on the variable x1 − qt. In this approximation the strain tensor ε in the
Cartesian system of coordinates is diagonal [11],[18], [20] as given in Table 1. Thus,
in the bulk case only ε11 6= 0, in the case of thin layers we have two nonvanishing
components ε11, ε33, whereas in the case of thin fibers we have three nonvanishing
components ε11, ε22, ε33 with ε22 = ε33 because of the axial symmetry. Therefore,
when looking for travelling wave solutions, the mechanical equation can be reduced
to two equations for θ =

∑
i=1,2,3 εii and for ε33.

In all of the above cases the dilation θ satisfies the equation

Kθ + µ
∂θ

∂t
+ τ = σ0, (2)

The constant of integration σ0 represents the external stress that can be applied to
the medium along the direction of propagation. Such a stress can influence the speed
of the wave, what, in principle, can be experimentally verified. In the following we
will assume that σ0 = 0. The effective elasticity and viscosity coefficients K and µ,
the effective traction τ , as well as the the form of the traction matrix in each of the
considered cases are given in Table 1 (see [18]).
For the bulk medium we have ε22 = ε33 = 0. For thin layers ε22 = 0, whereas for
thin fibers ε22 = ε33 are not identically zero. By means of the results of [18] we
conclude that, in the case of thin layers and fibers, the equation for ε33 := η, reads:

µ2
∂η

∂t
+K1η + θ[K2 − βK]− βτ + τ33 = 0, (3)

where β = µ1µ
−1, K1 = E

1+ν , K2 = νE
(1−2ν)(1+ν) , and where K, µ and τ are given in

Table 1. The derivations of Eq.(2) and Eq.(3) are given in the papers [11], [18].
If viscosity effects are negligible, then the above equations for θ and η can be

immediately solved. It seems, however, that for some tissues viscosity may play a
significant role. As follows from Eq.(1) the ratio of viscous to elastic forces is equal
to

Rvis =
Fviscous
Felastic

=
µ|ε,t|
K|ε|

, (4)

where µ denotes the effective viscosity and K the effective elasticity coefficient.
The strain tensor ε is a dimensionless quantity. Let T be the characteristic time.

The dimension of
|ε,t|
|ε| is T−1. Hence formula (4) takes the form Rvis = µ/KT .

In the paper we are interested in travelling waves, therefore the characteristic time
scale is equal to T = W/q, where W denotes the width W of the calcium wave.
Thus we obtain

Rvis ∼=
µq

KW
. (5)
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Specific values of Rvis depend essentially on the kind of considered tissues, but
typically its value is of the order of 10−1 as in the case of aortic endothelial cells
([3],[21]) or smooth muscles of pulmonary arteries ([1],[3]).

We can also estimate the ratio of the characteristic value of τ and the coefficient
K. From paper [4] concerning the movement of fish keratocytes, one can find

K ∼= 2 · 103 Pa and τ ∼= 103Pa, thus
τ

K
∼= 10−1, which, by means of Eq.(2), leads

to |θ| ∼= 0.1 (in the limit of vanishing µ).
The simplest mathematical model describing the dynamics of calcium concentra-

tion is provided by a single “bistable” reaction-diffusion equation, having two stable
equilibria: the ground state (low calcium concentration) and the excited state (with
a high calcium concentration). It is known that such an equation has a solution in
the form of a heteroclinic travelling wave joining the above mentioned equilibria.
On the other hand, experimental observations seem to show that the excited state
relaxes slowly to the ground state. Due to this fact, in some papers (see, e.g. [22])
more realistic models are considered, where the scalar reaction-diffusion equation for
calcium concentration is supplemented by an ordinary differential equation for the
evolution of an additional, so called, recovery variable to form a FitzHugh-Nagumo
(FHN) like model. Thus the travelling waves of the calcium concentration should
be in the form of homoclinic pulses rather than heteroclinic fronts. The recovery
variable does not yet have a clear physical interpretation. Moreover, the time during
which the release sites in the cell stay in their activated state is much larger than
the time necesssary for their activation. For example, in experiments described in
[25] calcium waves were mechanically stimulated in long myocyte cells. The time
of sharp increase in calcium concentration (which includes the time of mechanichal
stimulation and inactivation time) is of the order of 1 s, whereas the time of slow
decrease is of the order of hundreds of seconds (see Fig.1 in [25]). Thus in the
description of the calcium wave in the neighbourhood of the leading front we may
confine ourselves to the heteroclinic approximation.

The dynamics of Ca++ in cells is significantly influenced by the presence of
buffers [5],[15], i.e. chemicals, mostly proteins of molecular masses about tens of
kDa (e.g. parvalbumin and EGTA), able to bind the calcium ions. Up to 99% of
Ca++ can be bound to different kind of buffer molecules.

We will consider here the system of reaction-diffusion equations for the calcium
and buffer concentrations (see [15], [22]) taking into account the mechanochemical
interaction. The mechanochemical source term S(c, ε) will depend on the calcium
concentration c and on the strain tensor ε, more precisely on its invariants. The
system has the following form:

∂c

∂t
= D0∆c+

n∑
i=1

[ki−vi − ki+c(bi0 − vi)] + S(c, ε),

∂vi
∂t

= Di∆vi − [ki−vi − ki+c(bi0 − vi)], i = 1, . . . , n,

(6)

where c denotes the calcium concentration and D0 its diffusion coefficient and Di

- buffers diffusion coefficients. Here vi = [Ca++Bi] denotes the concentration of
buffers which form a complex with the calcium ions, whereas bi0 denotes the total
concentration of the i-th buffer (bi0 = [Bi] + [Ca++Bi]). ki− > 0, ki+ > 0 are
appropriate kinetic constants.
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Remark 1. The mechanochemical term suggested in [16] and used, e.g. in [19],[18],
[11],[6] is simply of the form g(c) + γθ, where g is of bistable type, thus takes into
account only the compression of the medium. However, S may depend on all of
the eigenvalues of the strain tensor ε, not only on their sum θ. Experiments show
that also shear mechanical stresses can generate chemical calcium waves (see [7]).
Let us give some arguments supporting this idea. It seems reasonable to assume
that the flux of the calcium released from an organelle under the action of the
strain, should be rather related to the variation of the area than the volume. In
such a case the deformation, which is preserving the volume may also lead to the
release of calcium. As an example let us take the organelle in an ellipsoidal shape.
Let a1, a2, a3, be the radii of the ellipsoid and for simplicity we assume that the
deformation tensor is diagonal in the coordinate system with axes parallel to the
main axes of the ellipsoid. We apply here the approximate formula for the area
of the surface of the ellipsoid, which turns out to be quite accurate (up to 1.5%):
S = 2π[(a1a2)p+(a1a3)p+(a2a3)p]1/p, where p = ln3/ln2. Evaluating the variation
of the area with respect to the variation of the radii we obtain:

dS = 2π

1

2

∑
i,j;i 6=j

(aiaj)
p


1−p
p ∑

i,j;i 6=j

(aiaj)
p daj
aj

Constant diagonal strain tensor implies the displacement field in the form ui =
εiixi. Thus, the axis of the ellipsoid will stretch by daj = εjjaj , i = 1, 2, 3, hence
daj/aj = εjj . Thus in general the variation of the area surface of the organelle
under the infinitesimal deformation is a linear function of all the eigenvalues of the
deformation tensor, not only the function of its trace, although in the case of of
fully symmetrical body (cube, ball) this variation, indeed becomes proportional to
the trace of the deformation tensor.

In the cases analyzed in the paper the tensor ε is diagonal and is entirely deter-
mined by the quantities θ and η = ε33. It is convenient to write S = S(c, θ, η) and
decompose the function S in the following form:

S(c, θ, η) = g(c) +R(c, θ, η), (7)

where R(c, θ, η) = S(c, θ, η)− S(c, 0, 0) and g(c) = S(c, 0, 0).

Assumption 1. Suppose that the function g(·) ∈ C2(IR1) is of a bistable type, that
is to say the equation g(c) = 0 has exactly three solutions: c1 > 0, c3 > c1 and
c2 ∈ (c1, c3), where the zeros c1 and c3 are stable, i.e. g′(c1) < 0, g′(c3) < 0, and
c2 is unstable, i.e. g′(c2) > 0. Suppose that the function R is of C1 class of its
arguments.

A simple example of a function satisfying the above assumptions is a cubic poly-
nomial g(c) = A(c− c1)(c3 − c)(c− c2) with c2 ∈ (c1, c3).

From the physical point of view it is important that the values of calcium and
buffer particles concentrations cannot become negative within the considered model.
To guarantee this we will impose an additional, physically justified assumption
concerning the source term S, i.e. S ≥ 0 for c = 0. As the stable ground state
of the calcium concentration is positive, i.e. c1 > 0, therefore the cell homeostasis
requires even positive S for c = 0.

Assumption 2. Let S(0, θ, η) > 0 for all θ, η ∈ IR1.
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In Section 4 by means of Assumption 2, we will show the non-negativity of
calcium and buffers concentration for the profiles of travelling wave solutions. Let
us note that S = g(c) + γθ (as taken in [16]) does not guarantee the positivity of
calcium concentration.

Our aim is to analyze travelling wave solutions propagating along x1-direction
to system composed (2),(3),(6), under the assumption of relative smallness of the
viscosity coefficient. Please note that in the bulk case η ≡ 0 thus Eq.(3) is absent.
Thus in our considerations we will concentrate on the cases of thin layer and thin
fibers, where η is non zero. To obtain formally a small parameter describing the ratio
of viscous and inertial forces, we have to carry out appropriate scaling procedure.
This can be done as in [11],[18], [20].

To avoid technical complications and for clarity of exposition we have assumed
here that the elasicity coefficients K,K1,K2 and viscosity coefficients µ1, µ2 do not
depend on the entries of the mechanical stress tensor ε

Assumption 3. Suppose that µ1 = µ1(c), µ2 = µ2(c), K = K(c), K1 = K1(c),
K2 = K2(c) are functions of C2(R1) class, whereas the entries of τ = τ (c) are
of C3(R1) class.

Remark. To avoid technical difficulties, we have assumed in Assumption 3 that all
the functions considered in the paper have been extented for all c ∈ IR1. However,
by means of Assumption 2, we show in Section 4 that travelling wave solutions to
the considered system satisfy the non-negativity condition c ≥ 0.

In the rescaled variables (for simplicity we use the same symbols), the system
takes the following form:

ε2µ(c)
∂θ

∂t
+K(c)θ + τ(c) = 0, (8)

ε2µ2β
∂η

∂t
+K1η + θ[K2 − βK]− βτ + τ33 = 0. (9)

∂c

∂t
= D0

∂2

∂x21
c+ g(c) +

n∑
i=1

Gi(c, vi) +R(c, θ, η)

∂vi
∂t

= Di
∂2

∂x21
vi −Gi(c, vi), i = 1, . . . , n,

(10)

where

ε2 =
µ0qs
K0Ws

, and Gi(c, vi) = ki−vi − ki+c(bi0 − vi).

Here µ0 = µ(c3), K0 = K(c3), whereas qs and Ws are the characteristic speed and
width of the calcium chemical waves. Below, ε2 will be supposed to be sufficiently
small. All the variables in the above system and functions are in their rescaled
non-dimensional form. In particular the quantity µ(c) = µ(c)(µ(c3))−1, and K =
K(c)(K(c3))−1, thus they are of order 1.

Remark. The rescaled space and time variables are given as x∗1 = x1W
−1
s , t∗ =

qsW
−1
s t, The rescaled calcium and buffer concentrations are equal to: c∗ = cc−13 ,

v∗i = vic
−1
3 , the rescaled source function g∗(c∗) = [Ws/(qsc3)]g(c∗c3). Other quanti-

ties are rescaled in the similar way. In the derivation of system (8)-(10) we have also
used the fact that in the new spatial variable x∗1 = x1/Ws the new displacement u∗

satisfies the relation u = Wsu
∗. Morever, u,x1 = u∗x∗

1
, hence θ∗ = θ and η∗ = η.
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2. Chemical calcium waves. For R = 0 the mechano-chemical coupling in Eqs
(10) is formally switched off. In this case we can consider strictly chemical travelling
waves connecting two stable constant steady states of system (10). For R = 0, there

are exactly three constant steady states of system (10): P̃1, P̃2 and P̃3, correspond-
ing to the three solutions c̃1, c̃2, c̃3 of the equation g(c) = 0, which are defined in
Assumption 1. We have:

P̃k = (c̃k, w
k
1 , . . . , w

k
n), k = 1, 2, 3, (11)

where

wkj = c̃k
kj+b

j
0

(kj− + kj+c̃k)
. (12)

As, by Assumption 1, c̃1 < c̃2 < c̃3, then

w1
j < w2

j < w3
j , j = 1, . . . , n, (13)

thus component wise we may write

P̃1 < P̃2 < P̃3. (14)

We are interested in the travelling wave solutions to system (6) joining the con-

stant steady states P̃1 and P̃3. We are seeking solutions to system (6) in the form

c(x1, t) = c(ξ), vi(x1, t) = vi(ξ), i = 1, . . . , n, (15)

where ξ = x1 − qt, satisfying the following conditions:

limξ→−∞(c(ξ), v1(ξ), . . . , vn(ξ)) = (c̃1, w
1
1, . . . , w

1
n) = P̃1,

limξ→∞(c(ξ), v1(ξ), . . . , vn(ξ)) = (c̃3, w
3
1, . . . , w

3
n) = P̃3,

lim|ξ|→∞(c′(ξ), v′1(ξ), . . . , v′n(ξ)) = (0, 0, . . . , 0).

(16)

Thus, this travelling wave connects the state of low concentration of calcium
(both free and bound to buffers) with a state of a large concentration of calcium
(both free and bound to the buffers).

The functions c(ξ), vi(ξ), i = 1, . . . , n, satisfy the following system of ordinary
differential equations:

D0c
′′ + qc′ + g(c) +

n∑
i=1

Gi(c, vi) = 0, (17)

Div
′′
i + qv′i −Gi(c, vi) = 0, i = 1, . . . , n, (18)

where ′ denotes differentiation with respect to the variable ξ.

Remark. c(x1 − qt) and vi(x1 − qt), i = 1, . . . , n, are travelling wave solution to
system (10) with R(c, θ, η) ≡ 0. Let U = (U0, . . . , Un) := (c, v1, . . . , vn). System
(10) can be written in the form

∂U

∂t
= A

∂2

∂x21
U + F (U), (19)

where A = diag(D0, . . . , Dn) is a diagonal matrix with positive entries and C1 3
F (·) : IRn+1 → IRn+1. We say that system (19) is monotone, if

∂Fi
∂Uj

≥ 0, i, j = 0, ..., n, i 6= j.

It easy to note that system (10) satisfies the above monotonicity conditions.
The following theorem holds.



750 BOGDAN KAZMIERCZAK AND ZBIGNIEW PERADZYNSKI

Theorem 2.1. The constant states P̃1 and P̃3 are stable. The state P̃2 is unstable.
There exists a heteroclinic pair (q0, c0(·), v10(·), . . . , vn0(·)) satisfying system (17)-
(18) and conditions (15). This pair is unique (modulo shifts in the ξ-space) in the
class of solutions such that c′(ξ), v′1(ξ), . . . , v′n(ξ) > 0 for all ξ ∈ IR1.

This theorem is a straightforward conclusion from Theorem 2.1, p.15 in [24] (see
also [12],[13]).

As mentioned in the Introduction, heteroclinic wave is an approximation of the
leading front of the real calcium wave under the condition that the heteroclinic front
is representing an advancing wave, i.e. it is moving from large to low concentration.
Within the boundary conditions assumed above, it means that the speed of the wave
is negative (q < 0).

3. Mechanochemical calcium waves. In this section we will take into account
the mechanical term R in the equation describing the evolution of the free calcium.

As we suggested in the Introduction we may suppose that
qsµ0

WsK0
:= ε2 << 1.

This parameter describes the ratio between the viscous forces and the elastic
forces. Below, we will consider the existence of mechano-chemical travelling wave
solutions under the condition that ε2 is sufficiently small.

For non-vanishing viscosity, i.e. for ε2 > 0, θ and η are governed by Eqs.(8) and
(9). In the absence of viscosity (ε2 = 0), θ and η can be explicitly calculated from
(8),(9), to obtain:

θ0(c) = −K(c)−1τ(c), (20)

η0(c) = −K1(c)−1 (θ0(c)K2(c) + τ33(c)) . (21)

In this way, the case ε = 0 is reduced to the case of purely chemical waves.
Indeed, in system (8),(9),(10), θ = θ0(c) and η = η0(c), hence we obtain system
(17)-(18) with a new source function:

f(c) = g(c) +R(c, θ0(c), η0(c)). (22)

instead of g. This fact will be the starting point of our considerations.
Therefore for nonvanishing viscosity (ε2 > 0), it is convenient to introduce the

variables, measuring the deviation from the non-viscous case

h := θ − θ0(c), b := η − η0(c), (23)

r(c, h, b) := R (c, θ0(c) + h, η0(c) + b)−R(c, θ0(c), η0(c)).

and rewrite the system (8),(9),(10) in terms of h and b. We will thus consider the
following system of equations:

∂h

∂t
+ (ε2µ)−1Kh−

[
τ(c)

K(c)

]
,c

∂c

∂t
= 0, (24)

∂b

∂t
+ (ε2µ2β)−1 (K1b+ h[K2 − βK]) + η0,c(c)

∂h

∂t
= 0. (25)

∂c

∂t
= D0

∂2c

∂x2
+ f(c) + r(c, h, b) +

n∑
i=1

Gi(c, vi), (26)

∂vi
∂t

= Di
∂2vi
∂x2

−Gi(c, vi), i = 1, . . . , n. (27)
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Assumption 4. Suppose that:

: 1. The function f(·) ∈ C2(IR1) is of the bistable type i.e. the equation f(c) = 0
has exactly three solutions: c1 > 0, c3 > c2 and c2 ∈ (c2, c3). The zeros c1
and c3 are stable, i.e. f ′(c1) < 0, f ′(c3) < 0, whereas c2 is unstable, i.e.
f ′(c2) > 0.

: 2. The purely chemical wave associated with f instead of g in system (17),(18)
(see Theorem 2.1) has negative speed q0 < 0.

Consequently, there are exactly three constant steady states to system (24)-(27):

(h, b, c, v1, . . . , vn) = Pk, k = 1, 2, 3, where Pk = (0, 0, ck, v
k
1 , . . . , v

k
n)

and, as in the case of strictly chemical waves,

vkj = ck
kj+b

j
0

(kj− + kj+ck)
, j = 1, . . . , n. (28)

Obviously, P1 < P2 < P3 component-wise.
We are seeking solutions in the form

h(x, t) = h(ξ), b(x, t) = b(ξ), c(x, t) = c(ξ), vi(x, t) = vi(ξ), i = 1, . . . , n, (29)

where
ξ = x1 − qt.

Inserting this into system (24),(26),(27) we arrive at the following system of ordinary
differential equations

h′ − (ε2qµ)−1Kh−
[
τ(c)

K(c)

]
,c

c′ = 0, (30)

b′ − (ε2qµ2β)−1 (K1b+ h[K2 − βK]) + η0,c(c)c
′ = 0. (31)

D0c
′′ + qc′ + f(c) +

n∑
i=1

Gi(c, vi) + r(c, h, b) = 0, (32)

Div
′′
i + qv′i −Gi(c, vi) = 0, i = 1, . . . , n, (33)

where, as before, ′ denotes the differentiation with respect to ξ = x1 − qt. We are
interested in solutions to system (30)-(33) satisfying the conditions:

limξ→−∞(h(ξ), b(ξ), c(ξ), v1(ξ), . . . , vn(ξ)) = P1,

limξ→∞(h(ξ), b(ξ), c(ξ), v1(ξ), . . . , vn(ξ)) = P3,

lim|ξ|→∞(h′(ξ), b′(ξ), c′(ξ), v′1(ξ), . . . , v′n(ξ)) = (0, 0, 0, 0, . . . , 0).

(34)

Please note that the parameter q is also an unknown, and its value must be found
appropriately to satisfy conditions (34).

Let us shortly discuss the strategy of our existence proof. In Eqs (30),(31) we
have to do with singular perturbations. Nevertheless, by formal integration (using
the boundary conditions), Eqs (30) and (31) can be written in the form

h(ξ) = H(c, q, ε)(ξ),

b(ξ) = L(c, q, ε)(ξ)

where H and L are nonlinear integral operators, which will be defined below. As
it will be shown for ε → 0 the functions H and L together with their Frechet
derivatives DH and DL with respect to (c, q) tend to 0 for ε→ 0:

H(c, q, ε), L(c, q, ε), DH(c, q, ε), DL(c, q, ε)→ 0 as ε→ 0.
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Having shown this property, and noticing that in the limit ε → 0 the above
system tends formally to the purely chemical system (32),(33) with h ≡ 0, b ≡ 0,
we will apply the implicit function theorem, and show the existence of functions
hε, bε, cε, v1ε, . . . , vnε and the speed parameter qε satisfying system (30)-(33) for
sufficiently small |ε|. These functions can be determined only up to a translation
ξ → ξ + a. To get rid of this nonuniqueness we will impose an additional condition

cε(0) =
1

2
[cε(−∞) + cε(∞)] (see (35)).

Remark. As mentioned before, for physical reasons, we will confine ourselves to
the case q < 0 corresponding to advancing travelling waves, i.e. the waves which
propagate in the direction opposite to the gradient of calcium concentration.

Definition 3.1. For i = 0, 1, 2, let Bi denote the space of functions u(ξ) of Ci(IR)
class tending to finite limits as ξ → ±∞ together with their derivatives (which tend
to zero). Let B∗i denote the subspace of Bi consisting of functions vanishing for
ξ = ±∞ and Bi0 the subspace of functions u satisfying the condition:

u(0) =
1

2
[u(−∞) + u(∞)]. (35)

The norms in the spaces Bj are taken to be ‖u‖Bj
=

j∑
k=0

sup
ξ∈IR1

∣∣∣∣ dkdξk u(ξ)

∣∣∣∣. Let

Bn2 := B2 ×B2 × . . .×B2︸ ︷︷ ︸
n times

.

As we mentioned above, given the function c, the solution to Eq.(30) can be
formally written as h(ξ) = H(c, q, ε)(ξ), where:

H(c, q, ε)(ξ) =

∫ ξ

0

exp

[∫ ξ

s

1

ε2
K(c(ζ))

qµ(c(ζ))
dζ

]
1

K
τ,c(c(s))c

′(s)ds+

C̃ exp

[∫ ξ

0

1

ε2
K(c(s))

qµ(c(s))
ds

]
,

The constant C̃ should be chosen in such a way thatH(c, q, ε)(ξ)→ 0 as ξ → ±∞.
It is easy to note that for q < 0 one should take

C̃ = −
∫ −∞
0

exp

[
−
∫ s

0

1

ε2
K(c(ζ))

qµ(c(ζ))
dζ

]
1

K
τ,c(c(s))c

′(s) ds.

Hence

H(c, q, ε)(ξ) =

∫ ξ

−∞
exp

[∫ ξ

s

1

ε2
K(c(ζ))

qµ(c(ζ))
dζ

]
1

K
τ,c(c(s))c

′(s) ds. (36)

In the similar way, given the function c, the solution to Eq.(31) can be formally
written as b(ξ) = L(c, q, ε)(ξ), where

L(c, q, ε)(ξ) =

∫ ξ

−∞
exp

[∫ ξ

s

1

ε2
K1(c(ζ))

µ2(c(ζ))β(c(ζ))

1

q
dζ

]
κ̃(s) ds (37)

and

κ̃(s) = ε−2 (qµ2(c(s))β(c(s)))
−1

[K2(c(s))− β(c(s))K(c(s))]H(c, q, ε)(s)+

η0,c(c(s))c
′(s).
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Here β, K1 and K1 are defined after Eq.(3) and η0 in (21).
The following lemma holds.

Lemma 3.2. H can be extended (by H = 0 for ε = 0) to a well defined continuous
operator acting from of B20 × (−∞, 0)× IR1 to B∗1 and for fixed c and q

‖H(c, q, ε)(·)‖B∗
1

= O(ε2) for ε→ 0. (38)

The Frechet derivative DH(c, q, ε) of the operator H with respect to (c, q) at a point
(c, q, ε) acting on the vector [δc, δq] is well defined and

‖DH(c, q, ε)[δc, δq]‖B∗
1

= O(ε2) (‖δc‖B2 + |δq|) for ε→ 0. (39)

The proof of Lemma 3.2 will be given in Appendix 1. Likewise, it can be proved
that:

Lemma 3.3. The thesis of Lemma 3.2 holds also for the operator L.

Now, let us note that Eqs (30),(31) can be written as:

Φ1(h, b, c, v1, . . . , vn, q, ε) := h−H(c, q, ε) = 0, Φ2(h, b, c, v1, . . . , vn, q, ε) :=

h− L(c, q, ε) = 0.

Likewise, system (32),(33) can be written as

Φ3(h, b, c, v1, . . . , vn, q, ε) = 0,

where Φ3 has n + 1 components determined respectively by the left hand sides of
equations in system (32),(33).

First of all, let us notice that the purely chemical wave (c0, v10, . . . , vn0)(ξ) with
negative velocity q0 < 0, associated with the function f (point 2. Assumption 4),
satisfies the system Φi = 0, i = 1, 2, 3, with ε = 0, h = 0, b = 0. It is obvious
that we can assume that c0 satisfies condition (35) by choosing a proper shift, so
c0 ∈ B20.

By Lemmas 3.2, 3.3 and the assumptions concerning the functions f(c) and
r(c, h, b), the mappings Φ1, Φ2, Φ3 are well determined mappings of some open
neighbourhood of (0, 0, c0, v10, . . . , vn0, q0, 0) ∈ B∗1 ×B∗1 ×B20 ×Bn2 × IR1 × IR1 to
the space B∗1 , B∗1 and B0 × Bn0 respectively. They are also continuously Frechet
differentiable with respect to (h, b, c, v1, . . . , vn, q).

According to the implicit function theorem, to prove the existence of solutions
for ε 6= 0, it suffices to show that the linear operator

DΦ(h, b, c, v1, . . . , vn, q, ε)|(0,0,c0,v10,...,vn0,q0,0) =

(DΦ1, DΦ2, DΦ3) (0, 0, c0, v10, . . . , vn0, q0, 0)

(acting from the space B∗1 ×B∗1 ×B20×Bn2 × IR1 to the space B∗1 ×B∗1 ×B0×Bn0 )
is boundedly invertible. By means of Theorem 4.2-H p.180 in [23]), it is sufficient
to prove that the system:

DΦi(0, 0, c0, v10, . . . , vn0, q0, 0)[δh, δb, δc, δv1, . . . , δvn, δq] = fi, i = 1, 2, 3,

has for all f1 ∈ B∗1 , f2 ∈ B∗1 , f3 ∈ B0 ×Bn0 a uniquely determined solution

(δh, δb, δc, δv1, . . . , δvn, δq) ∈ B∗1 ×B∗1 ×B20 ×Bn2 × IR1.

Let us note that, by Lemmas 3.2 and 3.3, that for i = 1, 2 the equations

DΦi(0, 0, c0, v10, . . . , vn0, q0, 0)[δh, δb, δc, δv1, . . . , δvn, δq] = fi



754 BOGDAN KAZMIERCZAK AND ZBIGNIEW PERADZYNSKI

have simply the form:

δh = f1, δb = f2

so they are uniquely solvable. In this way the problem is led to the solvability of
the system

DΦ3(0, 0, c0, v10, . . . , vn0, q0, 0)[f1, f2, δc, δv1, . . . , δvn, δq] = f3, (40)

for δc, δv1, . . . , δvn and δq, where f1 and f2 are given.
This will be proven in Appendix 2.
We have thus proved the following existence theorem.

Theorem 3.4. Let Assumptions 1-4 hold. Then for ε2 sufficiently small there ex-
ists a unique value of the parameter qε and a corresponding heteroclinic solution
(hε(·), bε(·), cε(·), vε1(·), . . . , vεn(·)) of system (30),(31), (32),(33) satisfying condi-
tions (34), belonging to the space B1 ×B1 ×B20 ×Bn2 such that as ε→ 0

qε → q0, ‖hε‖B1 → 0, ‖bε‖B1 → 0,

‖cε − c0‖B20
→ 0, ‖vεi − v0i‖B2

→ 0, i = 1, . . . , n.

4. Positivity of calcium and buffers concentrations. In this section we prove
that Assumption 2 implies non-negativity of concentration of calcium and buffers
in the case travelling wave solutions.

Theorem 4.1. Let (hε(·), bε(·), cε(·), vε1(·), . . . , vεn(·)) denote the unique hetero-
clinic solution of system (30),(31), (32),(33) given in Theorem 3.4 corresponding
to a unique speed parameter qε. Suppose that ki− > 0, ki+ > 0 and that Assumption

2 holds. Then cε(ξ) > 0 and 0 < vεi(ξ) < bi0 for all ξ ∈ IR1, i = 1, . . . , n.

Proof. Let

θε = hε + θ0(cε), ηε = bε + η0(cε).

Obviously, (cε(·), vε1(·), . . . , vεn(·)) satisfy the system

D0c
′′ + qc′ + S(c, θε, ηε) +

n∑
i=1

[ki−vi − ki+c(bi0 − vi)] = 0 (41)

Div
′′
i + qv′i − [ki−vi − ki+c(bi0 − vi)] = 0 (42)

where we have suppressed the dependence of c(·) and vi(·) on the parameter ε for
simplicity of notation (but we retained it as an index in θε and ηε). Though the
function S(c, θ, η) has no physical sense for negative concentrations of calcium, yet,
for the need of the monotonicity proof, it is necessary to extend it also for c < 0.
By means of Assumption 2, we can conclude that for every C1-extension of S, there
exists cm < 0 such that

S(c, θ, η) > 0 for c ∈ [cm, 0] (43)

independently of θ, η ∈ IR1. Moreover, by decreasing cm, if necessary, we can
guarantee that

kj− + kj+cm > 0. (44)

The idea of the proof is to take advantage of the continuous dependence of the
solutions on the parameter ε. For ε = 0, according to Theorem 2.1, the functions
c(ξ) and vi(ξ) are monotone, so non-negative (because they satisfy conditions (34)).
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Suppose to the contrary that there exists ε > 0 such that at a point ξ = y we
have c(y) ∈ (cm, 0] and that this is a global minimum of the function c(·). According
to (43) we have from (41):

n∑
i=1

[ki−vi(y)− ki+(c(y))c(y)(bi0 − vi(y))] < 0 (45)

thus at least for one i, say for i = j, we have

[kj−vj(y)− kj+(c(y))c(y)(bj0 − vj(y))] < 0. (46)

Moreover, as vj ∈ B2, then it must attain a global minimum at some point yj ,
which yj may be finite or infinite. In both of the cases we have

[kj−vj(yj)− k
j
+(c(yj))c(yj)(b

j
0 − vj(yj))] ≥ 0. (47)

Using (43),(44) and solving (46) and (47) we get

vj(y) < bj0k
j
+(c(y))c(y)/(kj− + kj+(c(y))c(y)) (48)

and

vj(yj) ≥ bj0k
j
+(c(yj))c(yj)/(k

j
− + kj+(c(yj))c(yj)), (49)

with

c(y) ≤ c(yj), vj(yj) ≤ vj(y). (50)

Note that the function p/(kj− + p) is strictly increasing with p for all p > −kj−.
Hence as, according to (44) the left hand side of (48) is not larger than the right
hand side of (49). Hence

vj(y) < vj(yj).

Thus we have arrived at contradiction as vj has been assumed to achieve its global
minimum for ξ = yj . Thus c(ξ) > 0 for all ξ. Having proved the positivity of the
function c we can easily prove that vj(ξ) > 0 for all ξ. (By supposing that vj attains
a non-positive minimum at some point yj we arrive at contradiction by using the

maximum principle.) Likewise, we can easily prove that vj(ξ) < bj0.

5. Conclusions. Applying the power series expansion in the variables orthogonal
to the lateral boundary of the tissue (thin layer, or thin cylinder), it is possible
to obtain approximate equations for mechanical equilibrium of the viscoelastic ma-
terial, such that the entries of the strain tensor are dependent only on the wave
variable x1 − qt, yet the motion of the material in the other directions is possible.
In the frame of this approximation we prove the existence of travelling wave solu-
tions to reaction-diffusion equations for calcium and buffers coupled with equations
for mechanical equilibrium. Under the physically justified Assumption 2, we prove
also positivity of the calcium and buffer concentrations. The existence of mechano-
chemical travelling waves was discussed also in [11], under the condition od infinitely
fast reaction terms for buffers. In such a case the chemical part of the system is
reduced to a single reaction-diffusion equation with additional quadratic gradient
term. In [18] the perturbation technique is applied to obtain a single approximate
reaction-diffusion equation describing the propagation of mechanochemical waves;
this again is possible to do for very fast buffers.
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Appendix 1. Proof of Lemma 3.2
Below, for the sake of clarity, we will confine ourselves to the case of constant

µ1, µ2, E and ν. This implies that the quantities µ, K and β are constant.

Lemma 5.1. Let ε2 > 0, F ∈ B1(IR1), G > 0. Then

I(ξ) :=

∫ ξ

−∞
exp[−(ξ − s)/(ε2G)]F (s)ds = ε2GF (ξ) +O(ε4) (51)

and

I ′(ξ) = ε2GF ′(ξ) + o(ε2) (52)

as ε→ 0. Moreover, I(ξ) and I ′(ξ) are continuous functions of ε2.

Proof. In the proof we will make use of the following indefinite integral identity:∫
xm exp(ax)dx = exp(ax){a−1xm +

m∑
k=1

(−1)ka−k−1xm−k

m(m− 1) . . . (m− k + 1)}.

To prove the first equality of the lemma, let us divide the region of integration
(−∞, ξ) into two parts (−∞, ξ − ω] and (ξ − ω, ξ), where ω = |ε|5/4. In the first
interval we have

|
∫ ξ−ω

−∞
exp[−(ξ − s)/(ε2G)]F (s)ds| ≤ ‖F‖B0ε

2G exp[−1/(|ε|3/4G))] =

O(exp[−1/(|ε|3/4G)]),

(53)

as ε2 → 0. As F is continuously differentiable, then for s ∈ (ξ − ω, ξ), F (s) =
F (ξ) + q(s, ξ)(s− ξ). So, in the second interval we have∫ ξ

ξ−ω exp[−(ξ − s)/(ε2G)]F (s)ds =∫ ξ
ξ−ω exp[−(ξ − s)/(ε2G)][F (ξ) + q(s, ξ)(s− ξ)]ds = ε2GF (ξ) +O(ε4).

(54)

Hence we obtain (51). Consequently

I ′(ξ) = F (ξ)− 1/(ε2G)
∫ ξ
−∞ exp[−(ξ − s)/(ε2G)]F (s)ds =

1/(ε2G)
∫ ξ−ω
−∞ [−(ξ − s)/(ε2G)](F ′(ξ + θ(s, ξ)(s− ξ))(s− ξ)ds

+1/(ε2G)
∫ ξ
ξ−ω[−(ξ − s)/(ε2G)](F ′(ξ + θ(s, ξ)(s− ξ))(s− ξ)ds) =

O(exp[−1/(|ε|3/4G)]) + ε2F ′(ξ)G+ o(ε2)

proving the second equality of the lemma.

Taking 1/G = −K(µq)−1 we conclude that

H(c, q, ε)(ξ) = −ε2K−1µq κ(c(ξ)) c′(ξ) +O(ε4), (55)

so we have ‖H(c, q, ε)(·)‖B0
→ 0 as ε→ 0. By Eq.(30) and Lemma 5.1 we conclude

that for all ξ ∈ IR1

(H(c, q, ε)(ξ))′ = O(ε2). (56)

Hence,

‖H(c, q, ε)(·)‖B∗
1
→ 0 for ε→ 0. (57)



CALCIUM WAVES WITH MECHANO-CHEMICAL COUPLINGS 757

Thus the definition of the operator can be extended to the segment (−ε0, ε0) by
taking

H(c, q, 0) = 0.

For simplicity, the extended operator will be denoted also by H. Now, let us note
that for any (c, q) ∈ B20 × IR1, the Frechet derivative DH(c, q, ε) of the operator
H with respect to (c, q) at a point (c, q, ε) with acting on the vector [δc, δq] has the
following form:

DH(c, q, ε)[δc, δq](ξ) =

∫ ξ

−∞
exp

[
−(ξ − s) K

ε2µq

]
×

1

K

{
τ,cc(c(s))c

′(s)δc(s) + τ,c(c(s))(δc)
′(s) + (ξ − s) K

ε2µq2
τ,c(c(s))c

′(s)δq

}
ds

(58)
Now, using Assumption 3, we may proceed similarly as in the proof of Lemma

5.1, dividing the region of integration into two parts and carrying out appropriate
estimations. Thus

DH(c, q, ε)[δc, δq](ξ) =

ε2 µ
K2 q

{
τ,cc(c(ξ))c

′(ξ)δc(ξ) + (τ,c(c(ξ))(δc)
′(ξ) + (τ,c(c(ξ))q

−1δq
}

+O(ε4).

Differentiating (58) and continuing as in the proof of Lemma 5.1, one can show that

‖DH(c, q, ε)[δc, δq]‖B∗
1

= O(ε2) (‖δc‖B2
+ |δq|) for ε→ 0. (59)

Thus for ε ∈ (−ε0, 0) ∪ (0, ε0) the Frechet derivative DH(c, q, ε) is well defined
and DH : B20 × IR1 → B∗1 . Moreover, similarly as in the case of H, we can extend
the definition of DH also for ε = 0, by means of (39). Namely, we set

DH(c, q, 0) = 0. (60)

Hence DH is continuous with respect to ε and DH → 0 in the operator norm as
ε→ 0.

Appendix 2. Solvability of system (40)
System (40) (for δc, δv1, . . . , δvn and δq) can be written explicitly as

AδU ′′ + q0δU
′ + δq U ′ + ∂UF (U(ξ))δU = l, (61)

Above we have denoted

U(ξ) = (U0(ξ), U1(ξ), . . . , Un(ξ)) := (c0(ξ), v10(ξ), . . . , vn0(ξ)),

δU = (δc, δv1, . . . , δvn)T ,

A = diag(D0, D1, . . . , Dn),

F0(U) = f(U0) +
∑n
i=1Gi(U0, Ui), Fi(U) = −Gi(U0, Ui), i = 1, . . . , n,

and
l = (f30 − (r,h(c0, 0, 0)f1 + r,b(c0, 0, 0)f2), f32, . . . , f3n) .

Let us consider the homogeneous part of system (61), assuming for a while that
δq is known:

AδU ′′ + q0δU
′ + ∂UF (U(ξ))δU = 0. (62)

It is easy to check, by using Assumption 4 and the form of the functions Gi, i =
1, . . . , n, that we can use Theorem 4.5.1 in [24] to conclude that system (62) has
no other bounded solution, but δU(ξ) = U ′(ξ). This solution, does not, however,
belong to the space B20, because U ′0(0) = c′0(0) 6= 0, (according to Theorem 2.1),
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so condition (35) is not satisfied. Similarly, by Theorem 4.5.1 in [24], there exists
exactly one bounded solution V of the adjoint system:

AV ′′ − q0V ′ + (∂UF (U(ξ)))TV = 0. (63)

All components Vi of V are positive.
Now, we can write system (62) as a system of first order equations:(

δU

δZ

)′
+ B

(
δU

δZ

)
= 0, (64)

where

B =

(
0(n+1)×(n+1) −I(n+1)×(n+1)

A−1∂F (U(ξ)) A−1I(n+1)×(n+1)q0

)
(65)

where δZ is a vector variable standing for δU ′ = ((δc)′, (δv1)′, . . . , (δvn)′)T . Let us
note that, for any q0 ∈ IR1, the eigenvalues of the matrices B(−∞) and B(∞) have
nonzero real part. To be more precise, exactly n+1 of their eigenvalues have negative
real part and n+1 eigenvalues have positive real part (Theorems 3.2 and 3.3 in [2]).
By what we have said above, there is only one bounded solution of system (64) and
one bounded solution to the system adjoint to (64). Hence, by using Lemma 4.2
in [17], we infer that the linear operator J given by the left hand side of (64) (as
acting from the space of vector functions (δU, δZ) ∈ (B1(IR1))n+1 × (B1(IR1))n+1

to (B0(IR1))n+1 × (B0(IR1))n+1) is Fredholm with index 0. Thus, the equation
J(δU, δZ)T = f has a unique bounded solution provided f is orthogonal to the
mentioned above solution of the adjoint system. Applying these results to system
(61), we conclude that it has a unique solution (c, v1, . . . , vn) ∈ B20 × (B2)n, iff∫

IR1

n∑
k=0

[lk(ξ)− δqU ′k(ξ)]Vk(ξ)dξ = 0, (66)

This condition determines uniquely δq. Thus the unique solvability of system (40)
is proven. Similar approach to the problem of solvability of system (40) is given in
[14].
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