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Abstract. Biochemically failing metastatic prostate cancer is typically treated

with androgen ablation. However, due to the emergence of castration-resistant

cells that can survive in low androgen concentrations, such therapy eventually
fails. Here, we develop a partial differential equation model of the growth and

response to treatment of prostate cancer that has metastasized to the bone.

Existence and uniqueness results are derived for the resulting free boundary
problem. In particular, existence and uniqueness of solutions for all time are

proven for the radially symmetric case. Finally, numerical simulations of a

tumor growing in 2-dimensions with radial symmetry are carried in order to
evaluate the therapeutic potential of different treatment strategies. These sim-

ulations are able to reproduce a variety of clinically observed responses to

treatment, and suggest treatment strategies that may result in tumor remis-
sion, underscoring our model’s potential to make a significant contribution in

the field of prostate cancer therapeutics.

1. Introduction. The prostate is an exocrine gland of the male reproductive sys-
tem, which produces an alkaline fluid that is one of the key components of se-
men [30]. Unfortunately, the prostate is highly susceptible to cancer, with prostate
cancer (CaP) being second most common type of cancer affecting men in the United
States. In recent years, there have been more than 200,000 new cases diagnosed
annually in the United States, resulting in over 30,000 deaths per year [7]. Thus,
CaP is a major public health challenge.

Healthy prostate cells, as well as CaP cells require male sex hormones called an-
drogens for their survival and proliferation. The principle androgen is testosterone,
which is produced in the testes. Upon entering a CaP cell, testosterone is mostly
converted to its more active metabolite, dihydrotestosterone (DHT). Both testos-
terone and DHT bind to and activate intracellular androgen receptors, that result in
growth, survival and proliferation cues [12, 28]. For this reason, cases of advanced
or metastasized prostate cancer are treated with hormone therapeutic strategies
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that result in androgen ablation. This treatment works well initially, but eventu-
ally cancer cells may mutate into an androgen-independent phenotype, resulting in
resistance and treatment failure [9].

Prostatic cells, healthy and cancerous, produce a proteolytic glycoprotein called
prostate-specific antigen (PSA), that aids in semen motility. Consequently, its blood
serum levels are believed to be correlated with cancer load, with increases in PSA
levels indicative of an increasing tumor burden and decreases in PSA levels indica-
tive of a decreasing tumor burden. Therefore, serum PSA concentration in CaP
patients is closely monitored by clinicians, and androgen ablation may be scheduled
based on its values [13, 14].

We recently developed a biochemically-based mathematical model of advanced
CaP [21] in order to gain a better understanding of the consequences of current
clinical care and to investigate therapeutic options that might delay or prevent the
emergence of resistance to androgen ablation therapy. While a number of mathe-
matical models [8, 17, 18, 19, 20, 26] aimed at investigating the therapeutic potential
of hormone treatment in CaP have been proposed previously, ours was the first to
include a number of patient-specific personalized parameters allowing us to capture
the heterogeneity that is a hallmark of prostate cancer. Model simulations were
able to reproduce a variety of clinically observed outcome for patients under differ-
ent chemotherapeutic schedules. In a subsequent paper [22], we reduced the model
(by means of a singular perturbation analysis) to a simple system of three coupled
ordinary differential equations. With this simpler model, we were able to predict,
under some assumptions, therapy schedules that lead to a complete cure, or total
failure depending on the values of the personalized parameters of patients.

The models in [21, 22] were based on systems of ordinary differential equations.
In the present work, we are concerned with a situation where the cancer has spread
into the bone, which is one of the most common sites of metastasis for CaP [29].
Here, the cancer begins to grow as a solid tumor. This spatial situation calls for a
spatial model that needs to be formulated in terms of partial differential equations
in a tumor region Ω(t), which varies with t.

We shall use as a starting point, the simplified approach of [22] and thus include
in our model of metastatic CaP treatment: prostate cancer cells N ; mutated cancer
cells M ; healthy bone marrow cells H; androgen concentration A; and PSA concen-
tration P . The cells N , M and H are assumed to satisfy hyperbolic conservation
laws while the dynamics of A are governed by a diffusion equation. P is taken to be
proportional to the total number of cells and will determine the treatment sched-
ule. Given any initial tumor Ω(0), with a smooth boundary Γ(0), we shall prove
existence and uniqueness of the free boundary problem for N , M , H, A and P with
a smooth free boundary Γ(t) for a small time interval 0 ≤ t ≤ T ; in the case of
radially symmetric initial data, we shall prove existence and uniqueness of solutions
for all t > 0, with a continuously differentiable free boundary Γ(t) and radius of
the tumor r = R(t). Finally, we will present numerical simulations illustrating the
cases of a complete cure or total failure with anti-androgen therapy.

2. Model development. We consider CaP that has metastasized and is occupying
a region Ω(t) at time t. We introduce the following variables in our model:

N = Density of androgen-dependent CaP cells,
M = Density of mutated CaP cells,
H = Density of healthy bone (non-prostatic) cells,
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D = Density of dead cells,
A = Concentration of androgens,
P = Concentration of PSA.

CaP is treated with androgen ablation based on PSA concentration, where the
therapy is switched ‘on’ if PSA rises above a critical threshold, say P0. This results in
a decreased rate of androgen production, coupled with an inhibition of intracellular
androgen receptors. In our model, we account for androgen ablation by assuming
a reduction in the normal rate of androgen production by a factor of 1 + λf(P ),
say, where f(·) is a smooth approximation of the Heaviside function H(P − P0).
Thus, f(P ) simulates the application of therapy, so that f(P ) = 1 corresponds to
therapy ‘on’ and f(P ) = 0 corresponds to therapy ‘off’. We assume that the cells
are uniformly distributed in Ω(t), so that:

N +M +H +D = constant (= 1, say) in Ω(t) (1)

Hence, as a result of cellular proliferation and the removal of dead cells, there is a
movement of cells within Ω(t), that is itself evolving in time; we denote the velocity
of this movement by ~v = ~v(x, t). The following equations model the dynamics of
cells, androgen and PSA in Ω(t).

∂N

∂t
+ ∇ · (~vN) = KN (A)N︸ ︷︷ ︸

androgen-dep-
endant growth

− KNM (A)N︸ ︷︷ ︸
mutation

− µN︸︷︷︸
death

, (2)

∂M

∂t
+ ∇ · (~vM) = KM (A)M︸ ︷︷ ︸

androgen-me-
diated growth

+ KNM (A)N︸ ︷︷ ︸
mutation

− µM︸︷︷︸
death

, (3)

∂H

∂t
+ ∇ · (~vH) = KHH

(
1− N +M +H

K0

)
︸ ︷︷ ︸

proliferation with contact-inhibition

− µH︸︷︷︸
death

, (4)

∂D

∂t
+ ∇ · (~vD) = µ(N +M +H) − min {0,KN (A)}N

− min {0,KM (A)}M − µDD︸ ︷︷ ︸
removal

, (5)

∂A

∂t
− DA∇2A =

λA
1 + λf(P, t)︸ ︷︷ ︸
drug-inhibited

production

− µAA︸︷︷︸
decay

− λ0(N +M)A︸ ︷︷ ︸
consumption by

N and M

, (6)

P = P (t) =

∫
Ω(t)

(N +M)dx. (7)

We recall that androgen-dependent CaP cells (like healthy prostatic epithelial
cells) require androgens for their survival and proliferation. Therefore, N cell
growth rate KN (A) is assumed to be an increasing and saturating function of A,
where KN (A) < 0 if A is small, and KN (A) = constant > 0 if A is large, that
is, if A > A0, a level corresponding to physiologically normal androgen concen-
tration. Following [21, 22], the rate of mutation from N to M cells is taken as
KNM (A) = KN (A)αmut, where αmut represents the probability of a cell phenotype
N mutating as a consequence of aberrant DNA replication during proliferation. As
in previous studies [18, 19, 20, 22], the growth rate KM (A) of M cells is taken to be
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Figure 1. Assumed androgen dependent cell growth rate
(KN (A)) and castration-resistant cell growth rate (KM (A)). Above
a critical threshold of androgen concentration (A0), androgen de-
pendent cells have a positive proliferation rate, while castration-
resistant cells have a negative rate of growth. At low androgen
concentrations, castration resistant cells proliferate while androgen
dependent cells undergo apoptosis.

a decreasing function of A. That is, M cells are assumed to be androgen-repressed,
so that they have a negative growth rate in the presence of androgens. Note that
Androgen-repressed castration-resistant cells have been isolated from human tu-
mors [32]. Figure 1 shows typical profiles of KN (A) and KM (A).

In equations (2)-(4), µ is the natural death rate of cells, and is assumed to be
equal for all cell types. Note that we have separately accounted for the death rates of
CaP cells due to high or low levels of androgens. In equation (4), bone marrow cells
are assumed to proliferate at a maximum rate KH . Contact inhibition for healthy
cells due to over-crowding is also incorporated in our model, so that as the total
number of cells increases, the proliferation rate of H cells decreases. As can be seen,
in the absence of CaP cells, H cells achieve a steady-state of K0(1−µ/KH). Under
drug-free conditions, androgens are also assumed to be produced at a constant rate
λA, while the effect of androgen ablation on A has already been discussed previously.
Androgens are further assumed to undergo natural decay at a rate µA. When CaP
cells are present, they are assumed to take up androgens at a constant rate λ0.
Finally, for simplicity, PSA concentration P is taken to be proportional to the total
number of CaP cells.

Note that, in healthy conditions, that is, in the absence of CaP cells and androgen
ablation therapy, the steady state concentration of androgens is given by A0 =
λA/µA. From equation (1), we have:

D = 1−N −M −H (8)

By adding equations (2)-(5), and using the above expression for D, we obtain
the following equation for ∇ · ~v:

∇ · ~v =− µD(1−N −M −H) + max {0,KN (A)}N + max {0,KM (A)}M (9)
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+ KHH

(
1− N +M +H

K0

)
≡ G(N,M,H,A).

In what follows, we may replace equation (5) by (2). Indeed, if N , M , H and ~v
solve the system (2)-(4) and (2), and we define D by (8), then it can easily be seen
that D satisfies equation (5).

We assume in our model that the tumor host tissue (that is, bone) is a porous
medium, so that by Darcy’s Law,

~v =− ∇σ, (10)

where σ is the isotropic pressure of the moving cells. Then, by equation (2),

∇2σ =− G(N,M,H,A). (11)

We next assume that the free boundary Γ(t) of the tumor region Ω(t) is moving
with velocity ~v, that is,

Vn =~v · ~n, (12)

where ~n is the outward normal to Γ(t), and Vn is the velocity of Γ(t) in the direction
~n.

We complete the above system by prescribing the boundary conditions

σ = γ K, γ > 0,

and A =A0/(1 + λf(P )) on Γ(t),
(13)

and initial conditions

Ω(t = 0) = Ω0, Γ(t = 0) = Γ0,

N(x, t = 0) =N0(x), M(x, t = 0) = M0(x)

H(x, t = 0) =H0(x), and A(x, t = 0) = A0(x), in Ω0,

(14)

where K is the mean curvature (K = 1/R, if Γ(t) is a sphere of radius R), and we
assume that

A0(x) = constant = A0 on Γ0,

A0, N0,M0, H0 ≥ 0, and N0 +M0 +H0 ≤ 1 in Ω0.
(15)

Note that since the free boundary is a characteristic surface for the hyperbolic
equations (2)-(5), no boundary conditions need to be assigned for the variables N ,
M , H and D.

Definition 2.1. We refer to equations (2)-(4), (6)-(7), and (2)-(15) describing CaP
growth and treatment as system (P).

Theorem 2.2. For any smooth solution of the system (P), there holds:

A ≥ 0, N ≥ 0, M ≥ 0, H ≥ 0, and N +M +H ≤ 1 in Ω(t), ∀ t. (16)

Proof. The inequality A ≥ 0 follows by the maximum principle. The inequalities
N ≥ 0, M ≥ 0, H ≥ 0 follow by integrating each of these functions along char-
acteristics. Next, if we define D by equation (8), then, as remarked earlier, D
satisfies equation (5). Hence, by integrating this equation along characteristics, we
get D ≥ 0, so that N +M +H = 1−D ≤ 1.
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3. Existence and uniqueness. In this section, we shall prove the existence and
uniqueness of a smooth solution of system (P) on a small time interval when the
tumor boundary and initial conditions are sufficiently smooth. For the special case
of a radially symmetric tumor, we shall prove the existence and uniqueness of a
smooth solution for all time.

We begin by introducing the following notation: For any vector β = (β0, · · · , βN ),
βi integers ≥ 0, set |β| = β0 + β1 + · · ·+ βN and

Dβϕ = Dβ
(x,t)ϕ =

∂|β|ϕ

(∂t)β0(∂x1)β1 · · · (∂xN )βN
.

For any 0 < α1, α2, α < 1, m integer ≥ 0, define

‖ϕ‖0 = sup |ϕ|, ‖ϕ‖m =
∑
|β|≤m

‖Dβϕ‖0,

[ϕ]α1,α2 = sup
|ϕ(x, t)− ϕ(y, τ)|
|x− y|α1 + |t− τ |α2

,

‖ϕ‖m+α1,m+α2
= ‖ϕ‖0 +

∑
|β|=m

[Dβϕ]α1,α2
, (17)

‖ϕ‖3+α,(3+α)/3 = ‖ϕ‖0 + [D3
xϕ]α,α/3 + [Dtϕ]α,α/3, (18)

where the regions where these norms are taken will be defined, as needed, later on.
We note that the right-hand side of (17) dominates ‖ϕ‖m, so that by adding this

norm to the right-hand side of (17) we obtain a new norm which is equivalent to
‖ϕ‖m+α1,m+α2

. Similarly (cf. [5]), the right-hand side of (18) dominates

[D2
xϕ]0,(1+α)/3 + [Dxϕ]0,(2+α)/3.

We say that ϕ ∈ Cm+α1,m+α2 if ‖ϕ‖m+α1,m+α2
< ∞. Similarly we define the

notions ϕ ∈ C3+α,(3+α)/3, ϕ ∈ C2+α,(2+α)/3.
We assume that

Γ0 ∈ Cm+4+α, (19)

where 0 < α < 1 and m = 0 or m = 1. Denote by s a variable point in Γ0 and by
~n(s) the outward normal to Γ0 at s. We shall write Γ(t) in the form

Γ(t) = {s+ ρ(s, t)~n(s)} . (20)

Let d = d(x) = d(x,Γ0) denote the signed distance from x to Γ0 (d(x) > 0 if x is
outside Ω0). Then we can express points x near Γ0 in the form

x = s+ d~n(s),

where s is uniquely determined by x.
It will be convenient to use local coordinate transformation to flatten the free

boundary. We take local coordinates y′ = (y1, y2) near 0, about a point s0 in Γ0,
so that s = S(y1, y2) for |s− s0| small. Then, for x near s0,

x = S(y1, y2) + (ρ(s, t) + y3)~n (S(y1, y2)) ,

where y3 = d(x,Γ0) − ρ(s, t). This defines a local mapping y → x from a neigh-
borhood of the origin in R3 into an R3-neighborhood of s0 such that x ∈ Γ(t)
corresponds to (y′, 0). While this change of variables makes the PDE system (P)
more complicated, the analysis will actually be simplified since the free-boundary
is locally flat.
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We assume that

N0,M0, H0, A0 ∈ Cm+1+α(Ω
0
), (21)

and that

KN (A),KNM (A),KM (A) and f(P ) are uniformly Hölder continuous, exponent α.
(22)

Theorem 3.1. Under the conditions (19)-(22), the system (P) has a unique solu-
tion for some interval 0 ≤ t ≤ T (T > 0) such that

DsD
m
(s,t)ρ ∈ C3+α,(3+α)/3(Γ0 × [0, T ]), (23)

D2
xD

m
(x,t)σ ∈ Cα,α/3(R3 × [0, T ]), (24)

and N,M,H,A can be extended into functions in Cm+1+α,m+1+α/3(R3 × [0, T ]).

Proof. We introduce the space Y of functions X = (N,M,H,A) in Cm+α,m+α/3(R3

× [0, T ]) with norm

‖X‖T = ‖X‖Cm+α,m+α/3(R3×[0,T ]),

and a closed L-ball

YL = {X : ‖X‖T ≤ L} ,
where L is a fixed but large enough positive constant.

For any X in YL, we define G as in (2) and solve the Hele-Shaw problem

4σ = −G in Ω(t),

σ = γK,
∂σ

∂~n
= −Vn on Γ(t)

(25)

for 0 ≤ t ≤ T . As shown in [5], this system has a unique solution (σ,Γ(t)) in the
class (23), (24).

Setting v = −∇σ, we next solve the system, in {Ω(t), 0 ≤ t ≤ T}

∂N

∂t
+ ∇ · (~vN) =KN (A)N − KNM (A)N − µN

∂M

∂t
+ ∇ · (~vM) =KM (A)M + KNM (A)N − µM

∂H

∂t
+ ∇ · (~vH) =KHH

(
1− N +M +H

K0

)
− µH

∂A

∂t
− DA∇2A =

λA
1 + λf(P )

− µAA − λ0(N +M)A,

with the prescribed initial and boundary conditions, and where P is defined by (7).
We then extend the components of the solution to functions in Rn × [0, T ], in a
specific way; for example along normals to Γ(t) with a fixed cutoff function.

As argued in [5], the function X = (N,M,H,A) is in Cm+1+α,m+1+α/3, which is
a higher regularity class than the initially given regularity class of X. We can then
proceed with a fixed point argument, showing that the mapping W : X → X maps
YL into itself, and is a contraction provided T is small enough. This completes the
proof of Theorem 3.1.

We next consider the case where Ω0 is a sphere of radius R0, and N0, M0, H0,
A0 are radially symmetric functions in C1.
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Theorem 3.2. Under the above assumptions, there exists a unique radially sym-
metric solution of the system (P) for all 0 ≤ t <∞ with free boundary r = R(t) in
C1.

Proof. The proof of Theorem 3.2 is somewhat different from the proof of Theorem
3.1. We introduce functions X = (N,M,H,A) with the uniform C1-norm (instead
of Cm+α), and follow the same outline as before, but with somewhat simpler norm
estimates. The reason for this different approach is that in order to extend the local
in-time solution step-by-step, it is easier to work with the C1-norm. Arguing along
similar lines as in [10], we establish a priori estimates

R(t) ≥ constant > 0,

|Ṙ(t)| ≤ constant <∞,
for any interval 0 ≤ t < T , where the solution exists, and the constants are bounded
functions of T , for any T > 0. Hence, the solution can be extended for all t > 0.

Remark 1. Consider the case when the tumor has metastasized into several regions
Ωi(t). Then, in each region we have a system for Ni, Mi, Hi, Di, ~vi and Ai as in
system (P), and they are all coupled by the following expression for PSA:

P =
∑
i

∫
Ωi(t)

(Ni +Mi)dx.

The proofs of Theorems 3.1 and 3.2 easily extend to this case.

Remark 2. The therapy application function f(P ) appearing in equation (6) may
also depend explicitly on time t if, for instance, androgen ablation is administered
continuously or on an intermittent schedule with fixed period on and off therapy.
The analysis in section 3 remains unaltered if f(P, t) is Hölder continuous in t, and
in the radial case, if it is simply continuous in t. In the numerical simulations that
follow, we will consider f(P, t) with the above properties, as well functional forms
that are clinically more relevant.

4. Numerical simulations. In this section, we simulate tumor response to con-
tinuous and intermittent androgen ablation, with intermittent therapy based on
different scheduling strategies. Simulations are carried for a tumor growing in 2-
dimensions with radial symmetry. In all results that follow, the growth rate KN (A)
of N cells is kept fixed, while the growth rate KM (A) of M cells is varied to illustrate
the various possible outcomes of therapy application. The variables N , M , H A
and P are cast in dimensionless terms, while time t is measured in days, and tumor
radius R(t) measured in centimeters. This corresponds to the typical time-scale of
CaP cell growth and length-scale on which the cancer is clearly distinguishable in
bone scans. The initial diameter of the tumor is taken to be 1 cm, and uniform
initial densities of N = N0, M = M0 and H = H0 cells are presumed.

We first simulate the case when a tumor is treated with continuous androgen
ablation. Therapy is started once PSA reaches a critical threshold P0 = 5, at day
t0 = 75. Continuous therapy is simulated by taking f(P, t) to be a smooth approx-
imation to the Heaviside Function H(t > t0) in equation (6). As can be seen from
Figure 2A, PSA declines rapidly on therapy application, attaining a minimum of < 1
at day 250, before increasing again due to the emergence of castration-resistance. A
plot of androgen concentration averaged over the tumor domain in Figure 2C reveals
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Figure 2. Numerical predictions of cancer response to continu-
ous androgen ablation applied starting on day 75. Figure shows
time-courses of A, PSA concentration (P (t)), B, total number
of androgen dependent cells (=

∫
Ω(t)

N(r, t)dr), C, average andro-

gen concentration (=
∫

Ω(t)
A(r, t)dr/

∫
Ω(t)

1dr), D, total number of

castration resistant cells (=
∫

Ω(t)
M(r, t)dr), and E tumor radius

(R(t)). F, Growth rates of androgen dependent cells (solid curve)
and castration resistant cells (dashed curve).

that when therapy is applied, the average androgen concentration falls rapidly to
a low minimum value. Time-courses of N and M cell numbers integrated over the
entire tumor domain are plotted in Figures 2B and 2D, respectively. On therapy
application, N cells decline rapidly to 0, while M cells grow exponentially. Prior
to therapy application N cells dominate the tumor, and their proliferation drives
tumor radius (R(t)) growth during this period (Figure 2E). When therapy is first
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Figure 3. Numerical illustration of the case when intermittent an-
drogen ablation is predicted to fail. Intermittent therapy is based
on the schedule that treatment is reinstituted with a PSA of 5,
and remains on for 2 months. Figure shows time-courses of A,
PSA concentration (P (t)), B, total number of androgen depen-
dent cells (=

∫
Ω(t)

N(r, t)dr), C, average androgen concentration

(=
∫

Ω(t)
A(r, t)dr/

∫
Ω(t)

1dr), D, total number of castration resistant

cells (=
∫

Ω(t)
M(r, t)dr), and E tumor radius (R(t)). F, Growth

rates of androgen dependent cells (solid curve) and castration re-
sistant cells (dashed curve).

applied, the R(t) experiences a transient decline due to N cell death, before in-
creasing exponentially as a result of M cell dominance under androgen ablation
conditions. Figure 2F shows a plot of the assumed growth rates of N (solid curve)
and M (dashed curve) cells.
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Figure 4. Surface plots of androgen dependent (N) cell density
corresponding to the intermittent therapy in Figure 3, taken at
initial time (t = 0), when therapy is switched on (t = 55, 155, 250),
when therapy is switched off (t = 110, 210) and when castration
resistance has emerged (t = 300, 400).
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Figure 5. Surface plots of castration resistant (M) cell density
corresponding to the intermittent therapy in Figure 3, taken at
initial time (t = 0), when therapy is switched on (t = 55, 155, 250),
when therapy is switched off (t = 110, 210) and when castration
resistance has emerged (t = 300, 400).
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We next simulate a tumor that is treated with intermittent androgen ablation,
based on the schedule that therapy is reinstituted with a PSA of 5, and remains on
for 2 months. Similar schedules have been considered in a clinical setting [14]. The
schedule can be visualized from the time-course of the averaged androgen concen-
tration in Figure 3C, with androgen concentration near 0.9 indicating periods off
therapy, and concentrations below 0.1 indicating periods on therapy. With tumor
cell growth rates fixed as shown in Figure 3F, intermittent therapy is predicted to
fail in the third cycle, as can be seen from a time-course of PSA in Figure 3A.
The tumor radius now grows unchecked (Figure 3E), driven by M cell proliferation
(Figure 3D). To illustrate the spatial structure of the tumor, surface plots of N and
M cell densities are shown in Figures 4 and 5 respectively, at the following times:
t = 0, t = 55, 155, 250 when therapy is switched on, t = 110, 210 when therapy is
switched off and t = 300, 400 by which times castration resistance has emerged. N
cell density alternates between periods of growth (t ∈ [0, 55]∪ [110, 155]∪ [210, 250])
and decay in between and for t ≥ 250, while the growth and decay periods for
M cells are reversed. Further, the region of maximum proliferation, and hence
maximum cell density, is predicted to be at the rim of the tumor.

The above intermittent schedule may also result in periodic cycling of PSA,
dependent on N and M cell proliferation and death rates. If tumor cell growth
rates are as shown in Figure 6F, the total numbers of both N and M cells appear
to settle to periodic oscillations (Figures 6B and 6D, respectively), so that the
resultant PSA concentration is predicted to oscillate between a maximum of 5 and
a minimum of 2. Figure 6E reveals that the tumor radius experiences periods of
growth during periods off therapy due to N cell proliferation, and transient declines
during periods on therapy due to N cell death and a low density of M cells.

In all the above cases, the initial M cell density is taken to have a low value of
< 0.1, as compared to the initial N cell density, which is taken to be > 0.7. We
finally illustrate a case where an appropriately chosen intermittent schedule may
result in a cure, even in the case when a large number of M cells are present in the
tumor initially. We have previously shown [22] that for a spatially uniform tumor,

when the growth rates of N and M cells are such that Gmin =

∣∣∣∣min {0,KM (A)}
max {0,KM (A)}

∣∣∣∣ <∣∣∣∣min {0,KN (A)}
max {0,KN (A)}

∣∣∣∣ = Gmax, then an intermittent schedule in which the ratio of times

off and on therapy in each cycle lies between Gmin and Gmax will result in a cure.
Figure 7 reveals that the same result is observed for the spatially inhomogenous
case, as evidenced by an overall decline in PSA concentration (Figure 7A), and
eventual decline in tumor radius (Figure 7E). Now, the initial density of M cells is
taken to be as high as 0.3, with tumor cell growth rates chosen such that the above
condition is satisfied (see Figure 7F, Gmax = 1 and Gmin = 0.16). In each cycle of
therapy, the time on therapy is fixed at 2 months, while the time off therapy fixed
at 40 days, so that (Time off therapy)/(Time on therapy) = 0.67.

5. Discussion. Biochemically failing metastatic prostate cancer is treated with
androgen ablation. However, treatment failure is nearly universal due to the emer-
gence of castration resistant cells that continue to proliferate despite blocking the
production of androgens and their receptors. It has been hypothesized that andro-
gen deprived conditions create a positive selection bias for castration resistant cells
that may exist as a small population prior to therapy application. Consequently,
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Figure 6. Numerical illustration of the case when intermittent
androgen ablation is predicted to result in infinite cycling. Inter-
mittent therapy is based on the schedule that treatment is rein-
stituted with a PSA of 5, and remains on for 2 months. Figure
shows time-courses of A, PSA concentration (P (t)), B, total num-
ber of androgen dependent cells (=

∫
Ω(t)

N(r, t)dr), C, average an-

drogen concentration (=
∫

Ω(t)
A(r, t)dr/

∫
Ω(t)

1dr), D, total number

of castration resistant cells (=
∫

Ω(t)
M(r, t)dr), and E tumor radius

(R(t)). F, Growth rates of androgen dependent cells (solid curve)
and castration resistant cells (dashed curve).

intermittent therapy application has been proposed as a means to delay the onset of
resistance. In order to simulate tumor growth and treatment, and to investigate the
therapeutic potential of various treatment strategies, we developed and analyzed a
model of CaP that has metastasized to the bone, and is growing as a solid tumor.
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Figure 7. Numerical illustration of the case when intermittent
androgen ablation is predicted to effect a cure. Intermittent treat-
ment is based on the schedule that the time on therapy is 2 months
and the time off therapy is 4 months. Figure shows time-courses
of A, PSA concentration (P (t)), B, total number of androgen de-
pendent cells (=

∫
Ω(t)

N(r, t)dr), C, average androgen concentration

(=
∫

Ω(t)
A(r, t)dr/

∫
Ω(t)

1dr), D, total number of castration resistant

cells (=
∫

Ω(t)
M(r, t)dr), and E tumor radius (R(t)). F, Growth

rates of androgen dependent cells (solid curve) and castration re-
sistant cells (dashed curve).

Our model is formulated by a system of hyperbolic partial differential equations
describing the spatio-temporal dynamics of various cellular species, coupled to an
elliptic equation describing androgen dynamics. This resulted in a free boundary
problem for the growing tumor. We began our model analysis by establishing ex-
istence and uniqueness of solutions for small time intervals when the tumor was
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assumed to have a smooth boundary. For the radially symmetric case, existence
and uniqueness of solutions with a continuously differentiable boundary were proved
for all time.

Finally, numerical simulations of a tumor growing in 2-dimensions with radial
symmetry were presented to illustrate tumor responses to different treatment strate-
gies. We considered the case when castration resistant cells are androgen-repressed,
that is, they have a negative growth rate when androgens are present in abundance.
Our results showed that continuous therapy is predicted to result in treatment fail-
ure in finite time. The success or failure of intermittent therapy was found to be
dependent on the growth characteristics of castration resistant cells, with the model
able to reproduce clinically observed responses to therapy including failure in finite
time, infinite cycling of PSA, and tumor remission.

These examples underscore the potential of our model to develop into a valuable
tool that clinicians can use in making informed treatment choices. For this, the
model needs to be extensively validated against patient treatment data, and requires
the measurement of additional biomarkers such as cancer cell proliferation and death
rates, and PSA expression levels per cell. Additionally, the simulation results for
the radially symmetric case suggest several interesting mathematical problems:

1. Prove that under continuous androgen ablation (Figure 2) and under inter-
mittent androgen ablation (Figure 3), the tumor radius R(t)→∞ as t→∞,
and that the growth is faster under the latter protocol.

2. Prove that for tumor cell growth rates as in Figure 6F, the tumor radius
R(t) has the oscillator behavior suggested in Figure 6E, dependent on the
scheduling of therapy.

3. The simulations in Figure 7 suggest the possibility of a ‘cure’ for certain
treatment protocols, that is, R(t) remains bounded as t→∞. Is there a limit
which is a stationary solution of the system (P)?
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