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Abstract. The problem of feature selection for large-scale genomic data, for

example from DNA microarray experiments, is one of the fundamental and

well-investigated problems in modern computational biology. From the com-
putational point of view, a selected gene list should be characterized by good

predictive power and should be understood and well explained from the biolog-
ical point of view. Recently, another feature of selected gene lists is increasingly

investigated, namely their stability which measures how the content and/or the

gene order change when the data are perturbed. In this paper we propose a
new approach to analysis of gene list stability, termed the sensitivity index,

that does not require any data perturbation and allows the gene list that is

most reliable in a biological sense to be chosen.

1. Introduction. Present techniques in molecular biology such as DNA microar-
rays, mass spectrometry, and deep sequencing deliver vast data sets. A common
property of these data sets is that the number of features (genes, peptides, etc.)
is much greater than the number of samples (observations). This requires careful
feature selection as the very first step of supervised data analysis.

Many methods of gene selection have been proposed in the literature, which
may be divided into two groups: univariate methods and multivariate methods.
Univariate methods grade all genes separately by using statistical methods, and
create a gene ranking in which the top genes are assumed to be the most informative
(discriminative). Multivariate methods, roughly speaking, try to find the best gene
set instead of a set of the best genes [12, 13, 17], and theoretically should give
better gene signatures due to the fact that they may take into account interactions
between genes. However, practice shows that for real data, especially with a small
number of observations, this is not always true. So far there is no agreement which
approach to feature selection is better, univariate or multivariate, mainly because
of the problem of multiple hypothesis testing. For univariate methods we test G
hypotheses where G is the number of genes (features), which is huge (thousands).
For multivariate methods, this problem is even more evident and severe because the
number of tested hypotheses is equal to the number of all possible sets of genes. For
this reason, the risk of false-positive results increases and sometimes multivariate
methods appear less suitable than univariate methods, see for example [20]. This
explains why univariate methods are still popular. In this paper we focus on these
methods.
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Recently, the so-called stability of gene lists [3, 18] has drawn the attention
of scientists dealing with large-scale biological data. Gene list stability is very
important from a biological point of view. It is known that many different gene
subsets may give comparable predictive power of a classifier trained on these sets,
which sometimes leads to confusion and problems with biological interpretation of
the genes identified. Although classification quality is associated with stability,
the connection is still not well understood. Moreover, a higher stability may not
indicate higher quality of classification. For example, we can imagine a ranking
method that always chooses the same genes as top-genes; such a gene list would
be perfectly stable, but the quality of classification based on those selected genes
would be poor. Taking this into account, it is better to use the ranking method that
gives more stable lists, while at the same time preserving good predictive power.

The stabilities of gene lists are measured by introducing a perturbation to the
original data set and examining how the content of the top-gene list and its order
were changed. When the list created on the basis of the perturbed data set is exactly
the same as that formed on the basis of the original data, we say that this gene
list is perfectly stable. The data may be perturbed in different ways; typically the
original data set may be re-sampled, using for example a bootstrap technique, or
the data may be changed by adding noise to the data matrix. Both these methods
are computationally intensive because they require generation of many altered lists
(as a result of data perturbation) and comparing them to the original list.

Perturbation methods may also affect the results, and among other things this
was the reason for the creation of the new approach described in this paper. Unlike
all existing methods of gene list stability analysis, this method does not require
any data perturbation, resulting in a significant reduction of computational time.
Moreover, to use standard methods a data set must contain enough observations
to enable perturbation, introduced for example by re-sampling. In the case of the
sensitivity index the minimum number of observations is determined by a ranking
method (eg. for Student’s t-test the number is 4, and for Fold Change 2). The basic
idea of the approach proposed here is to calculate the sensitivity of the statistics
used for creation of a gene ranking with respect to changes of the feature values (for
example, gene expression). Then an aggregate sensitivity index for the whole data
set is defined, whose value specifies the average percentage of data variation that
may change the list order. The proposed method usually gives different results of
stability than existing stability indexes, i.e. indicates different ranking methods as
the most stable. This is because of different numerical approach to data analysis
(lack of data perturbation). To examine this differences a biomedical analysis of
genes from obtained lists was performed. The approach was tested on two DNA
microarray data sets, a colon data set and an ovarian data set. For both data
sets the sensitivity index indicated as the most stable lists of genes with stronger
association with the particular disease than other methods. The sensitivity index
was also tested on artificially generated data.

This article is organized as follows: Section 2 describes the gene ranking methods
analyzed in this paper, and Section 3 contains a description of known gene list
stability assessment. Our new approach (sensitivity index) is presented in Section
4, and finally the results of our study are presented in Section 5.
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2. Gene ranking methods. We concentrate on comparisons between two groups
of samples (patients), T for treated and C for control. In this section the most
common statistics used for generation of ranked lists are shortly described.

2.1. Fold Change (FC). Fold change is one of the most popular gene ranking
methods. The formula used in this work for FC is [35]:

fcj = |xtj − xcj | (1)

where xtj and xcj are means of log2 values of expression for the j-th gene in groups
T and C respectively.

2.2. Probability Fold Change (PFC). The Probability Fold Change is the mod-
ification of FC [7]:

Sθ,j = max(fcj − t1−θ,ksej , 0) (2)

where t is the critical value in Student’s t-test for k degrees of freedom (k = nt +
nc − 2), nt and nc are the numbers of observations in groups T and C respectively,
and θ is the confidence degree (in this work we have used θ = 0.95). se in equation
(2) is the standard error:

sej = spj

√
1

nt
+

1

nc
(3)

where sp2 is the pooled sample variance:

sp2
j =

(nt − 1)s2
tj + (nc − 1)s2

cj

nt + nc − 2
(4)

st and sc denotes the standard deviations for the j-th gene in groups T and C
respectively.

2.3. Student’s t-test. Student’s t-test, like Fold Change, is one of the most pop-
ular gene ranking methods and can be calculated as:

tj =
fcj
sej

(5)

2.4. Welch t-test. The Welch t-test is a modification of the Student’s t-test, and
in contrast to the Student’s t-test allows unequal variances in groups. This statistic
can be calculated by the formula:

tgj =
fcj√

var(xtj)
nt

+
var(xcj)

nc

(6)

where var(xtj) and var(xcj) are the variances of the j-th gene in groups T and C
respectively.

2.5. Bayesian t-test (BAYT). The Bayesian t-test, also known as Cyber-T or
BL, can be calculated by the formula:

baytj =
fc

se′j
(7)

where

se′j =

√
v0se2

0 +
(nt + nc − 1)se2

j

v0 + nt + nc − 2
(8)
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v0 and se0 are the global variables [7].

se0 =

√∑g
m=1 se

2
m

g
(9)

g in the above formula is the total number of all genes.
The default value of v0 is 10− nt − nc. Since v0 cannot take a negative value and
the used data sets used consists of more than 10 observations, in this work we have
used a value v0 = |10− nt − nc|.
In the case when v0 = 0 the BAYT statistic gives the same results as Student’s
t-test.

2.6. Significance analysis of microarrays (SAM). Significance analysis of mi-
croarrays is another modification of Student’s t-test and is given by equation [7, 32]:

samj =
fcj

sej + c
(10)

where c is a constant estimated as 90% percentile of the values of standard error
estimated for all genes.

2.7. Signal to Noise ratio (SN). SN is another method where each gene is ex-
amined separately and genes are ranked by the value of sn [29]:

snj =
fc

stj + scj
(11)

3. Methods for gene list stability assessment. In this section several existing
methods for gene list stability assessment will be defined. In all these methods the
original gene list is compared to lists generated by the ranking method based on
perturbed data sets, for example by using the bootstrap technique.

3.1. Stability index s. The value of the index s is calculated according to the
formula [30]:

s = 1−
B∑
b=1

G∑
j=1

2|rj − r′bj |
BG(G+ 1)

. (12)

where B is the number of bootstrap probes, G is the chosen number of genes falling
within the list, rj is the rank of gene j in the original gene list1 and r′bj is the rank

of the j-th gene on the b-th bootstrap gene list2.
If the gene does not exist in the b-th bootstrap G-top genes list, it receives the

rank r′bj = G+ 1.
The higher the value of s obtained, the more stable is the gene list, and for a

perfectly stable gene list s equals 1.

1Gene list generated on the base of the original data set
2Gene list generated on the base of the bootstrap probe
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3.2. Stability index s1. Another stability index is s1 [3]:

s1 =

G∑
j=1

I(rj ≤ G ∧ r′bj ≤ G). (13)

Function I equals 1 when the j-th gene form the original gene list falls within the
bootstrap gene list, regardless its position on both of those lists.

Formally, for an unstable gene list s1 equals 0, and for a stable gene list G. How-
ever, in this paper the s1 value is scaled so that its maximum value was 1 for a
perfectly stable gene list.

3.3. Stability index s2 and CAT plot. In order to calculate values of the s2

index [3], we use the s1 index (13) according to the formula:

s2 =
s1

2G− s1
. (14)

The maximum value of s2 for a perfectly stable gene list is 1.
To obtain the CAT (Correspondence At the Top) plot we need to calculate values

of s2 for a gene list containing g = 1, 2, . . . , G top-genes. This plot shows the change
of gene list stability depending on the selected number of genes that fall within the
list.

3.4. Union number. Union Number (UN) [18] is the number of unique genes that
falls within the B bootstrap gene lists. In this paper we have scaled this index so
that for a perfectly stable gene list it equals 0 and for an unstable gene list 1 [18].

3.5. Bootstrap based feature ranking plot. In this paper we use the Boostrap
Based Feature Ranking (BBFR) score Qj [30, 11]:

Qj =
1

B

B∑
b=1

qbj . (15)

qbj equals 1 if the j-th gene from the original gene list is on the b-th bootstrap list,
and 0 otherwise.

Values of Qj are sorted in descending order and scaled by 1/B. The maximum
value of Qj is 1, which informs that the j-th gene falls within all of the B bootstrap
lists.

When on the abscissa we mark the number of gene (j), and on the ordinate Qj
we obtain BBFR plot.

4. Sensitivity index. All of those described indexes are based on comparison
between the original gene list and bootstrap gene lists. The bootstrap method
implements into data changes so large that they cannot be assumed to be only
simple noise. If we would add gaussian noise to the data set so it would be a little
different from the original one, there would be a problem of choosing the level of
the noise and the percentage of the data set to be changed. Therefore it is worth
considering a method of assessing the stability of a gene list without changing the
original data set.

We assume that all genes are sorted according to the statistic values in descending
order i.e. st1 ≥ st2 ≥ . . . ≥ stG. The distances between the j-th statistic and its
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two neighboring statistics are stj−1− stj and stj − stj+1 respectively. The mean of
these two distances is

Dj =
stj−1 − stj+1

2
(16)

and its value denotes how the statistic value should change (on average) so that it
would change the position of the j-th gene on the list.

After calculation of the derivative of the statistics used for ranking genes with
respect to the expression value xji (for the j-th gene and the i-th observation)
we obtained the sensitivity of ranking methods to a small change in the observed
expression values:

Sji =
∂st

∂xji
. (17)

For all popular statistics used for gene rankings it is possible to derive sensitivities
(17) analytically, which are presented in the Appendix. Alternatively, the finite
difference approximation may be used.

The change of the statistic stj depends on the change of xji and may be expressed
approximately using the sensitivity (17):

∆stj ≈ Sji∆xji (18)

Substituting ∆stj by Dj and solving (18) with respect to ∆xji one can estimate
∆xji sufficient to change the position of the j-th gene in the ranking as ∆xji ≈
|Dj/Sji|. This quantity expressed as the relative percentage change of xji gives

%xji ≈
∣∣∣∣ Dj

Sjixji

∣∣∣∣ · 100%. (19)

Now, let us define the sensitivity index for the j-th gene as the right side of (19)
averaged over all N observations:

Wj =
1

N

N∑
i=1

∣∣∣∣ Dj

Sjixji

∣∣∣∣ · 100%. (20)

The sensitivity index Wj measures the stability of the position of the j-th gene
in the ranking. Therefore the average value of Wj over all G genes:

W =
1

G

G∑
j=1

Wj (21)

will be a measure of the stability of the whole gene list and consequently the stability
of the ranking method which was used to establish the list. The gene list for which
we obtain the highest value of W is the most stable. It is worth noting that this
method is very useful when our data set consist of a small number of observations
(too small to use a bootstrap method for generating probes). The minimal number
of observations in this case determines ranking methods (for those methods used in
this paper the minimum number of observations is 2 in each group).

5. Results. In this section we present the results of gene list stability analysis
and assessment of classifier performance on the base of microarray data sets from
experiments on samples of colon and ovarian cancer, and an artificial data set. The
same methods of gene selection, classifiers and classification quality indexes were
used for all data sets. Then the biomedical analysis were done for two real data sets.
The next two subsections explain in details how above analysis were performed.
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5.1. Methods of feature selection, classification and classification qual-
ity assessment. Gene lists are generated with ranking methods. In this paper
we use the most common ranking methods: Fold Change (FC), Probability Fold
Change (PFC), Student’s t-test, Welch t-test, Bayesian t-test, Significance Analysis
of Microarrays (SAM) and Signal to Noise ratio (SN).

Although stability measure is very important, it cannot be properly interpreted
without evaluation of classifier performance and for this reason we have implemented
two classifiers: Support Vector Machine (SVM) and Diagonal Linear Discriminant
Analysis (DLDA) [15, 8, 9].

For classifier performance assessment we use specificity, sensitivity, accuracy and
area under ROC curve (AUC). We used values of B = 1000 for the number of
bootstrap probes generated and G = 50 for the number of top genes within the
gene list.

5.2. Biomedical analysis. In order to assess the reliability of a gene list (in the
biological sense), we performed comparisons with the biomedical data. Primarily
we selected the most stable gene lists on the basis of the sensitivity index W or on
the basis of indexes s and s1, and then we selected those genes that were on only one
of these two lists, omitting genes common to both lists. We therefore obtained as
the result two gene lists with less than 50 genes that were unique for the particular
original gene list (one created with the method selected with indexes s and s1, and
one created with the method selected with sensitivity index W ). Subsequently,
because of the large number of genes in the lists for colon cancer we selected 10
with the highest ranks from those gene lists and then we searched in databases and
the literature whether there exist any relationships between the selected genes and
a particular disease. For the ovarian cancer data set the number of examined genes
was shorter and was equal to 5.

5.3. Colon cancer data set. The colon cancer data set was collected in the Can-
cer Center and Institute of Oncology in Warsaw to identify genes differentially
expressed in normal and cancer cells. The data set includes expression levels for
19058 genes from 82 samples, 34 from colon cancer tissue and 48 from normal tissue.
In Table 1 are presented the results of stability analysis. Similarly, in Figs. 1 - 3
and in Figs. 5 - 6 are shown the values of stability indexes based on comparisons
between the original and bootstrap gene lists with confidence intervals estimated
by the percentile method marked for indexes s1,s2. The values of index W are
presented in Fig. 4.

Table 1. Stability indexes values.

Student’s Bayesian Welch
FC PFC

t-test t-test
SAM SN

t-test

s 0.7626 0.7747 0.5734 0.7665 0.6788 0.5378 0.5315
s1 0.8776 0.9045 0.7158 0.8705 0.8018 0.644 0.6315
s2 0.7842 0.8273 0.5607 0.7733 0.6718 0.4791 0.4659
UN 0.0017 0.0015 0.0064 0.0018 0.0028 0.0094 0.0096
W 0.3898 0.4131 0.6037 1.4900 3.2160 1.7480 1.1520

In Table 2 are presented values of those scores for the SVM classifier and in
Table 3 for the DLDA classifier. Bar charts with the AUC values are shown in
Figs. 7 and 8.
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Figure 1.
Index s

Figure 2.
Index s1

Figure 3.
Index UN

Figure 4.
Index W

Figure 5. BBFR chart

Figure 6. CAT chart
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Table 2. Evaluation of SVM classifier performance.

Student’s Bayesian Welch
FC PFC

t-test t-test
SAM SN

t-test

sensitivity 0.9989 0.9988 0.9989 0.9992 0.9999 0.9994 0.9993
specificity 0.9883 0.9882 0.9933 0.9883 0.9884 0.9883 0.9879
accuracy 0.994 0.9939 0.9964 0.9942 0.9947 0.9944 0.9941

AUC 0.9998 0.9998 0.9999 0.9998 0.9998 0.9996 0.9996

Table 3. Evaluation of DLDA classifier performance.

Student’s Bayesian Welch
FC PFC

t-test t-test
SAM SN

t-test

sensitivity 0.9845 0.9890 0.9912 0.9844 0.9913 0.9875 0.9844
specificity 0.9623 0.9695 0.9965 0.9613 0.9671 0.9787 0.9799
accuracy 0.9745 0.9802 0.9933 0.974 0.9804 0.9834 0.9823

AUC 0.9939 0.9962 0.9989 0.9937 0.9897 0.9913 0.9918

Figure 7.
Values of AUC.
SVM classifier.

Figure 8.
Values of AUC.
DLDA classifier.

As the result, we obtained a set of values of stability indexes and classifier perfor-
mance scores for gene lists generated with the ranking methods fold change (FC),
Probability Fold Change (PFC), Student’s t-test, Welch t-test, Bayesian t-test, Sig-
nificance Analysis of Microarrays (SAM) and signal to noise ratio (SN).

In the case of the microarray data set obtained for samples of colon cancer and
comparisons between normal and cancer cells, the indexes s,s1,s2,UN and plots:
CAT and BBFR plots show that the most stable gene list was generated with the
PFC method. However, the W index indicates SAM as the best method to rank
genes. Because evaluation of classifier performance shows no statistically significant
difference in those two ranking methods, both of them can be used to generate stable
gene lists.

However, before making a final decision one should consider whether in the bio-
logical sense the first items on the lists of genes are verified.

The comparison with biomedical data is presented in Tables 4 and 5.
On the basis of the comparisons with biomedical data we can say that the better

method to rank genes is that indicated by the sensitivity index W which is SAM.
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Table 4. Comparison with biomedical data for colon cancer. Gene
list created with the PFC method.

Colon cancer PFC list (indexes s and s1)

Gene name Alias
Gene
rank

Association with colorectal can-
cer

CA2 CAC, CAII,
Car2, CA-II

5 Association with colon cancer was not found.

CA7 CAVII 7
According to [39] there is association of this
gene with colon cancer.

CLDN23 hCG1646163,
CLDNL

11

The protein encoded by CLDN23 is a mem-
ber of integral membrane proteins and tight
junction strands. According to [40] CLDN23
is expressed in colon tumors, germinal cen-
ter B-cells, placenta, and stomach. Moreover
this gene is down-regulated in intestinal-type
gastric cancer [40]

HEPACAM2 MIKI,
UNQ305/PRO346

13

HEPACAM2 takes part in mitotic division.
Lack of HEPACAM2 may lead to mitotic
arrest, disorganized spindles, and scattered
chromosomes. It is thought that this gene
may be a myeloid tumor suppressor [41].
However, direct association with colon can-
cer was not found.

CLCA1

CACC, CACC1,
CLCRG1,
CaCC-1, GOB5,
hCLCA1,
hCaCC-1

19

CLCA1 is a member of the protein family
calcium-sensitive chloride conductance chan-
nel [40]. Moreover, according to [38] this
gene is significantly down regulated in colon
cancer.

CHI3L1

ASRT7, CGP-39,
GP-39, GP39,
HC-gp39, HCGP-
3P, YKL-40,
YKL40, YYL-40,
hCGP-39

20

CHI3L1 encodes a glycoprotein which is
thought to be involved in the processes of tis-
sue remodeling and inflammation. CHI3L1
is expressed in cancer cells according to
immunohistochemical analysis [19]. More-
over, the authors of [19] claim that it pro-
motes cancer cell proliferation, angiogenesis,
and macrophage recruitment in colon cancer
cells. The association of CHI3L1 with colon
cancer is also mentioned in [6] and [5]

CEACAM7 CEA, CGM2 21

CEACAM7 (carcinoembryonic antigen-
related cell adhesion molecule 7) plays a role
in tumor differentiation [36]. Furthermore,
according to [27] CEACAM7 is down-
regulated in colon cancer cells.Additionally,
the association between CEACAM7 gene
and colon cancer is mentioned in [31]

HHLA2 B7H7 22 Association with colon cancer was not found.

C1orf115 RP11-322F10.4 23 Association with colon cancer was not found.

ITLN1

UNQ640/PRO1270,
HL-1, HL1,
INTL, ITLN,
LFR, hIntL,
omentin

24

According to [37] ITLN1 is expressed on col-
orectal cancer cells. Moreover, the associa-
tion between ITLN1 and colon cancer is men-
tioned in [33]

Number

of genes

for which

association

with colon

cancer was

found

6
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Table 5. Comparison with biomedical data for colon cancer. Gene
list created with the SAM method.

Colon cancer SAM list (index W )

Gene name Alias
Gene
rank

Association with colorectal cancer

NFE2L3 NRF3 5

NFE2L3 is expressed in colorectal tumors
[37] Furthermore, it is reported that NFE2L3
mRNA is over-expressed in colorectal tumors
when compared to normal cells [25]

OSTbeta OSTB, OST-
BETA

6

The organic solute transporter beta is ex-
pressed in colorectal tumors [37]. Moreover,
according to [2] it plays a role in transporta-
tion of inter alia bile acids. Up-regulation
of OSTbeta leads to toxic accumulation of
bile acids, and colon cancer is related to their
concentration [2]

TGFBI

BIGH3, CDB1,
CDG2, CDGG1,
CSD, CSD1,
CSD2, CSD3,
EBMD, LCD1

12

According to [37] is expressed in colorectal
tumors. Furthermore, TGFBI might be a
promoter or suppressor of cancer growth de-
pending on the tissue [16]. In colon can-
cers the protein encoded by TGFBI is up-
regulated which increases cell migration and
metastatic potential [16]. Additionally, the
association between TGFBI is mentioned in
[21].

SPIB SPI-B 14 Association with colon cancer was not found.

MT1M MT-1M, MT-IM,
MT1, MT1K

17 Association with colon cancer was not found.

UGT2B17 UDPGT2B17 20

UGT2B17 belongs to the UDP glucuronosyl-
transferase 2 polypeptide family [41] which
catalyze the transfer of glucuronic acid.
Acording to [44] it is highly expressed in
colon, and according to [37] it is expressed
in colorectal tumors.

TSPAN7

A15, CCG-
B7, CD231,
DXS1692E,
MRX58, MXS1,
TALLA-1,
TM4SF2,
TM4SF2b,

22

The protein encoded by TSPAN7 belongs to
the tetraspanin family. According to [43]
inhibition of TSPAN7 correlates with de-
creased proliferation of colon cancer cells.
Moreover according to [37] is expressed in
colorectal tumors.

SCNN1B
hCG 23853,
BESC1, ENaCb,
ENaCbeta,
SCNEB

23

According to [38] one of the functions of
SCNN1B is to control the reabsorption of
sodium in kidney, colon, lung, and sweat
glands. Although SCNN1B was not consid-
ered as a carcinogenic protein it is expressed
in colorectal tumors [37] but the authors of
[14] noticed significant under-expression in
colorectal tumors in comparison with nor-
mal tissue. The association of SCNN1B with
colon cancer is also mentioned in [10]

TESC CHP3, TSC 25

According to [37] TESC is expressed in col-
orectal tumors.Although according to [28]
the relationship of TESC with colorectal
cancer has not yet been examined, these au-
thors claim that it is one of the highly puta-
tive colon cancer markers.

SCIN 27

According to [37] SCIN is expressed in col-
orectal tumors. Furthermore, it is up-
regulated in colon cancer cells in comparison
with normal cells [42]. Moreover the same
authors claim that high expression of this
gene is an independent risk factor for prog-
nosis of colorectal cancer liver metastasis.

Number

of genes

for which

association

with colon

cancer was

found

8
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5.4. Ovarian cancer data set. In this subsection we present the results of sta-
bility analysis and assessment of classifier performance based on an ovarian cancer
microarray data set that was collected in the Cancer Center in Warsaw. Genes
expressed differentially between cells with a mutated P53 gene and cells with the
proper sequence of gene P53 were sought. This data set consists of 54613 genes
for 90 patients, 75 with a mutated P53 gene and 15 with the proper sequence.
In Table 6 are presented the results of stability analysis. As in Figs. 9 - 11 and
Figs. 13 - 14, the values of stability indexes that are based on comparisons between
the original gene list and bootstrap gene lists with confidence intervals estimated
with the percentile method indicated are shown. The values of index W are pre-
sented in Fig. 12.

Table 6. Stability indexes values.

Student’s Welch Bayesian
FC PFC

t-test t-test t-test
SAM SN

s 0.3090 0.3276 0.1734 0.1621 0.3087 0.2541 0.1691
s1 0.4631 0.5337 0.3134 0.2452 0.4598 0.3695 0.2545
s2 0.3088 0.3701 0.1891 0.1425 0.3059 0.2327 0.1482
UN 0.0098 0.0071 0.0131 0.0204 0.0099 0.01292 0.0237
W 0.2055 0.3802 0.2062 0.4512 0.6886 0.2733 0.1372

Figure 9.
Index s

Figure 10.
Index s1

Figure 11.
Index UN

Figure 12.
Index W
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Figure 13. BBFR chart

Figure 14. CAT chart

In Table 7 are presented the values of those scores for the SVM classifier and
in Table 8 for the DLDA classifier. Bar charts with the AUC value are shown in
Figs. 15 and 16.

Table 7. Evaluation of SVM classifier performance.

Student’s Welch Bayesian
FC PFC

t-test t-test t-test
SAM SN

Sensitivity 0.9125 0.9044 0.9066 0.9484 0.9128 0.9128 0.9443
Specificity 0.3525 0.3299 0.4431 0.5167 0.3536 0.3705 0.4902
Accuracy 0.8179 0.8077 0.8291 0.8765 0.8183 0.8216 0.8688

AUC 0.7011 0.6821 0.72 0.801 0.7007 0.7018 0.784

Table 8. Evaluation of DLDA classifier performance.

Student’s Welch Bayesian
FC PFC

t-test t-test t-test
SAM SN

Sensitivity 0.9351 0.9217 0.9099 0.9502 0.935 0.947 0.9631
Specificity 0.3791 0.3724 0.4997 0.5647 0.3819 0.3976 0.5268
Accuracy 0.8402 0.8282 0.8399 0.8852 0.8405 0.853 0.8888

AUC 0.7051 0.7005 0.7394 0.7815 0.7047 0.7186 0.7783
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Figure 15.
Values of AUC.
SVM classifier.

Figure 16.
Values of AUC.
DLDA classifier.

In the case of the microarray data set from samples of ovarian cancer and com-
parison between cells with a mutated P53 gene and cells with the proper sequence
of gene P53 the indexes s,s1,s2,UN and CAT and BBFR plots show that the
most stable gene list was generated with the PFC method. However, the W index
indicates the Bayesian t-test as the best method to rank genes. Because the evalu-
ation of classifier performance shows no statistically significant difference in those
two ranking methods (which was tested using the Wilcoxon test), both of them
can be used to generate stable gene lists. The comparison with biomedical data is
presented in Tables 9 and 10.

Table 9. Comparison with biomedical data for ovarian cancer.
Gene list created with the PFC method.

Ovarian cancer PFC list (indexes s and s1)

Gene name Alias
Gene
rank

Association with ovarian cancer

EFCAB10 35
Association with ovarian cancer was not
found.

DKFZp761K1021

P50, P85, PAK3,
PIXB, COOL1,
P50BP, COOL-1,
P85SPR, BETA-
PIX, P85COOL1,
Nbla10314,
ARHGEF7

38

According to [37] ARHGEF7 is expressed
in ovary and ovarian tumor. Moreover the
authors of [22] noticed overexpression of
ARHGEF7 in breast cancer and although
they did not find this expression as sig-
nificant trend of ARHGEF7, they claim
that there might be a correlation between
ARHGEF7 and breast cancer.However di-
rect association with ovarian cancer was not
found.

PHA1
BESC3, ENaCg,
ENaCgamma,
SCNN1G,
SCNEG

43
Association with ovarian cancer was not
found.

MPD1
CMH1, MYH7,
SPMD, SPMM,
CMD1S, MYHCB

46

According to [37] MPD1 is expressed in
ovary and ovarian tumors. However di-
rect association with ovarian cancer was not
found.

ERP ELK3, NET,
SAP2

48
Association with ovarian cancer was not
found.

Number of genes

for which an asso-

ciation with colon

cancer was found

0
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Table 10. Comparison with biomedical data for ovarian cancer.
Gene list created with the Bayesian t-test method.

Ovarian cancer Bayesian t-test list (index W )

Gene name Alias
Gene
rank

Association with ovarian cancer

SMT3H4
IDDM5; SUMO4;
SUMO-4;
dJ281H8.4

27
Association with ovarian cancer was not
found.

XPG
RP11-484I6.5,
COFS3, ERCM2,
UVDR, ERCC5,
XPGC

33

The official symbol for XPG [40] is ERCC5
which is “a novel biomarker of ovarian can-
cer prognosis” according to [34], addition-
ally according to [37] ERCC5 is expressed in
ovary and ovarian tumor. Moreover in [26]
the authors claim that significant proportion
of ovarian tumors have the XPG promoter
methylated.

CAFS
DGS; TGA;
TBX1; CTHM;
DGCR; DORV;
VCFS; TBX1C

38

According to [37] TBX1 is expressed in the
ovary and ovarian cancer tissue.Moreover the
association of TBX1 with ovarian cancer is
also mentioned in [23].

MGC149559 FAM27E3 42
Association with ovarian cancer was not
found.

NCRNA00158 C21orf42,
LINC00158

43
Association with ovarian cancer was not
found.

Number of genes

for which an asso-

ciation with colon

cancer was found

2

On the basis of the comparisons with biomedical data, we can say that the
better method to rank genes is that indicated by the sensitivity index W which is
the Bayesian t-test.

5.5. Artificial data set. The artificial data set was created with the assumption
that for 900 genes there are no differences between two types of cells. For those
features expression values were drawn from a normal distribution with a standard
deviation equal to 0.1 and an average equal to 4. For 100 features we assumed a
constant standard deviation of 0.2 and different averages changed with the schema
as in Fig. 17.

Figure 17. Average for 100 genes of artificial data set.

We assumed 10 observations in the group T and 15 observations in the group C.

The indexes based on comparisons between the original gene list and the boot-
strap lists suggest that the most stable gene lists for the artificial data set were
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Table 11. Stability indexes values.

Student’s Welch Bayesian
FC PFC

t-test t-test t-test
SAM SN

s 0.5426 0.5769 0.4402 0.3745 0.5423 0.4596 0.3784
s1 0.5440 0.6669 0.5194 0.4416 0.5354 0.501 0.4427
s2 0.3759 0.5029 0.3545 0.287 0.3681 0.337 0.2877
UN 0.0126 0.0065 0.0123 0.0171 0.0129 0.0154 0.0171
W 0.6296 0.8889 0.02652 0.681 1.223 1.108 0.6394

Figure 18.
Index s

Figure 19.
Index s1

Figure 20.
Index UN

Figure 21.
Index W

Figure 22. BBFR chart
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Figure 23. CAT chart

Table 12. Evaluation of SVM classifier performance.

Student’s Welch Bayesian
FC PFC

t-test t-test t-test
SAM SN

Sensitivity 0.9691 0.9787 0.9589 0.93 0.9675 0.9571 0.9318
Specificity 0.8822 0.9288 0.7751 0.7062 0.8764 0.8023 0.7005
Accuracy 0.9222 0.9531 0.8683 0.8187 0.9183 0.8787 0.8168

AUC 0.9914 0.9951 0.9729 0.954 0.9907 0.9823 0.9525

Table 13. Evaluation of DLDA classifier performance.

Student’s Welch Bayesian
FC PFC

t-test t-test t-test
SAM SN

Sensitivity 1 1 0.9999 0.9999 1 1 0.9999
Specificity 0.9991 1 0.998 0.9968 0.9991 0.9965 0.9952
Accuracy 0.9994 1 0.9986 0.9978 0.9994 0.9975 0.9967

AUC 0.9999 1 0.9997 0.9995 0.9999 0.9997 0.9988

Figure 24.
Values of AUC.
SVM classifier.

Figure 25.
Values of AUC.
DLDA classifier.

those created with the PFC method. However, the index W suggests that the best
method is the Bayesian t-test. Based on classifier assessment we cannot decide
which of those gene lists is more reliable.
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6. Conclusions. Continually developing techniques allow thousands of genes to be
examined in one experiment. High dimensional data and frequently small numbers
of observations make the problem of choosing the best ranking method more diffi-
cult. It is obvious that the method of introducing changes (bootstrap re-sampling,
adding noise, etc.) into a data set has an influence on the results of the stability
analysis. Usually the order of ranking methods, starting from the most stable, is
different for bootstrap re-sampling and for altering the data by adding noise. More-
over, in the case of adding noise there is a major problem of deciding what kind of
noise it should be, how large a power would be the best, and what percentage of the
data set to change. For this reason, we created the sensitivity index W whose value
informs about the average percentage of change that has to be introduced into the
original data set to completely transform the gene list.

A major advantage of this index is that there is no need to change the original
data set, and consequently the computational time is much shorter. Moreover, the
minimum number of observations is limited only by the statistical method used and
not by the method of introducing changes into the data set (for example, by the
bootstrap method). Additionally, the comparisons with biomedical data show that
for a larger number of genes on the list created with a ranking method pointed by
the sensitivity index W , there is a stronger association with the particular disease
than for genes on the list created with the method pointed by indexes s and s1,
confirming that the sensitivity index W helps to identify a gene list which is more
reliable in a biological sense.
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Appendix A. Appendix.

A.1. Auxiliary symbols and their derivatives. Before the derivatives (17) of
the most common statistics will be presented, some auxiliary formulas are intro-
duced:

sumT =

nt∑
i=1

(xti − xt)2 (22)

sumC =

nc∑
j=1

(xcj − xc)2 (23)

Derivatives:
∂sumT

∂xti
= 2(xti − xt) (24)

∂sumC

∂xcj
= 2(xcj − xc) (25)

Standard deviation in group T and C respectively:

st =

√∑nt

i=1(xti − xt)2

nt − 1
(26)
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sc =

√∑nc

j=1(xcj − xc)2

nc − 1
(27)

Derivatives:
∂st
∂xti

=
1

2st(nt − 1)

∂sumT

∂xti
(28)

∂sc
∂xcj

=
1

2sc(nc − 1)

∂sumC

∂xcj
(29)

Square pooled sample variance:

sp =

√
(nt − 1)s2

t + (nc − 1)s2
c

nt + nc − 2
(30)

Derivatives:
∂sp

∂xti
=

1

(nt + nc − 2)sp
(nt − 1)st

∂st
∂xti

(31)

∂sp

∂xcj
=

1

(nt + nc − 2)sp
(nc − 1)sc

∂sc
∂xcj

(32)

Standard error:

se = sp

√
1

nt
+

1

nc
(33)

Derivatives:
∂se

∂xti
=

√
1

nc
+

1

nt

∂sp

∂xti
(34)

∂se

∂xcj
=

√
1

nc
+

1

nt

∂sp

∂xcj
(35)

A.2. Derivatives of chosen statistics. Fold Change:

fc = |xt − xc| (36)

Derivatives for xt < xc:
∂fc

∂xti
=
−1

nt
(37)

∂fc

∂xcj
=

1

nc
(38)

Derivatives dla xt > xc:
∂fc

∂xti
=

1

nt
(39)

∂fc

∂xcj
=
−1

nc
(40)

Probability fold change:
pfc = fc− tse (41)

Derivatives:
∂pfc

∂xti
=
∂fc

∂xti
− t ∂se

∂xti
(42)

∂pfc

∂xcj
=

∂fc

∂xcj
− t ∂se

∂xcj
(43)

The conditional mean:

srw =

∑n2

z=1(fc|inten)

n2
(44)
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Derivatives for xt < xc:
∂srw

∂xti
=
−1

ntn2
(45)

∂srw

∂xcj
=

1

ncn2
(46)

Derivatives for xt > xc:
∂srw

∂xti
=

1

ntn2
(47)

∂srw

∂xcj
=
−1

ncn2
(48)

Student’s t-test:

t =
fc

se
(49)

Derivatives:

∂t

∂xti
=

∂fc
∂xti

se− fc ∂se∂xti

se2
(50)

∂t

∂xcj
=

∂fc
∂xcj

se− fc ∂se∂xcj

se2
(51)

Supporting calculations to calculate the derivative of Welch t-test:

varT = var(xt) (52)

varC = var(xc) (53)

Derivatives:
∂varT

∂xti
=

1

nt − 1

∂sumaT

∂xti
(54)

∂varC

∂xcj
=

1

nc − 1

∂sumaC

∂xcj
(55)

Square of the sum of the variance:

psw =

√
var(xt)

nt
+
var(xc)

nc
(56)

Derivatives:
∂psw

∂xti
=

1

2psw · nt
∂varT

∂xti
(57)

∂psw

∂xcj
=

1

2psw · nc
∂var

∂xcj
(58)

Welch t-test:

tg =
fc√

var(xt)
nt

+ var(xc)
nc

(59)

Derivatives:

∂tg

∂xti
=

∂fc
∂xti

psw − fc∂psw∂xti

(psw)2
(60)

∂tg

∂xcj
=

∂fc
∂xcj

psw − fc∂psw∂xcj

(psw)2
(61)
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Supporting calculations to calculate the derivative of Bayesian t-test:

Original formula:

se0 =

√∑g
m=1 se

2
m

g
(62)

Derivatives:
∂se0

∂xti
=

1

2se0g
2sem

∂se

∂xti
(63)

∂se0

∂xcj
=

1

2se0g
2sem

∂se

∂xcj
(64)

Original formula:

se′ =

√
v0se2

0 +
(nt + nc − 1)se2

v0 + nt + nc − 2
(65)

Derivatives:

∂se′

∂xti
=

1

2se′
(v02se0

∂se0

∂xti
+

nc + nt − 1

v0 + nt + nc − 2
2se

∂se

∂xti
) (66)

∂se′

∂xcj
=

1

2se′
(v02se0

∂se0

∂xcj
+

nc + nt − 1

v0 + nt + nc − 2
2se

∂se

∂xcj
) (67)

Bayesian t-test:

bayt =
fc

se′j
(68)

Derivatives:

∂bayt

∂xti
=

∂fc
∂xti

se′ − fc ∂se
′

∂xti

(se′)2
(69)

∂bayt

∂xcj
=

∂fc
∂xcj

se′ − fc ∂se
′

∂xcj

(se′)2
(70)

Significance analysis of microarrays:

samj =
fcj

sej + c
(71)

Derivatives:

∂sam

∂xti
=

∂fc
∂xti

(se+ c)− fc ∂se∂xti

(se+ c)2
(72)

∂sam

∂xcj
=

∂fc
∂xcj

(se+ c)− fc ∂se∂xcj

(se+ c)2
(73)

Signal to Noise ratio:

sn =
fc

st + sc
(74)

Derivatives:

∂sn

∂xti
=

∂fc
∂xti

(st + sc)− fc ∂st∂xti

(st + sc)2
(75)

∂sn

∂xcj
=

∂fc
∂xcj

(st + sc)− fc ∂st∂xcj

(st + sc)2
(76)
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