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Abstract. The goal of this study is to identify preseizure changes in intracra-

nial EEG (icEEG). A novel approach based on the recently developed diffusion

map framework, which is considered to be one of the leading manifold learning
methods, is proposed. Diffusion mapping provides dimensionality reduction of

the data as well as pattern recognition that can be used to distinguish different

states of the patient, for example, interictal and preseizure. A new algorithm,
which is an extension of diffusion maps, is developed to construct coordinates

that generate efficient geometric representations of the complex structures in
the icEEG data. In addition, this method is adapted to the icEEG data and

enables the extraction of the underlying brain activity.

The algorithm is tested on icEEG data recorded from several electrode
contacts from a patient being evaluated for possible epilepsy surgery at the

Yale-New Haven Hospital. Numerical results show that the proposed approach

provides a distinction between interictal and preseizure states.

1. Introduction. Approximately 50 million people worldwide suffer from epilepsy,
including 2.7 million people in the United States, making it one of the most common
neurological disorders [7]. Seizures are successfully controlled in 64% of patients,
while the remaining 36% have pharmacoresistant epilepsy [9]. Epilepsy surgery is
an option for some of the patients with pharmacoresistant epilepsy if their seizures
can be localized to a focal area of the brain.

It is important to find a reliable method to predict seizures so that a patient can
be warned at least a few minutes prior to the seizure and take effective precautions.
Finding an accurate predictor of seizures has become a major focus of research
during the last few decades [5]. Seizure prediction algorithms can be used to improve
devices to control seizures. The Neuropace device, for example, which is placed
within the skull, contains a programmable feature detector that can be employed
to stimulate on detection of target features [15]. However, it is still important to
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improve these feature detectors and find ways to predict seizures with sufficient
sensitivity and specificity.

In our ongoing research, we have investigated various methods to analyze icEEG
data, such as coherence, mutual information, and approximate entropy [4] to an-
alyze resting state icEEG activity. Seizure prediction involves a wide variety of
methods, including linear methods, such as autoregressive models, as well as nonlin-
ear methods, such as estimations of the largest Lyapunov exponent and correlation
[13]. Other approaches involve the comparison of interictal and preictal epochs [1].
Often the main problem in many seizure prediction studies is that the analysis is
performed on a small amount of data from few patients.

In EEG data, we assume that the measurements are controlled by underlying
processes that represent brain activity. We would like to recover these underlying
brain processes to distinguish different brain states, such as interictal and preseizure
states. Diffusion maps [3] have been a useful tool in reducing the dimensionality
of the data as well as providing a measure for pattern recognition and feature
detection. Since diffusion mapping may detect abnormal behavior in the data, it
can be used to determine changes in brain states. However, diffusion maps assume
access to the underlying process that it aims to reveal. In EEG data, the relationship
between samples of the data and the underlying activity may be stochastic, and the
data are assumed to be noisy. Hence diffusion mapping is not the most suitable
approach to use with our icEEG data. A recently developed algorithm, which is
an extension of diffusion maps, may be more applicable in our case [16, 17]. The
new algorithm assumes a stochastic mapping between the underlying processes and
the measurements; the mapping is inverted and a kernel is used to recover the
underlying activity [16]. Thus, the proposed algorithm is more appropriate than
diffusion maps for our data.

In this paper, we propose an algorithm that relied on [16] for extracting the
underlying brain activity from the icEEG data. The algorithm is an extension
of diffusion maps and uses local principal components analysis (PCA). PCA is
another dimensionality reduction method. In PCA, the goal is to compute the most
meaningful basis to re-express a large and noisy data set. This new basis can reveal
hidden patterns and structure in the data as well as remove the noise. An orthogonal
linear transformation converts the data to a new coordinate system. The greatest
variance in the data is represented by the first coordinate or the first principal
component. In EEG, the data may be generated by a nonlinear combination of
sources, the underlying processes, so that more sophisticated methods are required
to represent the data. An important difference between the proposed algorithm
and PCA is the use of nonlinear locality in the extension as opposed to PCA, which
retains the linear global information of the data. For the icEEG data, we perform
PCA on local regions of data and then integrate the local information using a kernel
and obtain a single model. We use a data-driven adapted distance between samples
of icEEG recordings to approximate the Euclidean distance between the underlying
processes from the noisy EEG.

2. Methods.

2.1. Intracranial EEG. 1

1Intracranial depth, subdural strip, and subdural grid electrodes were placed as required for
the patient. Subdural strip and grid electrode contacts were recessed platinum disk contacts with

2.3 mm exposed surface and 1 cm center-to-center separation (Ad-Tech, Racine, WI, U.S.A.).
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Intracranial EEG (icEEG) data were collected from a patient with localization
related epilepsy who was undergoing presurgical evaluation at the Yale-New Haven
Hospital. A total of 182 electrode contacts were used during the monitoring. The
seizure onset area was located on the right occipital lobe. In this paper, we focus
on the 3 electrode contacts, which overlaid the seizure onset area. Figure 1 shows
the location of the 3 electrode contacts which were studied.

Figure 1. The seizure onset area is located in the right occipital
lobe. The three electrode contacts overlying the seizure onset area
which are used in this study have been circled.

We studied 6 icEEG epochs, each of which corresponds to a seizure experienced
by the patient over the course of the icEEG monitoring. Figure 2 shows an example
of approximately 16 minutes of icEEG data from one electrode contact that includes
a seizure. The seizure start time is marked with a red line. Figure 3 shows the
corresponding spectrogram, where the horizontal axis represents time (each point is
one time window). We considered the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13
Hz), beta (13-25 Hz), and gamma frequency bands (25-100 Hz).

For each case, we considered 5 minutes of data immediately preceding the seizure
and 5 minutes of data from 35 minutes before the seizure, which we considered to
be the interictal state. An example is shown in Figure 4. The data were collected

Intracranial electrode contacts were located after placement using a computer program (BioImage
Suite) developed at Yale University [11] and a procedure which has been described [6]. Briefly,

intracranial electrode contacts were located from a postimplantation computed tomography (CT)
image. The postimplantation CT was then coregistered first with a postimplantation magnetic
resonance (MR) image using a linear coregistration procedure and then with a preimplantation
MR image using both a linear and a nonlinear coregistration procedure. This procedure allowed
us to visualize intracranial electrode contacts on preimplantation MR images. The icEEG were

collected with clinical icEEG acquisition equipment (Natus Medical Inc./Bio-Logic Systems Corp.,
San Carlos, CA). The signals were sampled at 256 Hz with 16 bit A/D conversion.
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Figure 2. The icEEG from one electrode contact for approxi-
mately 16 minutes including one seizure where the seizure start
time is marked with a red line. The horizontal axis represents time
(in samples).

at 256 samples per second, so for each case, we analyzed 10 minutes or 153,600
samples. The horizontal axis represents time (in samples). From the raw icEEG
data for this patient, it is typically unclear to determine when a seizure began until
the actual start time of the seizure.

2.2. Data features and metric. Let y(n) be the icEEG data from a single elec-
trode contact where n is the time index; we describe the following procedure for
data from merely one electrode contact for simplicity. Vectors and matrices will be
denoted in lowercase and uppercase bold, respectively. Applying the Short Time
Fourier Transform (STFT) on y(n) yields

ym,k =
∑
n

y(n)φ̃m,k(n), (1)

where

φ̃m,k(n) = φ̃(n−mL)ej
2π
N k(n−mL), (2)

and m is the time frame index, k is the frequency band index, φ̃(n) is a Hanning
window of length N , and L is the discrete-time shift [12]. The Hanning window is
defined as

φ̃(n) =
1

2

(
1− cos

(
2πn

N − 1

))
. (3)

The data are split into segments overlapped by 50%, or L = N/2, each of which are
windowed and then Fourier transformed to produce an estimate of the short-term
frequency content of the signal. Let

Sy(m,n) = |ym,n|2 (4)
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Figure 3. The spectrogram of the above segment of data (ap-
proximately 16 minutes) that includes a seizure, showing the delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-25 Hz), and
gamma frequency bands (25-100 Hz). The vertical axis represents
frequency ranging from 0-100 Hz, and the horizontal axis represents
time (in analysis windows).

be the squared amplitude of the STFT. We collect a few frequency bands for each
time frame into vectors defined as

sy(m) = [..., Sy(m,n), ...]T , n ∈ K, (5)

where K is the collection of empirically relevant frequency bands. The STFT is
commonly used in time series analysis because it allows us to see the changes of the
spectral composition over time. In EEG, it may enable us to identify differences
in the data closer to seizures as opposed to interictal states. We call {sy(m)} the
feature vectors.

We assume that the high dimensional features sy(m) are controlled by the low
dimensional processes that represent brain activity. The factors that describe a
preseizure state are considered to be a collection of d stochastic processes θm =
(θ1

m, ..., θ
d
m), where m is the time frame index, such that each of these processes

satisfies a stochastic differential equation that can be described as

θim+1 = θim + ai(θim) + wi
m, (6)

where i = 1, ..., d. It is assumed that the drift terms (a1, ..., ad) are unknown and
(w1

m, ..., w
d
m) are d independent white Gaussian noises. sy(m) is a random variable

whose statistics can be expressed as a nonlinear stochastic function of the underlying
factors. Thus, the goal is to recover these underlying factors, which represent the
preseizure state, from the features, sy(m).

We propose the following method to reduce the dimension of the data while
keeping the information we need to distinguish preseizure from interictal states.
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We compare feature vectors for the 5 minutes of data by calculating the STFT
of the windows of data. Combining the vectors, sy(m), and plotting the outcome
shows that the feature vectors (Figure 5) do not exhibit significant variation be-
tween interictal and preseizure state for the 6 separate seizure episodes. The lower
frequency bands are most often used for detecting different states in patients using
EEG; we consider the frequency bands up to 100 Hz for our analysis. These are used
as our feature vectors for each point in time (each window of almost 4 seconds).

Given a feature vector sy(m), we compute the local covariance matrix in a time
interval of length J :

Σm =
1

J

m∑
m′=m−J+1

(sy(m′)− µm)(sy(m′)− µm)T , (7)

where µm is the empirical local mean of the feature vectors in the interval.
We define a nonsymmetric distance using the covariance matrices Σms:

a2
Σ(m,m′) = (sy(m)− sy(m′))TΣ−1

m (sy(m)− sy(m′)) (8)

and a symmetric distance

d2
Σ(m,m′) = (1/2)(a2

Σ(m,m′) + a2
Σ(m′,m). (9)

The distance in (9) is termed the Mahalanobis distance, and it is shown in [14]
that it approximates the Euclidean distance between the underlying factors. This
distance allows us in Section 2.3 to recover the underlying factors in the icEEG data
via eigendecomposition of an appropriate Laplace operator (kernel).

2.3. Kernel and embedding. Consider a collection {sy(m)} of Ns feature vec-
tors. Let R be a subset of reference feature vectors of size N̄s and N̄s < Ns. R is
obtained by selecting an arbitrary subset of measurements to enable a more efficient
computation of the data.

A kernel is used to compare the underlying factors, whose (m,m′)th element is

Wm,m′

R = exp

{
−d

2
Σ(m,m′)

ε

}
(10)

where ε is the kernel scale set according to the Mahalanobis distance defined above.
This kernel, WR, depends on the reference set and defines the local geometries of
the graph [3].

WR is normalized by a diagonal density matrix,

Dm,m =
∑

m′∈R
Wm,m′

R , (11)

which enables us to view the sampling as uniform. This normalized matrix is
denoted by

W̃R = D−1/2WRD
1/2. (12)

We can further normalize according to [8]. In order to obtain the representation
of the training set, we perform an eigendecomposition to handle the nonuniform
sampling of the data and acquire the eigenvalues, λj , and eigenvectors, ϕj . The
eigenvalues of the diagonal matrix are all non-negative and sorted in decreasing
order. The Laplace-Beltrami operator is given by I− W̃R, which shares the same
eigenvectors as W̃R.



IDENTIFYING PRESEIZURE STATE USING DIFFUSION KERNELS 585

In order to incorporate samples from the entire set, we form an Ns × N̄s non-
symmetric affinity matrix A whose (m,m′)th element is defined as

Amm′
= exp

(
−a

2
Σ(m,m′)

ε

)
, (13)

where ε > 0 is the kernel scale, m′ ∈ R, and m = 1, ..., Ns.
We define the diagonal matrix D̃ and normalize A, similar to the previous nor-

malization, to form

Ã = D̃−1A. (14)

Next we define a kernel on the entire set:

W = ÃÃT. (15)

Then we extend the eigenvectors of WR and use the diagonal density to get
the eigenvalues of W without computing the eigendecomposition of W. It can be
shown by [8] that

W̃R = ÃT Ã. (16)

The eigenvalues and eigenvectors of W̃R are determined, and it is known that W
converges to a diffusion operator [8, 17].

Proposition 3.1 from [8] states that the eigenvectors ψj of W corresponding to
nonzero eigenvalues λj > 0 are

ψj =
1

λ
1/2
j

Aϕj . (17)

Using WR based on our reference set is useful, because it is smaller than the
size of the kernel based on the whole data set, and using the entire data set would
be computationally intensive. In practice, it is difficult to handle the icEEG data,
because it is so large, so using a small matrix based on the reference set is efficient.
In the algorithm, we use WR to denote the first stage with the reference feature
vectors as opposed to W for the second stage. Initially, we use the reference feature
vectors to perform our analysis using the kernel based on the Mahalanobis distance
(9) and apply an eigendecomposition. Then we use (17) to acquire a representation
of the entire set and finally define a mapping that allows us to recover the underlying
brain activity in the icEEG data.

Based on the eigendecomposition, we define an `-dimensional embedding of each
feature vector as the diffusion mapping:

sy(m) 7→ [λ1ψ1(m), λ2ψ2(m), ..., λ`ψ`(m)]T , (18)

and ` is related to the intrinsic dimensionality of the data for each m = 1, ..., Ns.
The eigenvectors of W corresponding to the largest eigenvalues provide a parame-

trization of the features. Thus, we reduce the data from a large dimensional space
of noisy observations to a small dimensional space, which captures the features of
preseizure activity. In our case, we set ` = 3, so our embedding is in a 3-dimensional
space. Our empirical example approximates heat flow on a manifold; we have high
dimensional complex data, and we want to understand the intrinsic coordinates of
the manifold. The proposed algorithm is useful for distinguishing different states
(interictal and preseizure) in the icEEG data.
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3. Results. Figure 5 shows the spectrograms for the two segments of interictal and
preseizure icEEG data. The horizontal axis represents time frames, and the vertical
axis represents frequency ranging from 0-100 Hz. The spectrogram is computed by
using the Short Time Fourier Transform (STFT) in (4) with a window length of
1,000 points overlapping by 50%. For EEG data, lower frequency bands reveal the
most information about the state of a patient [2]. In our analysis, we considered
the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-25 Hz), and gamma
(25-100 Hz) frequency bands.

After combining the resulting spectrograms for the two segments (five minutes
immediately preceding the seizure and five minutes from 35 minutes before the
seizure), we apply our proposed algorithm. Figure 6 depicts a 3D scatter plot of the
embedding obtained using the three leading eigenvectors from (18). Each point in
the figure represents a time frame defined in (5). The colors represent time for the
10 minutes of data, with the red points corresponding to the data directly before
the seizure. We find that this method shows a clear separation of the preseizure
points from the interictal state points, which tend to be scattered around the origin.

Figure 4. The raw icEEG data recorded from the 3 electrode con-
tacts in the seizure onset area for the interictal (left) and preseizure
(right) periods; the horizontal axis represents time (in samples).

Figure 5. The spectrograms from the interictal (left) and pre-
seizure (right) periods; the vertical axis represents frequency rang-
ing from 0-100 Hz, and the horizontal axis represents time (in anal-
ysis windows).
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Figure 6. The embedding using 3 eigenvectors; the colors repre-
sent time, with the red points closest to seizure onset.

From the three dimensional plot, it is quite evident that there is a clear separation
between the points in the preseizure state and the points in the interictal state. The
red points on the graph are the points closest in time to the seizure onset, and they
are separated from the rest of the cloud of points that are near the origin. For the
data analysis of this patient, we see that for each of the times prior to the seizure
occurrences, there is no apparent difference between the interictal states and the
preseizure states in the raw data or in the spectrograms of the data. On the other
hand, there is a clear separation between the two states from the embeddings that
arise from an application of our method. This experiment was repeated for all
six seizures that the patient experienced while being monitored, and we obtained
similar and consistent results.

To verify that the separation did not occur from merely the time separation of
the two data segments, two separate time segments of interictal state data were
compared, as seen in Figure 7. In the previous case, we use one segment of pre-
seizure data compared to one segment of interictal data from 30 minutes before that
preseizure segment. We compare that segment of interictal data to another segment
of interictal data from 30 minutes prior to it and also computed the spectrograms
using (4), as seen in Figure 8. It was seen that there was no discernible separation
of these two interictal state data segments using (18) in the embedding in Figure
9. An analysis of other interictal state and preseizure data for this patient showed
the same type of separation as shown in Figure 6, whereas other embeddings using
two separate interictal periods showed no separation.

4. Discussion. Based on this initial study, we have found our algorithm to be a
potentially useful method for characterizing the preseizure state in intracranial EEG
recordings from the seizure onset area. Our algorithm may identify the underlying
processes that represent the brain activity. In our analysis, in which we examined
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Figure 7. The raw icEEG data recorded from the 3 electrode con-
tacts in the seizure onset area for two interictal periods 30 minutes
apart from each other. The horizontal axis represents time (in
samples).

Figure 8. The spectrograms from two interictal periods; the ver-
tical axis represents frequency ranging from 0-100 Hz, and the hor-
izontal axis represents time (in analysis windows).

the preseizure icEEG data from a patient who experienced 6 seizures, we found that
our method resulted in an embedding that showed a distinct separation between
interictal and preseizure states. Using the same method while comparing two sepa-
rate interictal segments that were also 30 minutes apart resulted in no separation in
the embedding. Thus it appears that the method distinguished a preseizure state
from an interictal state. While this analysis of the data is preliminary, it is planned
to develop this approach to construct a method for predicting seizures. Our goal,
relying on these results, is to define a threshold that separates the interictal state
from the preseizure state in a wide range of cases and develop an automatic method
to predict seizures.
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Figure 9. The embedding of the two interictal state segments of
data using 3 eigenvectors; the colors represent time.
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