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Université de Rouen, UMR 6085 CNRS, Avenue de l’Université
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Abstract. Diffuse infiltrative gliomas are adjudged to be the most common

primary brain tumors in adults and they tend to blend in extensively in the
brain micro-environment. This makes it difficult for medical practitioners to

successfully plan effective treatments. In attempts to prolong the lengths of
survival times for patients with malignant brain tumors, novel therapeutic

alternatives such as gene therapy with oncolytic viruses are currently being

explored. Based on such approaches and existing work, a spatio-temporal
model that describes interaction between tumor cells and oncolytic viruses is

developed. Conditions that lead to optimal therapy in minimizing cancer cell

proliferation and otherwise are analytically demonstrated. Numerical simu-
lations are conducted with the aim of showing the impact of virotherapy on

proliferation or invasion of cancer cells and of estimating survival times.

1. Introduction. Cancer is a collection of diseases with the common feature of
uncontrolled cellular growth. Most tissues in the body can give rise to cancer,
some even yield several types, and each cancer has unique features. Cancer cells
normally escape the usual controls on cell proliferation and proliferate excessively
to form a neoplastic growth or tumor. We are particularly interested in cancer
gliomas in this article. Diffuse infiltrative gliomas are by far the most common
primary brain tumors in adults [1]. In contrast to almost all other brain tumors,
such diffuse gliomas are characterized by extensive, diffuse infiltration of tumor cells
in the neuropil, which is, the dense network of interwoven neuronal and glial cell
processes. Unlike solid tumors, for which simple exponential or geometric expansion
represents expansion of volume, gliomas consist of motile cells that can migrate as
well as proliferate [29]. Glioma growth patterns have been studied extensively by
Hans-Joachim Scherer [8, 25], one of the pioneers in the area. Individual glioma
cells are highly motile, with the ability to invade most of the neural axis of rats
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in less than one week following implantation and are known to be viable even long
distances from the bulk lesion in humans [28].

Cancer gene therapy is a promising treatment strategy. Advances in knowledge of
the biology of viruses have been used to consider replicating vectors preferentially in
tumors that can significantly amplify the expression of gene therapy. Among these
viruses, some have a mutation or a deletion in their genome that affect replication
in normal cells but not in cancer cells. Within a tumor cell, loss of the requisite
proteins may be compensated in trans by the mechanisms involved in tumorigenesis.
Oncolytic viruses have been shown to possess a significant antitumor activity [16,
18]. Such viruses infect tumor cells and replicate inside them, without harming
healthy normal cells, and eventually cause lysis. However, this introduces a new
level of complexity. Although much progress has been made in both the theoretical
study and clinical trials of oncolytic viruses [10, 13, 31, 34, 35, 37, 38], problems still
remain to be addressed with regards to their interactions with the immune system
or the specificity of infection, replication, and diffusion.

Currently, available therapeutic modalities for high grade malignant gliomas of-
ten fail to improve patient prognosis. Standard therapy is limited by a low therapeu-
tic index and by the cross-resistance between chemotherapeutic drugs. Within this
context, gene therapy is a promising therapeutic strategy for malignant gliomas,
potentially offering both tumor targeting and novel cell-killing mechanisms. Re-
combinant adenoviruses appear promising as gene therapy vectors for glioma, on
the merit of their ability to infect both dividing and quiescent tumor cells, instigate
genome plasticity, facilitate mild pathogenicity in humans, and generate safety as
shown in gene therapy clinical trials for glioma.

As a way of supporting practical clinical measures and quantifying the effec-
tiveness of treatment it is necessary to develop new mathematical formulations for
gliomas since it is practically impossible either to measure the growth rate or to
determine the spatio-temporal infiltration of gliomas and the way that replicating
viruses spread to the region of the tumor. It is within this framework that this
article is written.

Replication-conditional, oncolytic adenoviruses [22], such as ONYX-015, are
emerging as powerful tools in the warfare on cancer. The ability to modify cell-
specific infectivity or tissue-specific replication machinery, as well as the possibility
of modifying viral-cellular protein interactions with cellular checkpoint regulators
are emerging as new trends in the design of safer and more effective adenoviruses.
ONYX-015 is an oncolytic adenovirus that lacks the E1B-55K gene product required
for p53 degradation and therefore was predicted to selectively replicate in tumor
cells with inactive p53 pathways [2, 19]. The successful entry of the viral particle
into target cells is strongly dependent on the presence of the main receptor for aden-
ovirus, the Coxsackievirus and Adenovirus Receptor (CAR) [11]. Mitogen-activated
protein kinase (MEK) inhibitors have been shown to promote CAR expression, and
could be used to increase the susceptibility of target cells to ONYX-015 infection.
However, MEK inhibitors interfere with adenovirus replication due to resulting
G1-phase cell cycle arrest [7]. Therefore, enhanced efficacy will depend on treat-
ment protocols that productively balance these competing effects. Tao and Guo
[32] suggested that greater tumor treatment is achieved when oncolytic adenovirus
infection and MEK inhibitor treatment occur at the same time. Bagheri and oth-
ers [3] investigated combinatorial treatment strategies using a mathematical model
that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015
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infection, and oncolysis. They postulated that treating cells with CI1040 prior to in-
fection, followed by its removal at the time of ONYX-015 infection, would maximize
virus uptake due to increased up-regulation of CAR, and maximize cell death due
to the release of cells from G1-phase arrest. But the mechanism underlying virus
replication in G1-arrested cells remains unclear and warrants further investigation.

The structure of this paper is as follows. In Section 2, we introduce the mathe-
matical model and define various quantities that make up the model. In Section 3
we provide an exact traveling wave solution to the model in the untreated case of
glioma development. Model analysis is provided in Section 4 where conditions of
optimal therapy that stabilize the tumor are determined. Section 5 is devoted to
estimating the survival time of patients when the tumor cannot be stabilized. The
last section is set aside for discussions and conclusions.

2. The mathematical model. The model takes into account the dynamical in-
teractions between a growing population of tumor cells, a population of susceptible
and uninfected tumor cells, V1; a population of infected tumor cells, V2; and a pop-
ulation of free virus, that is, virus in the extracellular tissue, V3. Unlike the model
developed in [39], we assume that the tumor follows a logistic growth, which can
be slowed down by an inhibitor, captured through the expression 1− u. Thus, the
tumor admits a maximum size and density defined by the carrying capacity K.

When the virus is administered, the dynamic interactions between the virus and
tumor cell population is described by the following system of reaction-diffusion
equations in the tumor region Ω,

∂V1(t, x)

∂t
= ε1∆V1 + ρ(1− u)V1

(
1− V1

K

)
− dV1 −

βrV1V3

1 + εV3
, t > 0,

∂V2(t, x)

∂t
= ε2∆V2 +

βrV1V3

1 + εV3
− dV2 − a(1− u)V2, t > 0,

∂V3(t, x)

∂t
= ε3∆V3 + k(1− u)V2 − bV3, t > 0, .

(1)

The model is explained as follows. The intensity of MEK inhibitor application is
captured by the parameter u. In order to use the model to study the possible
optimal timing of MEK inhibitor, we here assume that u = const, which ranges
from zero to one. If u = 0, there is no drug treatment, that is no cells enter G1
arrest and there is no production of the CAR molecule. If u = 1, the drug has
the maximum possible effect and all cells enter G1 arrest and the production of the
CAR molecule is at its theoretical maximum. The population of uninfected tumor
cells replicates at a rate ρ and has a natural death rate, d. When the virus meets
susceptible cells, infection can occur. This requires the interaction of free virus with
a CAR receptor on a susceptible cell, which occurs at a rate βrV1V3. The infection
rate is thus proportional to the average number of receptors on the cell surface, r,
the concentration of free virus V3, and the concentration of susceptible cells V1. A
tissue is defined as receptor-positive when the measured DLU/mm2 (digital light
units per millimetre squared) in the total binding section is at least twice as high
compared to the non-specific binding section, defined by Paganelli et al. [23]. Mean
receptor density values r are only calculated from the receptor-positive tissues.

As the virus becomes hyper-abundant relative to the uninfected cells, multiple
infections of already infected cells become more likely than infection of uninfected
cells, so the infection rate saturates with V3 as the term 1/(1+εV3). The saturation
effect accounts for the fact that the number of contacts of an individual cell reaches
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some maximal value as the immune system evolves to stop a virus just as the virus
evolves to enter cells and replicate [36].

The infected cells can die due to two mechanisms: the natural death rate denoted
by the parameter d and the virus-induced death rate represented by parameter a.
The virus-induced death rate is proportional to 1−u. That is, as the activity of the
inhibitor is increased, the rate of virus induced cell death declines. The reason is
that virus induced cell death requires virus production and this does not occur in the
presence of the inhibitor because the cells are arrested in G1. Infected cells produce
new virus particles with a rate k, and this is again diminished in the presence of
the inhibitor. Free virus particles decay with a rate b.

3. Exact solution of untreated Glioma model. For untreated gliomas, we
neglect the complex interplay between the tumor and its environment. This complex
interplay, treated in [6] established conditions of periodic dynamics existence for a
treated glioma. The system can be reduced to the the following equation:

dV1(t, x)

dt
= ε1∆V1 + (ρ− d)V1

(
1− V1

K (ρ−d)
d

)
(2)

This formulation is completed by the adoption of boundary conditions that impose
no migration of cells beyond the brain boundary with initial conditions V1(x, 0) =
f(x), where f(x) defines the initial spatial distribution of malignant cells.

Accordingly, equation (2) is a reaction-diffusion partial differential equation that
describes the density of glioma cancer cells in terms of two net rates: proliferation
(ρ− d) and invasion (ε1). These parameters can be estimated from routinely avail-
able pre-treatment MRIs (magnetic resonance images) [15]. This model, known
as proliferation and invasion model [21, 29, 30], has been successful in predicting
untreated growth and invasion kinetics for each patient [15], providing predictions
related to surgical resection, chemotherapy [29], and radiation therapy [26].

Since we are interested in the traveling wave solution of equation (2), we specify
a travelling coordinate z = x − ct, where c is the growth velocity of an untreated

glioma. We let V1(x, t) = V (z) and by defining the new variable V
′

=
dV

dz
, equation

(2) can be formulated as:

ε1V
′′

+ cV
′
+ (ρ− d)V1

(
1− V1

K (ρ−d)
d

)
= 0. (3)

Using the hyperbolic tangent-function method [12], V
′

could be expressed by,

dV

dz
= F (V ) = a1V + a2V

3
2 , (4)

where F is a solution of the following equation

ε1 F
dF

dV
+ cF + (ρ− d)V1

(
1− V1

K (ρ−d)
d

)
= 0. (5)
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Substituting (3) into (5), we deduce that

a1 = ±

√
2(ρ− d)

3ε1

a2 = ±
√

2ρ

3ε1K

c = ∓
√

25

6
ε1(ρ− d)

(6)

Thus the equation has the following exact solution:

V1(x, t) =
(a1Θ)

2
exp (a1(x− ct))(

1− a2Θ exp
(

1
2a1(x− ct)

))2 , (7)

where Θ is a constant of integration.
An interesting consequence of the Tanh method for traveling wave solutions is

to provide the exact numerical value

(
c =

√
25

6
ε1(ρ− d)

)
of glioma velocity in

comparison with the value defined by Fisher’s approximation (c = 2
√

(ρ− d)ε1).
Thus we obtain a better approximation of survival time since it is well known that
tumor growth velocity is negatively correlated with patient survival [20, 24, 30].
These traveling waves are of great importance because, when they exist, the tumor
invades the healthy tissue at its full potential. This first analysis is used to represent
traveling wave solutions in the case of untreated glioma proliferation and invasion.

4. Study of steady state solutions. Wang and Li [33] studied the connection
between additive D-stability and reaction-diffusion models, and gave several alge-
braic sufficient conditions by checking the signs of principal minors of a matrix A,
which guarantee either stability or instability in the presence of diffusion. We recall
that such a matrix A is said to be additively D-stable if A − D remains Hurwitz
for all nonnegative diagonal matrices D [14]. Additive D-stability is particularly
useful for the study of reaction-diffusion systems where the matrix A represents the
linearization of the reaction dynamics at a steady-state.

In this respect we discuss in this section the stability of the equilibrium solutions
of our model system (1). Analysis reveals that there are precisely two homogeneous
equilibrium solutions; one is the trivial steady state S0 = (0, 0, 0) and and the other
is given by S∗ = (S1, S2, S3) that satisfies the equations,

S1 =
K
[
ρ(1− u)− d− βr

ε

]
+K
√
δ

4ρ(1− u)
,

S2 =
βrS1

ε[d+ a(1− u)]
− b

εk(1− u)
,

S3 =
k(1− u)S2

b
,

(8)

where,

δ =
(
ρ(1− u)− d− βr

ε

)2

+
4bρ

εkK

(
d+ a(1− u)

)
. (9)
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To investigate the stability of the constant steady-state S0, we employ the minors
condition method for reaction-diffusion systems developed by Wang and Li [33]. We
recall this method by noting the following:

Definition 1. A matrix

P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33


satisfies the minors condition if

p11 ≤ 0, p22 ≤ 0, p33 ≤ 0, det(P ) ≤ 0, (10)

det

(
p11 p12

p21 p22

)
≥ 0, det

(
p11 p13

p31 p33

)
≥ 0,det

(
p22 p23

p32 p33

)
≥ 0. (11)

Theorem 1. Assume that 1− d

ρ
< u < 1 +

d

a
, then the equilibrium solution S0 is

asymptotically stable.

Proof. Let JS0 be the Jacobian matrix of (1) at S0,

JS0 =

 ρ(1− u)− d 0 0
0 −d− a(1− u) 0
0 k(1− u) −b

 (12)

By Definition 1, it is straightforward to conclude that the Jacobian matrix JS0

satisfies the minors condition.

The tumor could be eradicated with a sufficiently high dose of MEK inhibitor;
however, this is not feasible since it is unlikely that a tolerable dose of MEK inhibitor
could effectively lock the tumor in G1 arrest, considering that the natural death
rate of the cells is likely to be too slow to result in effective clearance. Thus, for the
purposes of this study, we assume that it is impossible to apply MEK inhibitor in a
dose that is sufficient enough to result in eradication, that is, u < 1. Therefore, the
strategy consists of minimizing the homogeneous equilibrium S∗ and stabilizing it.
As such, from equations (8), we let

S1(r) =
K
[
ρ(1− u)− d− βr

ε

]
+K
√
δ

4ρ(1− u)
(13)

Then

dS1(r)

dr
= − βK

4ερ(1− u)

[
1 +

(
ρ(1− u)− d− βr

ε

)]
δ−1/2 < 0.

Thus, S1(r) is a decreasing function which satisfies lim
r→+∞

S1(r) = 0, so there exists a

certain maximum threshold rmax for which S1(r) is minimal. One way to reduce the
density of cancerous cells is to determine the maximum density of CAR molecules.
From this density, we determine the minimum density of infected non-cancerous
cells in homogeneous equilibrium and then determine the conditions for stability of
this equilibrium.
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The Jacobian matrix of the linearized system at the equilibrium point S∗ has
the form:

JS∗ ≡


ρ(1− u)

(
1− 2

K
S1

)
− d− βrS3

1 + εS3
0 − βrS1

(1 + εS3)2

βrS3

1 + εS3
−d− a(1− u)

βrS1

(1 + εS3)2

0 k(1− u) −b


As a consequence, we obtain the following:

Theorem 2. Assume that 1 − d

ρ
< u < 1, then the endemic equilibrium S∗ is

asymptotically stable.

Proof. Under the conditions of Theorem 1, it is straightforward to observe that all
the diagonal entries of JS∗ are negative.

In addition, we have

det

 ρ(1− u)
(

1− 2

K
S1

)
− d− βrS3

1 + εS3
0

βrV3

1 + εV3
−d− a(1− u)

 ≥ 0,

det

 ρ(1− u)
(

1− 2

K
S1

)
− d− βrS3

1 + εS3
− βrS1

(1 + εS3)2

0 −b

 ≥ 0,

det

 −d− a(1− u)
βrS1

(1 + εS3)2

k(1− u) −b

 =
εβrk(1− u)S1S3

(1 + εV3)2
≥ 0.

Thus by Definition 1, we have shown that the Jacobian matrix JS∗ satisfies the
minors condition. Therefore, the endemic equilibrium is stable.

Model analysis shows that the intensity of MEK inhibitor u plays an important
role in the stability of the tumor. This intensity must be large enough and must
depend on the proliferation and death rates of cancer cells to stabilize the tumor.
This is buttressed by noting that the conditions of Theorem (2) are valid only
when the tumor is close to the endemic equilibrium. With this in mind, it becomes
important to introduce the following:

Theorem 3. Assume that 1 − bd

kKβr − ab
< u < 1, then the endemic equilibrium

S∗ is globally asymptotically stable.

Proof. Consider the function

l(V1, V2, V3) =

∫ V1

S1

η − S1

η
dη +

∫ V2

S2

(η − S2) dη +

∫ V3

S3

(η − S3) dη,
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and we denote L(V1, V2, V3) =

∫
Ω

l(V1, V2, V3) dx. We aim at proving that L is a

Lyapunov function with a negative orbital derivative:

dL

dt
=

∫
Ω

V1 − S1

V1

[
ε1∆V1 + ρ(1− u)V1

(
1− V1

K

)
− dV1 −

βrV1V3

1 + εV3

]
dx

+

∫
Ω

(V2 − S2)
[
ε2∆V2 +

βrV1V3

1 + εV3
− dV2 − a(1− u)V2

]
dx

+

∫
Ω

(V3 − S3)
[
ε3∆V3 + k(1− u)V2 − bV3

]
dx

= I1 + I2 + I3 + I4.

It follows from the boundary condition that

I1 =

∫
Ω

[
ε1∆V1

V1 − S1

V1
+ ε2∆V2(V2 − S2) + ε3∆V3(V3 − S3)

]
dx < 0.

From the endemic equilibrium expression, we have

I2 =

∫
Ω

V1 − S1

V1

[
ρ(1− u)V1

(
1− V1

K

)
− dV1 −

βrV1V3

1 + εV3

]
dx

=

∫
Ω

(V1 − S1)
[
ρ(1− u)

(
1− V1

K

)
− d− βrV3

1 + εV3

− ρ(1− u)
(

1− S1

K

)
+ d+

βrS3

1 + εS3

]
dx

= −ρ(1− u)

K

∫
Ω

(V1 − S1)2 dx− βr
∫

Ω

(V1 − S1)(V3 − S3)

(1 + εV3)(1 + εS3)
dx.

By the same argument, we can write

I3 =

∫
Ω

(V2 − S2)
[βrV1V3

1 + εV3
− dV2 − a(1− u)V2

]
dx

= −(d+ a(1− u))

∫
Ω

(V2 − S2)2 dx+ βr

∫
Ω

(V2 − S2)
( V1V3

1 + εV3
− S1S3

1 + εS3

)
dx

= −(d+ a(1− u))

∫
Ω

(V2 − S2)2 dx+ βr

∫
Ω

(V2 − S2)(V3 − S3)
V1

1 + εV3
dx

+ βr

∫
Ω

(V2 − S2)(V1 − S1)
S3

(1 + εV3)(1 + εS3)
dx,

and,

I4 =

∫
Ω

(V3 − S3)
(
k(1− u)V2 − bV3

)
dx

= −b
∫

Ω

(V3 − S3)2 dx+ k(1− u)

∫
Ω

(V3 − S3)(V2 − S2) dx.

Thus,

I2 + I3 + I4 = −
(
V1 − S1, V2 − S2, V3 − S3

)
B
(
V1 − S1, V2 − S2, V3 − S3

)T
,



MATHEMATICAL MODELING OF GLIOMA THERAPY 573

where,

B =


ρ(1− u)

K
− βrS3

(1 + εV3)(1 + εS3)
0

0 d+ a(1− u) −k(1− u)
βr

(1 + εV3)(1 + εS3)
− βrV1

1 + εV3
b

 (14)

Under the assumption of Theorem 3, one can verify that all the principal sub-
matrices of B have a positive determinant, thus B is a positive-definite matrix.

Then,
dL

dt
(V1, V2, V3) < 0, for all (V1, V2, V3) 6= S∗. In addition, we have L(S∗) = 0,

therefore, L is a Lyapounov function and S∗ is globally asymptotically stable.

Theorem 3 has an important biological implication. In fact, when the intensity

of MEK inhibitor is bigger than 1− bd

kKβr − ab
, the virotherapy always fails. This

failure is determined by the replication ability of the oncolytic virus, and it does
matter what the initial tumor size, the initial infected portion of the tumor, and
the initial amount of injected virus are, as long as they are in the domain Ω.

5. Numerical simulation of Glioma invasion and proliferation. Analysis of
observations made of actual patients [4, 5, 9, 17, 27] reveals that gliomas that are
detectable on enhanced computer tomography (CT), had already reached a fatal
size of 3 to 6 cm in diameter making it impossible for the tumor burden to be
eradicated. Under such circumstances, we estimate the survival time of patients
by determining the time it takes for the tumor to grow from 3 to 6 cm in average
diameter. We numerically simulate the spatio-temporal patterns and tumor blow
up in the case in which the endemic equilibria S∗ is unstable. In fact, from Theorem

(2), if u < 1 − d

ρ
, S∗ may be unstable for certain values of diffusion coefficients.

The estimation of parameter values was obtained from [13, 29, 30, 34].
In Figure 1 and Figure 2 the solutions of model (1) and (2) are analyzed in a

one-dimensional spatial domain Ω = [0 ; 50 mm], with Neumann boundary con-
ditions. The evolution of the tumor at different times is shown in Figure 1 (a)
for an untreated cancer (equation (2)), and Figure 1 (b), for cancer controlled by
viruses (first equation of system (1)). Using model (1), Figure 2 (a) shows, after
365 days, infected cancer cell density, uninfected cancer cell density and virus free
density. For cancers having the same initial spatial distribution, Figure 2 (b) rep-
resents, after 365 days, the spatial distribution of uninfected cancer cells (model
(1)), and untreated glioma (model (2)). Figures 1 and 2 (b) allow a comparative
study of invasion and proliferation dynamics between untreated glioma and glioma
controlled by viruses. Thus, Figure 2 (b) shows that viruses can greatly reduce the
proliferation dynamics, however, their effectiveness in stopping the invasion is less
significant. This is explained by the fact that the survival rate of viruses is quite
low in areas where cancer is absent. This implies that if viruses replicate only in
areas where the cancer is already present, then the invasion of the virus should be
delayed relative to that of cancer cells. The spatio-temporal cancer dynamics is
simulated in 2D space in Ω = [0 ; 80 mm]× [0 ; 80 mm] with Neumann boundary
conditions meaning the system (1) is self-contained with zero flux across the bound-
ary. In Figure 3 we represent the spatial patterning and density distribution after
365 days, of free-virus-infected cancer cells and uninfected cancer cells. This 2D
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Figure 1. 1D space evolution of densities of untreated cancer cells
and controlled cancer-virus system.

representation gives, at fixed time, a more accurate measure of the tumor diameter
which is an important factor for patient survival estimation. Thus by varying the
times of observations, we obtain in Figure 4, the evolution of the tumor size that
tends to estimate survival of the patient before the fatal tumor diameter is reached.

Figure 2. The densities, in 1D space after 365 days, of controlled
cancer-virus system (model (1)) and untreated cancer (model (2)).

Table 1 gives the model parameter values and their units.

6. Discussion and conclusion. Oncolytic virus therapy presents a number of
novel challenges because tumor eradication or control depends on the establish-
ment of an infection and virus amplification. In this paper, we have presented a
mathematical model of glioma therapy by oncolytic viruses. Conceptually, this ap-
proach is connected to the theoretical considerations of Wodarz et. al. [34, 35, 39]
on cancer therapy. However, in our work, we have gone further to develop a refined
mathematical model that takes into account the spatio-temporal dynamics of tumor
cells and the spread of inoculated viruses. We have shown that if the intensity u of



MATHEMATICAL MODELING OF GLIOMA THERAPY 575

Table 1. Parameter Values

Parameters Description Numerical values Dimensions
a Virus-induced

cells death rate
1/48 1/h

b Clearance rate of
viruses

0.025 1/h

d Natural death
rate of cells

0.05 1/h

k Replicating rate
of viruses in
infected cells

[20, 50] virus/cell h

K Maximal density
of tumor cells

106 cells/mm2

r Average number
of receptors on
the cell surface

[0, 800000] DLU/mm2

ρ Proliferation rate
of cells

0.02 1/h

β Infection rate of
cells by viruses

79× 10−9 mm2/h virus

ε1, ε2 Diffusion
coefficient of cells

[0.0054, 0.027] mm2/h

ε3 Diffusion
coefficient of

viruses

0.036 mm2/h

Figure 3. 2D spatial distribution of cancer cells and free viruses
after 1 year.

the application of the inhibitor, MEK, is greater than 1, the tumor is theoretically
treatable by the approach of genetically modified viruses. However in reality u is
between 0 and 1 and this presents an inability to completely eradicate the cancer.
We have determined in such circumstances, conditions of cancer persistence and
conditions of optimal therapy in minimizing cancer cell proliferation. A compari-
son of the untreated cancer model to the model of cancer virotherapy leads to the
conclusion that cancer virotherapy model significantly reduces cancer cell prolif-
eration and slows down cancer invasion in certain circumstances. Model analysis
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Figure 4. The tumor sizes were periodically measured after viral
injection. Each data point represents the average tumor diameter
at the corresponding time.

suggests that in situations where both the tumor and the virus populations coexist
with unstable dynamics, the densities of various populations depend on a periodic
administration of viruses. Indeed, under conditions where the tumor cannot be re-
moved, we have shown by numerical simulations that the survival time of patients
may be increased when the viruses are inoculated in a region near the tumor to
increase their efficiency (see Fig.4).
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