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Abstract. In this paper we study the delayed Gompertz model, as a typical model of tu-
mor growth, with a term describing external interference that can reflect a treatment, e.g.
chemotherapy. We mainly consider two types of delayed models, the one with the delay
introduced in the per capita growth rate (we call it the single delayed model) and the other
with the delay introduced in the net growth rate (the double delayed model). We focus on
stability and possible stability switches with increasing delay for the positive steady state.
Moreover, we study a Hopf bifurcation, including stability of arising periodic solutions
for a constant treatment. The analytical results are extended by numerical simulations for
a pharmacokinetic treatment function.

1. Introduction. For many processes observed in nature, like a single cellular population
growth, often only the data for the population size are available. Hence, it is reasonable
to model the dynamics using one equation in such a case. On the other hand, we observe
oscillatory or even periodic dynamics quite frequently, compare [14]. Therefore, the ap-
proach of ordinary differential equations (ODEs) is not proper for the description of that
type of phenomena, since solutions of any single ODE are always monotonic. From the
theory of delay differential equations (DDEs), it is well known that a time delay introduced
into ODE can lead to destabilization of the stable steady state. Moreover, typically when
the delay crosses some threshold, a Hopf bifurcation occurs and periodic solutions arise.
Hence, a single DDE can be successfully used in modeling of phenomena we discuss. In
that context we can analyze an important problem of stability of arising periodic orbits, or
equivalently, we can ask about a direction of the Hopf bifurcation.

On the other hand, an external interference into the considered system, such as a drug
administration, is also usually periodic. Hence, the next important question arises. We can
ask if there is some synergy between the inner periodic dynamics of the model reflected
by periodic solutions of the equation and the periodic drug administration. Is it possible to
choose the period of drug administration to eliminate oscillations or can these two oscilla-
tory processes be in resonance causing a large increase of the oscillations amplitude?

Since the Gompertz model is frequently used in the tumor growth modeling [9, 5, 4,
13, 12, 6, 16, 18], we decided to investigate these problems for the delayed Gompertz
model with an additional term reflecting a treatment. Similar analysis was done for the
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logistic equation, for which not only a pharmacokinetic treatment [15] but also an impulsive
treatment was studied [7].

The paper is organized as follows. In the next subsection we introduce the Gompertz
model and review some basic facts about it. In Section 2 we prove some properties of
the delayed Gompetrz model with a treatment function. Next, in Section 3 we investigate
the existence of a Hopf bifurcation and we prove that it is supercritical when occurs. Fi-
nally, in Section 4 we numerically investigate the behavior of solutions of the models for
a pharamconkinetic treatment function.

1.1. Gompertz model. In the Gompertz model, [8], the per capita growth of a population
is described by a logarithmic function. From the analytical point of view it is convenient to
extend this equation for non-positive values. Hence, we consider

V̇(s) = rV(s) f
(

V(s)
H

)
, (1.1)

where

f (x) =

− ln x x > 0,
0 x ≤ 0,

(1.2)

with an initial condition V(0) = V0 > 0. In the model (1.1), the variable V(s) denotes
the number of cells per volume unit at time s and H is the maximal possible tumor size
(given by the maximal number of cells per volume unit) that can be achieved without an
external supply of nutrients, while r denotes the maximal reproduction rate of the tumor. It
is obvious that for any positive V0 < H solutions of Eq. (1.1) increase to the maximal size
H.

Remark 1. Notice that the Gompertz model is usually used to describe the size of pop-
ulation and the variable V describes the number of cells or their total volume. However,
to avoid the problems with units in the presented analysis we rescale variables through an
appropriate reference volume obtaining mathematically the same but physically undimen-
sional equation.

1.2. Gompertz model with delays. In this paper, we would like to compare the dynamics
of solutions of the Gompertz model with delays and a treatment function introduced into
the system. In general, the time delay can be introduced into the model in two different
biologically motivated ways: in the classical population approach it is introduced in the
per capita growth rate, while in the cellular approach in the net growth; we discussed this
problem in [17] in more details. Moreover, generalizing these two ideas we proposed

V̇(s) = rV(s − τ1) f
(

V(s − τ2)
H

)
, (1.3)

that is the Gompertz model with two delays. Existence and the type of a Hopf bifurcation
for Eq. (1.3) were investigated analytically and numerically in [17]. Notice that for τ1 = 0
we have the single delayed Gompertz equation

V̇(s) = rV(s) f
(

V(s − τ)
H

)
, (1.4)

which is similar to the Hutchinson equation [11] (the single delayed logistic equation),
while for τ1 = τ2 we have

V̇(s) = rV(s − τ) f
(

V(s − τ)
H

)
, (1.5)
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which is now the Gompertz model with the double delay (compare the double delayed
logistic equation proposed in [19]).

Biological interpretation of the parameter τ can differ, however it strongly depends on
the type of phenomena described by the model. For example in the context of the tumor
growth Eq. (1.4) appears as one of the equations in the family of angiogenesis models
considered in [5] or [16]. In that case, the time delay represents the time lag in the process
of tumor growth/regression due to the time needed for the cells to recognize and adapt to
changes.

In this paper, we would like to discuss the existence of the same phenomena but for the
models including a general treatment function, T (s) > 0. Hence, we study the models with
the term T (s)V(s) introduced into the right-hand side. However, in our analysis we limit
ourselves to the case of the single and double delayed Gompertz model, that is we study

V̇(s) = rV(s − τ1) f
(

V(s − τ2)
H

)
− T (s)V(s), (1.6)

where τ1 = 0 and τ2 = τ > 0 or τ1 = τ2 = τ > 0, respectively. Moreover, for simplicity we
make the change of variables t = s

τ
and x(t) =

V(s)
H obtaining

ẋ(t) = rτF(x(t), x(t − 1)) − τS (t)x(t), (1.7)

where S (t) = T (s) and F(x(t), x(t − 1)) = x(t) f (x(t − 1)) for the single delayed equation,
while F(x(t), x(t − 1)) = x(t − 1) f (x(t − 1)) for the double delayed one.

Clearly, for the model (1.7), in the case of the single and double delayed equations, we
define the initial condition x(t) = ϕ(t) for t ∈ [−1, 0] and ϕ ∈ C([−1, 0];�≥0).

Mathematical analysis of the model (1.3), or (1.7) for S = 0, equivalently, includ-
ing the global existence and uniqueness of solutions, as well as the discussion on non-
negativity/lack of non-negativity, was performed in [17]. For both the single and double
delayed Gompertz equations the right-hand side is properly defined and continuous for all
V ∈ � as a consequence of the fact that for the Gompertz type models, there exists the limit

lim
V→0+

V ln V = 0. (1.8)

This also allows us to consider V̂ = 0 as a steady state of the model. Thus, both the
single and double delayed logistic equations have two steady states: the trivial one V̂ = 0
and the positive one V̄ = H. In [17] it was shown that the trivial steady state is unstable
independently of the magnitude of delays, while the stability of the positive steady state
strongly depends on the bifurcation parameter, that is τ2. Moreover, Piotrowska&Foryś
investigated analytically and numerically the type of occurring Hopf bifurcations for all
considered Gompertz type equations, see [17] for details.

2. Basic properties of the Gompertz model with delays and a treatment function. In
this paper, we study two versions of the model (1.7)
• the single delayed Gompetrz model with a treatment function that reads

ẋ(t) = rτx(t) f (x(t − 1)) − τS (t)x(t); (2.1)

• the double delayed Gompetrz model with a treatment function that reads

ẋ(t) = rτx(t − 1) f (x(t − 1)) − τS (t)x(t). (2.2)

In the following section we study the basic properties of the models (1.7), (2.1) and
(2.2). The existence and uniqueness results are valid for a general Eq. (1.6).

Proposition 1. For any non-negative initial function ϕ solutions of Eq. (1.6) exist globally
and are unique.
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Proof. Local existence and uniqueness follow from the standard theory of DDEs (compare
e.g. [10]). The global existence can be easily seen by the step method. �

Let us consider non-negativity of solutions. Notice that although the non-negativity
property needs not to be preserved by the solution, the definition 1.2 of the function f
implies that if x(t1) < 0 for some t1 > 0, then x(t) ≡ x(t1 + 1) for any t ≥ t1 + 1. Moreover,
although Eqs. (2.1) and (2.2) are both the delayed Gompertz equations, the non-negativity
results are different for them.

Proposition 2. • Solutions of Eq. (2.1) are non-negative for non-negative initial data.
• If S is bounded below from 0, S (t) ≥ ε > 0 for all t ≥ 0, and r

e ε ≤ 1, then solutions
of Eq. (2.2) are non-negative for any initial function ϕ(t) ∈ [0, 1], t ∈ [−1, 0]. On the
other hand, there exist non-negative initial data for which solutions of Eq. (2.2) take
negative values.

Proof. Non-negativity of solutions of Eq. (2.1) is obvious due to the form of the right-hand
side. The possible negativity for Eq. (2.2) is an immediate consequence of theorems proved
in [1].

For Eq. (2.2) with S (t) ≥ ε we have

ẋ(t) ≤ rτx(t − 1) f (x(t − 1)) − τεx(t).

Furthermore, due to the properties of the function g(x) = −x ln x which has its maximum
gmax = 1

e at t = 1
e , we obtain

ẋ(t) ≤
rτ
e
− τεx(t).

Considering the equation ż(t) = rτ
e − τεz(t) with z(0) = ϕ(0) we see that z(t)→ r

e ε ≤ 1. The
theory of differential inequalities yields x(t) ≤ z(t) ≤ 1 for all t ≥ 0. Now it is easy to see
that for x(t) ∈ [0, 1] we have ẋ(t) ≥ −S (t)x(t) which implies non-negativity. �

It turns out that the dynamics of Eq. (2.1) is quite simple and in fact does not differ
from the dynamic of the single delayed Gompertz model, at least in the case of the con-
stant treatment function. Thus, we describe it briefly in the next subsection. On the other
hand, the dynamics of the double delayed Gompertz model with a treatment function is
more complicated. For the constant treatment a Hopf bifurcation can occur. We study the
bifurcation type in the next Section.

2.1. The single delayed Gompertz model with treatment. Here, we investigate prop-
erties of the Gompertz model with the single delay and the treatment function, that is
Eq. (2.1). In fact, this equation can be easily transformed to the linear one introducing
a new variable y(t) = ln x(t). Due to Proposition 1 solutions of Eq. (2.1) are positive (for
ϕ(0) > 0) and this change of the variable is well defined. In the new variable Eq. (2.1) reads

ẏ(t) = −rτy(t − 1) − τS (t). (2.3)

As Eq. (2.3) is linear it is much simpler to analyze, even for non-constant function S .
Having a solution y(t) of Eq. (2.3) we can recover the solution of Eq. (2.1) writing x(t) =

exp
(
y(t)

)
.

In the case of the constant treatment, namely when S (t) is a constant, it turns out that the
behavior of solutions of Eq. (2.3) (and so as solutions of Eq. (2.1)) is basically the same as
for the Gompertz model with the single delay. If S (t) ≡ S is constant, a simple shift of the
variable z = y + S

r leads to a linear equation

ż (t) = −rτz(t − 1). (2.4)

We summarize the knowledge about Eq. (2.4) and interpret it within the context of Eq. (2.1).
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Proposition 3. Let x(t) be a solution of Eq. (2.1). Then
(i) if rτ < π/2, then for any positive initial function

lim
t→+∞

x(t) = e−S/r;

(ii) if rτ = π/2, then for any positive initial function there exist positive real constants α,
β such that

lim
t→+∞

(
x(t) − e−S/r exp

(
α sin

(
π

2
s
)

+ β cos
(
π

2
s
)))

= 0;

(iii) if rτ > π/2, then for any positive initial functions there exist positive real constants
α, β, ω, η such that

lim
t→+∞

((
ln x(t)

)
e−ωt −α sin

(
ηt

)
− β cos

(
ηt

))
= 0.

Moreover, λ = ω± iη is the solution of the characteristic equation λ+ rτ e−λ = 0 with
the greatest real part.

Proof. The theorem is a simple consequence of the standard theory of DDEs and the prop-
erties of the characteristic equation λ + rτ e−λ = 0, for details see e.g. [10]. �

3. A Hopf bifurcation for the double delayed Gompertz model with a constant treat-
ment. Now, we study the possible stability switch with increasing τ for a positive steady
state of Eq. (2.2).

Theorem 3.1. The positive steady state of Eq. (2.2) has the form x̄ = e−S/r. The following
statements are true:

(i) If r < 2S , then the positive steady state is locally asymptotically stable for all τ > 0.
(ii) If r > 2S , then the positive steady state is stable for 0 < τ < τ0 and unstable for

τ > τ0, where τ0 =
arccos

(
S

S−r

)
√

(r − S )2 + S 2
. At the point τ0 the supercritical Hopf bifurcation

occurs.

Proof. It is easy to check that x̄ = e−S/r is the unique positive steady state of Eq. (2.2).
We change the variable y = x − x̄ to move the positive steady state x̄ to 0. Hence,

Eq. (2.2) reads

ẏ = τ
(
r
(
y(t − 1) + x̄

)
f (y(t − 1) + x̄) − S

(
y(t) + x̄

))
. (3.1)

Clearly, the linear operator for Eq. (3.1) in the functional form reads

L(yt) = −τ(r − S )yt(−1) − τS yt(0), (3.2)

while the non-linear part reads

G(yt) = τ (yt(−1) + x̄)
(
r f (yt(−1) + x̄)

)
+ τ(r − S )yt(−1), (3.3)

where yt ∈ C = C([−1, 0],�). Next, calculating the characteristic function for Eq. (3.1)
around the steady state ȳ = 0 we obtain

∆(λ, τ) = λ + τS + a1τ e−λ, (3.4)

where a1 = r − S . From the classical theory of DDEs (compare e.g. [10]) it is know that
if |a1| < S , then the positive steady state is locally asymptotically stable. It can be easily
seen that if a1 = r − S < 0, then |a1| < S . Thus, if r < 2S , then |a1| < S and the part (i) is
proved.
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On the other hand, if r > 2S , then at τ0 =
arccos

(
S

S−r

)
√

(r − S )2 + S 2
the characteristic equa-

tion (3.4) has purely imaginary roots ±iω0, where

ω0 = arccos
( S
S − r

)
, (3.5)

and a Hopf bifurcation occurs. To investigate the stability of periodic solutions we follow
the Diekmann et al. approach, [3]. To check if new born periodic solutions are stable or
not we need to find the sign of

µ2 =
Re c

Re (qD2∆(iω0, τ0)p)
, (3.6)

where p, q are, respectively, right and left eigenvectors of ∆(iω0, τ0) chosen such that
qD1∆(iω0, τ0)p = 1, where D1 and D2 denote the derivative with respect to the first (λ) and
second (τ) variable, respectively, and

c = cI + cII + cIII ,

cI =
1
2

qD3
1G(0, τ0)(Φ,Φ,Φ),

cII = qD2
1G(0, τ0) (ΨII ,Φ) ,

cIII =
1
2

qD2
1G(0, τ0)

(
ΨIII ,Φ

)
,

(3.7)

where D j
1, j = 2, 3, denotes the derivative of the jth order with respect to the first variable,

G is the non-linear part defined in Eq. (3.3), Φ(θ) = p exp(iω0θ), and

ΨII(θ) = (∆(0, τ0))−1D2
1G(0, τ0)(Φ,Φ) ,

ΨIII(θ) = e2iω0 θ(∆(2iω0, τ0))−1D2
1G(0, τ0)(Φ,Φ) .

The coefficient µ2 is the third term in a Taylor expansion of the periodic solution. Hence, if
µ2 > 0 and the stationary solution ȳ = 0 loses stability at τ = τ0, then the periodic solutions
appearing due to the Hopf bifurcation are stable, while for µ2 < 0 they are unstable.

Equality ∆(iω0, τ0) = 0 yields

e−iω0 = −
1

a1τ0
(S τ0 + iω0) . (3.8)

In the following, identity (3.8) is frequently used.
Now, we choose a suitable eigenvectors of ∆(iω0, τ0). For simplicity we take p = 1.

Then,

D1∆(iω0, τ0) = 1 − a1τ0 e−iω0 = 1 + S τ0 + i ω0 =⇒ q =
1 + S τ0 − i ω0

(1 + S τ0)2 + ω2
0

,

due to (3.8). Now, we proceed to calculate the denominator of µ2. Using (3.8) we obtain

D2∆(iω0, τ0) = S + a1 e−iω0 = −i
ω0

τ0
.

Hence,

Re (qD2∆(iω0, τ0)p) = Re
− iω0

τ0

1 + S τ0 − iω0

(1 + S τ0)2 + ω2
0

 = −
ω2

0

τ0

(
(1 + S τ0)2 + ω2

0

) < 0. (3.9)
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It remains to determine the sign of the numerator of µ2. We calculate the numerator of
µ2 part by part using (3.7). First, we need to calculate derivatives of the non-linear part G
(3.3). Let u, v, w be any test functions from C([−1, 0];�). Then

D1G(φ, τ0)(u) = τ0

(
−r

(
ln(φ(−1) + x̄) + 1

)
+ a1

)
u(−1) ,

D2
1G(φ, τ0)(u, v) = −

( rτ0

φ(−1) + x̄

)
u(−1)v(−1) ,

D3
1G(φ, τ0)(u, v,w) =

rτ0

(φ(−1) + x̄)2 u(−1)v(−1)w(−1) .

We start from calculating cI . Using (3.8) we arrive at

D3
1G(0, τ0)(Φ,Φ,Φ) =

r τ0

x̄2 e−iω0 = −
r

x̄2a1

(
S τ0 + iω0

)
,

and therefore

cI = −
1
2

q
r

x̄2a1

(
S τ0 + iω0

)
. (3.10)

Now, we proceed to calculate cII . Since (∆(0, τ0))−1 = 1
τ0(S +a1) and p = 1, one calculates

ΨII(θ) =
1

τ0(S + a1)
D2

1G(0, τ0)(Φ,Φ) = −
r

x̄(S + a1)
,

and we arrive at

cII = −q
r2

x̄2a1(S + a1)
(S τ0 + iω0) . (3.11)

The expression for cIII is the most complicated one. We calculate it step by step. First, we
find

(∆(2iω0, τ0))−1 =
1

2iω0 + S τ0 + a1τ0 e−2iω0
.

The equality D2
1G(0, τ0)(Φ,Φ) = −

r τ0
x̄ e−2iω0 implies

ΨIII(2iω0 θ) = −
r τ0

x̄
e2iω0θ

2iω0 + S τ0 + a1τ0 e−2iω0
e−2iω0 ,

and thus

cIII =
1
2

q
r2 τ2

0

x̄2

e−3iω0

2iω0 + S τ0 + a1τ0 e−2iω0
.

Using (3.8) we obtain

cIII = −
1
2

q
r2

x̄2 a2
1

(
S τ0 + iω0

)3

a1τ0
(
2iω0 + S τ0

)
+

(
S τ0 + iω0

)2 . (3.12)

To determine the sign of Re c we write c as some positive constant multiplied by a function
of the ratio S/a1. Let us denote ζ = S

a1
. The assumption 0 ≤ S < a1 yields 0 ≤ ζ < 1.

Using that notation we rewrite

ω0 = arccos(−ζ) , τ0 =
arccos(−ζ)

a1
√

1 − ζ2
, S τ0 =

ζ arccos(−ζ)√
1 − ζ2

. (3.13)

The expression for q given by (3.13) reads

q(ζ) =

√
1 − ζ2

( √
1 − ζ2 + ζ arccos(−ζ) − i

√
1 − ζ2 arccos(−ζ)

)
( √

1 − ζ2 + ζ arccos(−ζ)
)2

+
(
1 − ζ2) arccos2(−ζ)

. (3.14)
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After applying (3.13), the expressions for cI , cII and cIII take the forms

cI = −
1
2

r arccos(−ζ)

x̄2 a1
√

1 − ζ2
q
(
ζ + i

√
1 − ζ2

)
,

cII = −
r2 arccos(−ζ)

x̄2 a2
1

√
1 − ζ2

q
1

1 + ζ

(
ζ + i

√
1 − ζ2

)
,

cIII = −
1
2

r2 arccos(−ζ)

x̄2 a2
1

√
1 − ζ2

q

(
ζ + i

√
1 − ζ2

)3

ζ + 2i
√

1 − ζ2 +
(
ζ + i

√
1 − ζ2

)2 .

Thus, we may write

c = −
1
2

cr(ζ; a1)q̂(ζ)c2(ζ)
(a1

r
(1 + ζ)(5 − 4ζ) + c1(ζ)

)
,

where

cr =
r2 arccos(−ζ)

x̄2 a2
1

(( √
1 − ζ2 + ζ arccos(−ζ)

)2
+

(
1 − ζ2) arccos2(−ζ)

)
(1 + ζ)(5 − 4ζ)

,

q̂(ζ) =

√
1 − ζ2 + ζ arccos(−ζ) − i

√
1 − ζ2 arccos(−ζ) ,

c2(ζ) = ζ + i
√

1 − ζ2 ,

c1(ζ) =
(
11 − 2ζ(3 + ζ)

)
+ 2i

(
1 − ζ

)√
1 − ζ2.

Notice that

q̂(ζ)c2(ζ) = ζ

√
1 − ζ2 + arccos(−ζ) + i

(
1 − ζ2

)
.

Defining

γ2,1(ζ) = 11 − 6ζ − 2ζ2 ,

γ2,2(ζ) = ζγ2,1(ζ) − 2(1 − ζ2)(1 − ζ) ,
(3.15)

we may write

Re c = −
1
2

cr

(
a1

r
(1 + ζ)(5 − 4ζ)

(
ζ

√
1 − ζ2 + arccos(−ζ)

)
+

+ γ2,2(ζ)
√

1 − ζ2 + γ2,1(ζ) arccos(−ζ)
)
.

Simple calculations lead to the following identities:

γ2,2(ζ) = −4ζ3 − 4ζ2 + 13ζ − 2 ,

γ′2,2(ζ) = 13 − 8ζ − 12ζ2.

It is easy to see that γ′2,2 has one zero for ζ ∈ (0, 1) giving the maximum of γ2,2. On the
other hand, we have min

ζ∈[0,1]
γ2,2(ζ) = γ2,2(0) = −2. As γ2,1(ζ) is a decreasing function of

ζ ≥ 0, min
ζ∈[0,1]

γ2,1(ζ) = g2(1) = 3. Moreover, the minimum of arccos(−ζ) on [0, 1] is π
2

yielding min
ζ∈[0,1]

γ2,1(ζ) arccos(−ζ) ≥ 3π/2 > 2. Since a1 ≥ 0, r > 0 and cr is a real positive

number for any ζ ∈ [0, 1), we have Re c < 0. This completes the proof. �
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4. Pharmacokinetic treatment function. In this section, we consider a treatment func-
tion of the form very often used in applications, that is pharmacokinetic one. We follow
the approach proposed in [15], where the same function was considered in the context of
logistic equation. We assume that the treatment is applied at times {ti}∞i=0, while the drug
doses are equal to a(ti) = ai. Moreover, we assume the drug is cleared with a constant
clearance rate λ̃ > 0. Thus, the treatment function has the following form

S (t) =
∑
ti≤t

ai e−λ(t−ti) , t ≥ c , and S (t) = 0 , t < c ,

where c ≥ 0 indicates the beginning of the treatment.
Since both the single (2.1) and double (2.2) delayed Gompertz equations are autonomous,

without loss of generality we may assume that the treatment begins at t = 0, thus we take
c = 0. The common standard treatment protocols assume constant time intervals between
successive drug administrations and the same dosage at each time. Hence, we consider
only the case when time intervals ti+1 − ti are constant. This means the treatment is applied
periodically, and ai = a/κ > 0, where a and κ are the total daily drug dose and the number
of applications every day, respectively. Thus, we consider the following treatment function

S (t) =
a
κ

∑
n≤κt

e−λ(t−n/κ) =
a
κ

eλ([κt]+1−κt)/κ − e−λt

eλ/κ −1
. (4.1)

Note that if κ < 1, then the drug is given rarely than once every day, for example κ = 1/2
means the drug application once every two days. For numerical simulations we took the
parameters values estimated in [2] for the Ehrlich Ascites mouse tumors. We choose the
parameter series no. 0:

r = 0.1958, H = 94.5913, τ = 3.5236, V(0) = 5.3122 , (4.2)

for the Gompertz equation with the single delay and

r = 0.4699, H = 118.6437, τ = 2.8261, V(0) = 0.7036 , (4.3)

for the Gompertz model with the double delay, since it produces the smallest error among
all parameters considered in [2].

First, we look for the influence of the treatment on solutions of Eqs. (2.1) and (2.2). For
parameters (4.2) and (4.3), and without the treatment function, solutions of both the single
and double delayed model tend to the steady state. In the case of Eq. (2.1), the value of time
delay is much below the critical value τc ≈ 8.02, so oscillations are fast damped which is
not very surprising. Clearly, solutions oscillate because of the periodic drug administration.
Moreover, an increase of the daily dose or a decrease of the drug clearance rate leads to
a decrease of the mean value of the solution. The only somehow surprising effect is that
the initial time of the treatment had hardly any influence on the asymptotic behavior of the
solution (compare Fig. 1).

The behavior of solutions of Eq. (2.2) is very similar. As before, the initial time for the
treatment has hardly any influence. However, in this case, the time delay value is much
closer to the critical value τc ≈ 3.34, and therefore without the treatment oscillations damp
slower than for the single delay model. As before, an increase of the daily dosage or
a decrease of the drug clearance rate leads to a decrease of the mean value of the solution
(compare Fig. 2).

To study the influence of the frequency of treatment as well as the average daily dosage
on solutions to the single and double delayed models, we took the following parameters:

r =
π

2
, H = 1, τ = 1, V(0) = 0.8 . (4.4)
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Figure 1. Solutions of Eq. (2.1) for the parameters (4.2) estimated in [2]
(data series 0).
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Figure 2. Solutions of Eq. (2.2) for the parameters (4.3) estimated in [2]
(data series 0).

We choose the parameters in such a way that without the treatment we are at the critical
point, at which the Hopf bifurcation occurs. The choice of this particular set of parame-
ters (4.4) does not limit the generality of the results, since we can always rescale the models
to get H = 1 and τ = 1.

In Fig. 3 the plot of the dependence of the average value of the solution, its minimal
and maximal value (thus the amplitude of the oscillations) after a long time (we calculated
these values on the interval [200, 250]) on the frequency of the treatment is presented. For
the double delayed model, we observe a non-trivial influence of the treatment function
period on solutions. If this period is close to a multiplication of 4 (that is the multiplication
of the oscillation period without the treatment) we observe a decrease of the mean value
of the solution but an increase of the amplitude of oscillations (see Fig. 3 right). On the
other hand, for the single delay, when the period of the treatment function is equal to
a multiplication of 4, the amplitude of oscillations seems to be increasing to infinity (see
Fig. 3 left).

The dependence of the solution on the daily dose is not surprising for the double delayed
model, defined by Eq. (2.2). With an increase of this dose, the mean value of the solution
of Eq. (2.2) decreases. If the single dose is sufficiently large, this may cause that solutions
approach zero in a finite time (see Fig. 4 right).

The dependence of the solution on the daily dose is quite surprising for the singe delayed
model, defined by Eq. (2.1). For frequent drug administration, the behavior of the solution
of Eq. (2.1) is as it could be expected; an increase of the average daily dose causes that the
mean value decreases. The amplitude of oscillations seems to decrease at the beginning and
increase for larger doses (compare Fig. 5 left). However, if the administration is sufficiently
rare then, surprisingly, the mean value of the solution of Eq. (2.1) begins to increase with
an increase of the daily dose. The amplitude of oscillations seems to grow fast and this
short period of very large values of the solutions seems to cause an increase of its mean
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Figure 3. Dependence of the mean, maximal and minimal values of the
solution after a long time on the treatment frequency for Eq. (2.4) (left)
and Eq. (2.2) (right) for parameters given by (4.4) and a = 0.2, λ = 2.
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Figure 4. Dependence of the mean, maximal and minimal values of the
solution of Eq. (2.2) after a long time on the daily dose for various drug
administration protocols for λ = 2 and other parameters given by (4.4).
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Figure 5. Dependence of the mean, maximal and minimal values of the
solution of Eq. (2.4) after a long time on the daily dose for various drug
administration protocols for λ = 2 and other parameters given by (4.4).

value. We have estimated that this phenomenon is observed for the treatment that is rarer
than about once every 2.1 days (see Fig. 5 middle and right). For the treatment twice every
5 days, for the average daily dose 2, the maximal value of the solutions reaches 3, and
14 for the dose 4 (see Fig. 5 middle), while for the treatment once every three days, the
maximal value reaches almost 12 for the average dose 2 and it exceeds 120 for the dose 4.
(see Fig. 5 right, data showed only for doses less or equal to 2).

We also investigated the behavior of solutions of Eq. (2.3), believing that it would be
easier to observe the dynamics for the linear equation. In fact, simulations suggest, that the
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Figure 6. The behavior of solutions of Eq. (2.3) for r = π/2, τ = 1,
H = 1 and different periods (that is 1/κ) of the treatment function. Here
we took a = 0.2, λ = 2.

period 4k, k ∈ �, of the treatment function causes some kind of resonance with the oscilla-
tion of the solutions to the model without this external influence (see Fig. 6). Surprisingly,
the phase of the treatment (starting time) has hardly any influence on the dynamics.

5. Conclusion. In the paper we have studied the influence of constant and pharmacoki-
netic treatment on the dynamics of two types of delayed Gompertz model, that is the single
delayed model, in which the delay is introduced in the per capita growth rate, and therefore
appears in only one term in the right-hand side of the equation, and the double delayed one,
in which the delay is introduced in the net growth rate, and therefore appears in both terms
of the right-hand side of the Gompertz equation. Although the dynamics of the single and
double delayed Gompertz equation without a treatment does not differ significantly, that
is it depends on the model parameters and is either eventually monotonic, damped oscilla-
tory or oscillatory when a Hopf bifurcation occurs, cf. [16], we have found that there are
many significant differences in the case studied in this paper. For the constant treatment,
the single delayed Gompertz model does not change when we add the treatment; adding
the treatment changes only the model parameters. This is the result of simple equivalence
between the Gompertz model and the linear model obtained due to a logarithmic change of
variables which is still valid in this case. On the other hand, for the double delayed model,
adding a treatment we have obtained another model, in which the right-hand side depends
not only on the past, but also on the present time. It should be noticed, that the double
delayed models seem to be more appropriate in the description of cellular dynamics, as
considered here tumor growth. Therefore, the results obtained by us for the double delayed
model should better describe the case of real treatment. Notice that also in [7] there is
a difference between the influence of impulsive treatment on the delayed logistic equation
depending on the type of delayed model. Again, the double delayed model demonstrates
the dynamics which agrees with our expectations, while for the single delayed model the
dynamics is slightly strange. For the case of single delayed Gompertz model which is
equivalent to the linear one, we hope to explain this behavior studying it in more details in
the future.
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[17] M. J. Piotrowska and U. Foryś, The nature of Hopf bifurcation for the Gompertz model with delays, Math.

and Comp. Modelling, 54 (2011), 2183–2198.
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