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Abstract. We here study spatially extended catalyst induced growth pro-

cesses. This type of process exists in multiple domains of biology, ranging from
ecology (nutrients and growth), through immunology (antigens and lympho-

cytes) to molecular biology (signaling molecules initiating signaling cascades).

Such systems often exhibit an extinction-proliferation transition, where varying
some parameters can lead to either extinction or survival of the reactants.

When the stochasticity of the reactions, the presence of discrete reactants

and their spatial distribution is incorporated into the analysis, a non-uniform
reactant distribution emerges, even when all parameters are uniform in space.

Using a combination of Monte Carlo simulation and percolation theory

based estimations; the asymptotic behavior of such systems is studied. In
all studied cases, it turns out that the overall survival of the reactant popula-

tion in the long run is based on the size and shape of the reactant aggregates,

their distribution in space and the reactant diffusion rate. We here show that
for a large class of models, the reactant density is maximal at intermediate

diffusion rates and low or zero at either very high or very low diffusion rates.
We give multiple examples of such system and provide a generic explanation

for this behavior. The set of models presented here provides a new insight on

the population dynamics in chemical, biological and ecological systems.

1. Introduction. Most biological processes involve the autocatalytic proliferation
of individual agents. The basic mathematical modeling of these phenomena was
carried out 200 years ago in the context of population growth [54,76]. The combined,
Malthus-Verhulst equation is known nowadays as the logistic equation that describes
the logistic growth [42]. In its simplest interpretation it describes the evolution of
population, say, a bacteria colony on a Petri dish. Similar dynamics dictates the
spread of a favored gene, of new species [74], of a disease that is distributed via
infection [39]and of almost any other autocatalytic process.

Since the pioneering works of Fisher [20] and KPP [41], the dynamics of the logis-
tic growth processes on spatially extended domains has attracted a lot of interest.
Typically, the spatial dynamics of individual agents has been assumed to be diffu-
sive, leading to a partial differential reaction-diffusion equation that involves both
logistic growth and diffusion on spatial domain. The most prominent feature of this
Fisher (or FKPP) equation is the appearance of a soliton solution, the Fisher front,
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with a typical width and velocity. The steady state of the system, however, is the
same as the steady state of the logistic growth on a single patch, since the domain
is considered as homogenous, with uniform proliferation coefficient and carrying
capacity.

In recent years, many works have dealt with the statics and dynamics of the
logistic growth on spatially heterogeneous domains or under fluctuating environ-
mental conditions. The interest in such phenomena ranges from out of equilibrium
statistical mechanics [28,35,58], to chemistry [23,64] and biology [27,45,49,57,62].
These theoretical works led to experimental biological validations of the expected
dynamics in bacterial populations [45]. An interesting problem manifested in the
application of the Malthus-Verhulst equation to biological systems is the discrete
nature of the reactants. The deterministic ordinary (or partial) differential equa-
tions used to model systems of individual agents fail to capture the effect of the
intrinsic noise associated with the stochastic behavior of individual reactants.

Assume a population with a birth rate twice larger than the death rate. In
such a case, the logistic growth equation predicts that the empty state is unstable
and the population grows until it saturates. However, suppose that the system
may support only, say, three reactants. If the stochastic character of the death
and birth processes is taken into account, there is finite probability per unit time
for all three reactants to die without any birth. In such a case the system is
trapped in its frozen absorbing state. This is a common feature of many individual
reactants systems the extinction of any finite population (say, a single colony)
due to large stochastic fluctuations that drive the system into the absorbing state.
This example is by no means unique: as autocatalysis involves exponential growth,
the system is very sensitive to stochastic fluctuations, both of the population itself
and of the environment. In order to take these effects into account, one should
consider the Masters equation (Forward Kolmogorov Equation) that describes the
actual stochastic process, and to regard the deterministic reaction-diffusion equation
as some sort of mean field approximation, perhaps with appropriate corrections.
Alternatively, the results of numerical simulation may be used in order to identify
the regime of validity of the mean field deterministic equations and to determine
the system behavior beyond these limits.

The main goal of the current review is to show that the balance between regions
in such an absorbing state and regions in a growing phase leads to a dynamic
non-uniform spatial distribution of reactants. This distribution can be related to
multiple types of previously studied dynamic systems. The most interesting one
is directed percolation (DP) [11] in the d+1 space-time. DP assumes a lattice
based dynamical process, where each lattice point can be either active (full) or
inactive (empty), with constant birth, death and diffusion probabilities. The system
dynamics are represented through the presence or absence of unidirectional edges
between neighboring spatial position from time t to the time t+1. The probability
for the existence of such an edge is denoted the filling fraction. In finite dimensions
(2 < d <∞), DP systems show a second order phase transition at a critical filling
fraction. Below this density, after a long enough time, the system will be empty,
while above it will contain active sites. The DP represents a universality class
by itself. Grassberger and Janssen [25, 34] proposed that under a set of limiting
conditions, most dynamical systems belong to the DP universality class.
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We here study four different scenarios, ranging from simple expanding popula-
tions to predator prey systems to show that a similar principle may explain features
in all the different systems:

1. At low diffusion rates, every position collapses to the abosribing state, since
the carrying capacity is always finite, and the reactant population is extinct.

2. At very high diffusion rates, the system behaves like the ODE approximation.
If the ODE approximation converges to 0, so does the simulation.

3. At intermediate range of diffusions, a very high reactant density appears which
is due to an adaptation of the reactants to random fluctuations in the catalyst
density.

All the models studied here are based on the following common model:

2. Common model. Consider a system of catalysts and reactants, both are dis-
crete agents that wander around diffusively on a d-dimensional lattice. The main
feature of the model is catalysts induced growth, namely, the reactants multiplicate
autocatalytically in the presence of catalysts. In previous works, the linearized ver-
sion of logistic growth in the presence of wandering catalysts has been considered.
This model was named the AB model [49–53, 73]. This simple model contains a
diffusive catalysts A, and a diffusive, proliferating and dying reactants B. Reactant
proliferation occurs only in the presence of the catalyst (A), and it occurs with a
rate of βB . Reactant death occurs spontaneously with a constant rate of δB . These
reactions can be summarized by:

A+B
βB−→ A+B +B (1)

B
δB−→ ∅

The diffusion rates are DA andDB for the catalyst A and reactant B respectively.
As the catalysts A are eternal objects, their total number is time independent. The
catalyst density per unit volume is denoted byNA. It was shown that, in spite of this
system seeming simplicity, it induces complex dynamics. At the mean field level, the
diffusion of the catalysts implies a uniform distribution. Accordingly, the growth
rate at each spatial location is given by βBNA − δB . If this quantity is positive the
system proliferates and if it is negative the system is driven to extinction. When
the stochastic motion of the A-s and the Poisson fluctuations in the growth rate are
taken into account, the situation is different. It turns out that even if on average the
system is in its extinction phase, there are still spatial patches of positive growth
rate (“oases”) due to the fluctuations associated with the catalyst discrete nature.
Within each oasis there is an exponential proliferation of the B reactants, and
localized colonies of B emerge around these oases. Once such a colony proliferates,
its spatial size grows linearly in time, and the diffusive motion of the catalysts is
not fast enough to “escape” from the colony. Thus, the B reactants “adapt” to
the fluctuating environment, leading to a proliferating phase well below the “mean
field” extinction transition, i.e., even if βBNA − δB � 0 [52,72,73].

The basic difference between the classical AB model and its PDE counterpart
is the emergence of localized structures that induce B reactant population growth.
We will show that such structures emerge in the presence of a limited A lifespan (a
“massive” A in field theory terms) and in the presence of B competition, but that
in contradiction with the original AB model, there is a phase transition between
the localized surviving and uniform decaying states even in two dimensions.
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We here study four systems that are different extensions of this basic model in
very different domains, and show that they all have a maximal reactant density at
intermediate diffusion rates. These systems will be analyzed using the following
methods:

3. Methods.

3.1. ODE numerical solution. When studying the behavior of the system that
does not take into account possible spatial in-homogeneities, or the possible discrete
aspect of the interactions, we use a numerical ODE solver. The ODEs studied here
are non-stiff in the parameter regime studied, and was solved numerically using the
ode45 Matlab function, based on an explicit fourth order Runge-Kutta formalism [6].

3.2. PDE numerical solution. In order to examine the influence of the spatial
distribution of the reactants, we use a PDE solver. The solver uses a first order
spatial diffusion scheme and a fourth order Runge-Kutta formalism for the time
derivatives. Note that the PDE solver does not take into account stochastic fluctu-
ation in the system.

3.3. Simulations. The stochastic models are studied using Monte-Carlo simula-
tions. These simulations have been performed on a d-dimensional lattice (Zd). The
simulations include diffusion between the cells and stochastic fluctuations. These
fluctuations originate from the fact that the reactions in the simulation are treated
as independent random events and that each lattice site has a discrete number of
agents (and not a continuous number as in the ODE and the PDE).

The precise description of the simulation can be found in previous publications
[3, 52, 73]. In the absence of diffusion, the simulation results can be treated as an
ensemble of zero dimensional systems. The average of this ensemble is the averaged
zero dimensional stochastic counterpart of the mean field results.

3.4. Single colony analysis for the directed percolation. In order to study the
survival condition of localized reactant aggregates (also denoted as islands) around
an “oasis”, i.e., spatio temporal catalyst concentration is analyzed, we assume a
constant number of catalysts at the center of a reactant aggregate, and calculate
the shape of the reactant aggregate using standard partial differential equations.
We find the minimal aggregate size requested for the system survival assuming a
low catalyst diffusion rate and a low catalyst density. A Directed Percolation anal-
ysis is then used to estimate the survival probability of the whole system, given the
probability that the aggregate surrounding an oasis will “touch“ another aggregate
by the time the oasis is dissolved, as a function of its volume fraction. The approx-
imation here is to neglect the diffusive correlation of catalyst fluctuations beyond
some typical time scale.

3.5. Directed percolation analysis. Directed percolation [11] is a model for the
spreading of a substance in a lattice in discrete time steps. Each lattice point can
have a value of zero or one, and lattice points with values of one can invade a
neighboring point. The fraction of lattice points with values of one is determined
by the ratio between the invasion probability and the extinction probability at each
site. If this value is higher than a percolation threshold, the lattice occupancy (the
fraction of lattice points that have a value of one) will be positive at finite times,
while below this value, it will be null. The transition between two states is a second
order phase transition [31]. In the current analysis, the value at a given lattice point
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was computed based on its own value, and the values of its first neighbors in the
previous step (2 in 1D, 4 in 2D and 6 in 3D simulations). First, a disappearance
probability p(div) = p : 1 → 0 was applied to each lattice point with a value of 1.
Then a probability of diffusion p(inv) = p : 0 → 1 was applied from each lattice
point that had a value of 1 in the previous time step to its nearest neighbors.

4. Model 1 - Dying catalysts.

4.1. Model description. In the AB model described above, the catalysts were
eternal [3]. Replacing them by dying catalysts alters the dynamics. As in the com-
mon model, the system contents two kinds of agents: catalysts A and reactants B,
both of which are spreading randomly with diffusion ratesDAandDBcorrespondingly
on a lattice Zd. The catalysts A are introduced into the system with a constant
rate of βAand die with a rate of δA. The dynamics of the B reactants is similar
to the one used in the AB model. Thus, the dying A reactant system contains the
following reactions:

• A+B → A+B +B with a rate of βB .
• B → ∅ with a rate of δB .
• A→ ∅ with a rate of δA.
• ∅ → A with a rate of βA.
• A and B diffuse at rates of DA and DB .

The mean-field, deterministic, rate equations describing this system are:

∂NA
∂t

= DA∇2NA − δANA + βA (2)

∂NB
∂t

= DB∇2NB − δBNB + βBNANB

where NAand NB are the densities of the catalyst and the reactant, respectively.
After a long enough time (much longer than 1

/δA), the A particles density is 〈NA〉 =
δA
βA

. The effective growth rate of the reactants becomes βB 〈NA〉−δB . The extinction

transition is expected to occur at βB
δA
βA

= δB . Basically, the fact that reactants

multiplication occurs at close proximity with the catalyst may lead to deviations
from this prediction since the immediate environment seen by the B population is
less hostile than the average environment. This may lead to a living system even
below the mean field extinction transition. Our first step is to check this hypothesis
numerically.

4.2. Numerical simulations. We have simulated the dying catalysts system using
the following parameters δA = 1, δB = 1, DA = 0, DB = 0.25and varied βA. We
checked at what values of δA

βA
= 1

NA
and βBthe survival extinction transition occurs

(Figure 1). One can clearly see that the survival threshold is much below the one
expected in the mean field analysis, in correspondence with the adaptation behavior
demonstrated in the AB model. Moreover, it seems from the figure that, in a wide
region of the parameter space, the transition line depends very weakly on the average
δA
βA

, in stark qualitative contrast with the mean field analysis.
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Figure 1. Comparison between mean field, simulations
and Directed Percolation for a system with dying cata-
lysts. The simulation was done with the following parameters:
δA = 0.01, δB = 1, DA = 0, DB = 1.For these parameters, the
values βAand βBwere varied. The drawing represents the values of
1
NA

= δA
βB

and βB for which the survival extinction transition occurs.

One can clearly see that the survival threshold in the simulations
(solid gray line) is much below the one expected in the mean field
analysis (dashed dotted line) and very close to the one predicted
by the DP (black boxes).

4.3. Dying catalyst - directed percolation picture of the extinction transi-
tion. In order to understand the difference between the numerical simulations and
the ODE models, one must incorporate the discrete aspects of the catalysts. Given
this discrete nature, every lattice site has a given number of catalysts. Assume for
example that the average catalyst density would be 0.01. This would not mean
that each lattice site would have 0.01 catalysts. Rather, 0.01 of the sites will have a
catalyst (or more), while around 99 % of sites would have no catalysts. Around each
catalyst a colony of reactants can grow for deviation of the shape of the colony [3].

As the lifespan of a reactant colony is finite, any single colony is bound to decay.
The simple criteria for the survival of the reactants are that, by the time the cata-
lysts disappear, the colony “touches” at least one other colony. If one disregards the
spatial correlation between the catalysts (this correlation is related to the diffusive
motion of the catalysts, and let us assume for the moment that the catalysts are
standing still so there indeed is no such correlation), the picture is of d+1 dimen-
sional space-time with finite, constant density of finite “length” (i.e., time span)
catalyst columns (representing the catalyst aggregate in the center of the colonies)
randomly distributed. Around each of these columns a “cone” (in space-time) of
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reactants is developed, and the question of the reactants survival translates itself
to the language of percolation theory, namely, whether or not the system is below
or above the directed percolation threshold for cones.

Now let us plug in the parameters. First, the directed percolation threshold for
a system of cones in 2+1 dimensions has been found numerically to be pc = 0.75
(see Figure 2). The probability to find m catalysts at a single lattice point is given
by the Poisson distribution:

Pm=

(
βA
δA

)m
· e−

βA
δA

m!
(3)

The system survives for a long time if the filling fraction is higher than the
directed percolation transition threshold (Pm > pc ). The percolation threshold
was computed for an island diameter of one and length of one, so that the island
size must be rescaled to fit the percolation estimate

(ντmA)
d
τmAPm > pc (4)

where τmA = 1
m(δA+DA) is determined by the stochastic parameters. Both ν and

pc are dimensionally dependent, and all the quantities on the left hand side are m
dependent. In other words for each value of m selected, a different threshold would
be obtained. The system will survive if there exists at least one integer m such
that this inequality holds. In Figures 1 and 3, the phase diagram extracted from
this condition is compared with the numerical simulations. Clearly there is a good
qualitative agreement.
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(a)                                                                            (b)

Figure 2. DP analysis. Islands shapes in the case of: (a) dying
catalysts model; (b) competing reactants model. Difference in the
percolation thresholds as a result of difference in the shapes of
islands in space time in the two first models studied here.



530 HILLA BEHAR, ALEXANDRA AGRANOVICH AND YORAM LOUZOUN

Thus, to summarize this first model, the dynamics of such a system is determined
by limited regions of finite population surrounded by large empty regions. The
dynamics is governed by the balance between the extinction of these regions and
the invasion of new catalyst rich regions. Thus, three regimes can be defined in this
model:

• At low diffusion values, the reactant density goes to 0, since local aggregates
do not connect one to each other.

• At high diffusion values, the reactant density goes to 0, like the ODE approx-
imation

• At intermediate values, there is a non-zero reactant density, which eventually
diverges.
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Figure 3. Comparison between mean field, simulations,
field theory and Directed Percolation for a system with
dying catalysts. The phase transition is depicted here as a value
of ln(1/δA) for βB each value. The mean field prediction is that the
system would survive only for βB > 10, independent of ln(1/δA)
(since the value of βA/δA is fixed). The simulation (full gray line),
the perturbative results (dashed black line) and the DP (full black
line), on the other hand, all predict survival for much lower values
of βB given that the value of δA is low enough. Note that the dis-
crepancy between the DP and the simulations grows as the value
of δA increases. This is the obvious result of the collapse of the
DP assumption (i.e. a much faster B than A dynamics). At even
higher values of δA, the simulation itself is not precise anymore
since we cannot decrease the time step to allow a small number of
A reactions to occur in a given time step. The parameters used in
this figure are: 〈NA〉 = 0.1, δB = 1, DA = 0, DB = 1.
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5. Model 2 - Limited carrying capacity.

5.1. System description. While in the previous model a finite lifespan of the
catalysts has been considered, another important characterization of birth death
processes is the finite carrying capacity (per unit volume) of the system. The
original AB model, as well as its dying catalyst extension, allows for two different
phases of the whole system: in the extinction phase the number of reactants goes
to zero, while in the proliferation phase this number goes to infinity. To be more
realistic, we introduce a nonlinear saturation mechanism into the system. This
limiting mechanisms is mainly related to the competition for common resources
such as space, food, or water, and is the driving force of Darwinian Evolution
(see [52]). The deterministic growth process is then generically described by the
following coupled rate equations:

∂NA
∂t

= DA∇2NA (5)

∂NB
∂t

= DB∇2NB − δBNB + βBNANB − σBN2
B

These equations incorporate the features of the logistic growth into the catalyst
induced proliferation mechanism. There are many microscopic processes that yield,
upon cross-graining, the −σBN2

B term, such as mutual annihilation B + B → ∅ or
destruction of one B reactant by the other: B+B → B. It is known, however, that
for these processes in a homogenous environment (uniform birth-death rate at each
site), there is a difference between the predictions of the mean-field equations and
the behavior of the real, stochastic process. We have here used a competition term
represented by the death of a reactant when two reactants meet.

The model considered contains the following processes:

• An immortal diffusing catalyst with the a rate of DA.
• A reactant B proliferating in the presence of an A catalyst, dying, diffusing

and competing with other reactants with rates of βB , δB , DB and σ respec-
tively. The competition here means that when two B reactants meet, one of
them will die with probability σB .

5.2. Survival of system with competition - directed percolation. The di-
rected percolation argument may also be used here, with the lifespan of a m A-s
aggregate taken as 1

mDA
. As long as the competition term effect is negligible, the

B islands grow linearly as in the previous case. In this case, we would use the
DP threshold obtained for cones. Once the competition at the center of the island
becomes important, the islands size stabilizes. In space time, this produces a cone
converging into a cylinder. If the islands survive for a long time, we can ignore the
cones and assume space is filled with cylinders.

The scaled DP estimate in the case when the islands are disrupted before they
stabilize is as before:

(ν (τmA) τmA)
d
τmAPm > pc(cone) = 0.75 (6)

where Pm is the frequency of m A catalysts aggregates, τmA is the average existence
time of such aggregates, and ν (τmA) is the B colony radius at time τmA. On the
other hand, if the colonies are stabilized for a long time before they disappear, the
system survival condition is:
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r (∞)
d
τmAPm > pc(cylinder) = 0.34 (7)

where we have replaced r (τmA) by r (∞). Note that although pc(cylinder) <
pc(cone) , r (τmA)� ν (τmA) τmA and the survival condition (7) is worse than (6).
We have previously developed an analytical estimate for the time-space structure of
reactant aggregates, and compared the percolation results using such shapes with
the full simulation [3].
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Figure 4. Competing B-agents. Comparison between the re-
sults of the DP, FT, simulations and mean field. The dashed doted
line is the mean field, the DP is in red squares, the FT is the
dashed line and the results of the simulations are presented as a
solid line. Regions (I) and (II) are the survival regions according to
the simulations, while the mean field estimate predicts survival in
regions (II) and (III). Region (IV) is the part of phase space where
both simulations and the mean field predicts the extinction of all
B agents. The places where the both estimates overlap are obvi-
ously regions (II) and (IV). An interesting phenomena observed in
zone (III) is that the islands are destroyed because of large com-
petition rate and there is no continuous (infinite) B mass near the
source A. Thus one cannot assume anymore a continuous B agent
persistence at each location. Note that the DP analysis is pre-
cise at low βBand σB . The parameters used for this figure are
NA = 0.3, δB = 1, DB = 0.1, DA = 0.1.

The results of numerical simulations for the competing reactant case are pre-
sented in Figure 4 with the parameters δB = 1, DA = DB = 0.1, 〈NA〉 = 0.3 and
varying values of σB and βB . According to the mean field theory the extinction
transition should take place atβB = 3.33 ,independent of the nonlinear interaction
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σB . One can see that this is not the case. In fact, for small σB the transition is
shifted downward, as in the AB model, due to adaptation of the reactant colonies
to the fluctuating environment, while for large σB the opposite process, extinction
of colonies attributed to the stochastic fluctuations in the number of B-s, dominate
and the transition point is shifted upward.

To summarize, the dynamics of this system are completely equivalent to the first
presented model, with the main difference being that here at intermediate diffusion
rates, the reactant concentration is finite, while in the previous one, it diverged.

6. Model 3 - Lotka Voltera system.

6.1. Description of the model. In the early 1920’s, Lotka and Voltera have
shown that a system containing the negative feedback of a predator on a prey can
lead to sustained oscillations [46–48,77]. This observation as expressed through the
now classical Lotka Voltera (LV) predator-prey (PP) equations has been extensively
studied. The original LV model has been enlarged to include more complex inter-
action terms [5,9,19,22,24,32,57,61,66], spatial heterogeneity [14,19,21,60,61,79]
(for a review see [10]) and stochastic interactions [13,16,17,37,43,44,55,56,78]. In
discrete stochastic models, the LV model also has absorbing states of zero preda-
tor and prey or zero predator and either finite or infinite prey populations. In a
deterministic continuous system, either the fixed point equivalent of the stochastic
absorbing state is unstable and then each trajectory that leaves it reaches the stable
fixed point; or it is stable and small perturbations exponentially decrease.

Thus apparently, the LV is very different from the dynamical models studied up
to now. We here show that LV models can show similar transitions to what has
been discussed in the two previous models.

An example of that would be an abstraction of the lymphocyte-pathogen dynam-
ics. Lymphocytes have a pathogen independent basal production rate in the bone
marrow or in the thymus [1], and basal division and death rates. Upon infection, a
few clones of pathogen specific lymphocytes grow and destroy the pathogen, until
the pathogen is eventually eradicated, within days to weeks [33]. Once the pathogen
disappears, the lymphocyte clones size decays. The decay can either be to the basal
level, or to a slightly higher level, if memory cells are formed [7,12,38,63,69]. These
interactions can be summarized by the following reactions:

• proliferation of the pathogen x with a rate of α;
• duplication of host lymphocytes in response to an encounter with a pathogen

with a rate of ν;
• pathogen destruction by the host lymphocytes with a rate of γ;
• creation of new lymphocytes in the hosts bone marrow/thymus with a rate of
λ;

• lymphocytes natural death with a rate of σ.

Lymphocytes and pathogens obviously do not move in an empty space. Instead they
travel through the blood and the lymphatic system, but for the sake of simplicity,
we here describe the lymphocytes and pathogen movement as diffusion with rates
Dyand Dx, respectively.

Using these reactions, the ISP dynamics translates into a PP system. The de-
terministic continuous average description of this ISP model leads to the following
ODEs:
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∂x

∂t
= αx− γxy (8)

∂y

∂t
= λ+ νxy − σy

Two possible regimes are expected in the ODE solution of this system: A) a stable
zero-pathogen fixed point, where small perturbations decay rapidly to zero, and
pathogens never manage to produce a full blown infection; or B) an unstable zero-
pathogen fixed point, where the small perturbations converge to the positive fixed
point, leading to a coexistence of the host immune system and the pathogen. These
regimes do not seem to represent the experimental reality of pathogens growing and
disappearing.

In discrete stochastic systems, the population of preys ultimately undergoes ex-
tinction. The extinction probability (at a finite time) starting from the positive
fixed point decays exponentially with the number of predators and preys in the
fixed point [15,18,55,59,65,67,68]. We have studied the transition to the absorbing
state, following an escape from the same state [2]. We have shown that starting
near the absorbing state, the dynamics of discrete stochastic spatially extended PP
models are determined by three factors:

• the extinction probability of a small perturbation from the absorbing state in
the discrete stochastic zero-dimensional PP model;

• the diffusion rate;
• the system size.

The interplay between these factors can lead to different dynamical regimes. These
regimes are described in the following sections.

In the zero dimensional discrete system, there is a large region in parameter
space where the system converges to the absorbing state. Starting from a small
perturbation near (0, y0), the transition to the absorbing state for high values of
(x∗, y∗) occurs most probably during the first pass near the zero pathogen state
(Fig. 5). Note that if the initial perturbation is too small, there is also a non-
negligible probability that the system will directly converge to the absorbing state.
We here assume that the initial perturbation is large enough and that this effect
is secondary. The probability of moving to the absorbing state at the first pass
near zero increases with the time spent at low pathogens value. Let us denote
the pathogen extinction probability as P localdisapearanc. We have previously provided

an analytical estimate of P localdisapearanc [2]. This convergence probability increases

with the value of (x∗, y∗)in the simulations. The disappearance of the pathogens
in this system is thus not due to low values of x at the fixed point. It occurs
following transient low values on the trajectory to the fixed point. For constant
initial conditions, as the values of x∗ and y∗ increase, the trajectory will pass closer
to the y axis (as can be easily seen from a geometrical perspective), and the pathogen
disappearance probability in the first pass near zero increases. Equations (8) and
their stochastic zero dimensional counterpart (see Methods) were solved numerically
for different values of (x∗, y∗). For each value of (x∗, y∗), the fraction of stochastic
realizations ending at the absorbing state was computed (Fig. 6). The observed
transition to the absorbing state does not result from the low total number of agents
in the simulation, but from the large distance between the starting conditions and
the positive fixed point.
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Figure 5. Trajectories of ODE solution of immune system-
pathogen dynamics. The trajectories start from a point near the
zero pathogen fixed point and oscillate toward the positive fixed
point. At each oscillation, the trajectories get farther away from
the y axis. During the first oscillations, the trajectories can stay for
a long time in a region where the expected pathogen population is
less than 1. In this region there is a high pathogen disappearance
probability (inset). The parameters used for these results are: α =
1.2, γ = 0.1, λ = 0.4, ν = 0.004, σ = 0.1, Dx = Dy = 0, t = 200.

Thus, the apparent discrepancy between the observed pathogen rise and extinc-
tion and the predictions of the deterministic continuous PP system can be simply
explained using the transition of the trajectory very close to the y axis. In other
words, at some stage the pathogen number is so low that it shrinks to zero (Fig. 7).

6.2. Spatially inhomogeneous dynamics. The effect on P localdisapearanc of ana-

lyzing the system in space differs for large and small values. If P localdisapearanc is low,

diffusion stabilizes the positive fixed point (data not shown), as often happens in PP
systems [19,29,60]. We are here interested in the opposite regime where P localdisapearanc

is almost 1.
Assume P localdisapearanc is high enough such that the survival probability in one pass

near the y axis even in a single spot in the entire system is low. In such a case, the
positive fixed point is never obtained in the absence of diffusion. If the diffusion
is zero, each region in turn will be absorbed to the zero pathogen state until the
entire system will converge to the absorbing state after a single pass near zero. The
transition to extinction occurs since regions with no pathogens cannot be colonized
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Figure 6. Probability of pathogen disappearance as a
function of distance between fixed points. The pathogen
disappearance probability (at the first pass near zero) grows with
the distance between the zero pathogen fixed point and the positive
fixed point. The parameters used in this figure are: α = 0.2, γ =
0.1, λ = 0.4, σ = 0.1, runs from 10−5to 1.5 · 10−3. The distance
between the fixed points is defined as the Euclidean distance.

by regions where the pathogen concentration is still finite. If the diffusion rate is
too high, the system behaves as the mean field and all pathogens die simultaneously
as the local pathogen density becomes too low. Thus, if P localdisapearanc is high and the
diffusion rate is either very low or very high, the pathogen population will disappear
(Fig. 8). In intermediate ranges of diffusion rates, colonization can take place and
complex dynamics can emerge from the combination of asynchronous pathogen
dynamics and the high diffusion rates. Interestingly, within this parameter range,
the transition between the two regimes is determined by the system size, and not
only by the values of the rate constants.

6.3. Directed percolation. At high values of P localdisapearanc and intermediate diffu-
sion rates, an interesting invasive regime emerges. At each position independently,
the low number of pathogens in the initial condition leads to stochastic variations
in the time at which the pathogen population is minimal and to a loss of synchro-
nization. Thus, by the time the pathogen population in a given site is annihilated,
neighboring sites may still have a non-zero pathogen population. In such a case, if
the diffusion rate is high enough, the pathogen in the neighboring sites can colonize
the empty site, once the immune system cells concentration is low enough in the
colonized site. Following this invasion, the pathogen population can rise again.

Such a dynamics appears to be similar to a Directed Percolation (DP) model.
The fraction of space with a non-zero pathogen population was measured in Monte
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Figure 7. Pathogen dynamics. Pathogen average population
as a function of time for the ODE solution (full line), the Dx = 0
stochastic simulation (dashed line) and the Dx = 10 stochastic
simulation (doted dashed line). Both the low and high diffusion
rate simulations converge to the non-stable zero pathogen state in
contrast with the mean field ODE. The parameters used for these
results are α = 1.6, γ = 0.01, λ = 0.6, ν = 0.001, σ = 0.01.

Carlo simulations of the ISP model in 1, 2 and 3 dimensions for different values
of Dx and P localdisapearanc. We then compared these results to simulations of a DP

model with parallel invasion and extinction rates (see Methods). In the DP model,
each lattice site was assigned a value of either zero or one. Each lattice site with a
value of one could become zero with a probability of p(dis) and invade neighboring
sites with a probability of p(inv). The system was initiated with a fully occupied
lattice. We ran this simulation for different values of p(dis) and p(inv), and ran
in parallel simulations of the full ISP with p(dis) = P localdisapearanc and p(inv) = Dx

(Fig. 9). After the system converged to its steady state filling fraction, we measured
the filling fraction as a function of p(inv). The percolation transition in two and
three dimensions is in good agreement with the full ISP dynamics Monte Carlo
simulation (Fig. 9 points vs. full line). However, in the one dimensional system,
the fit is limited (dashed line). The finite pathogen concentration in this regime
results from an amalgam of regions where the pathogen population has vanished
and regions re-colonized by the pathogen (data not shown). To summarize, if the
diffusion rate is intermediate and P localdisapearanc is high, the dynamics can be explained

by a simple DP processes that is only determined by p(dis) and p(inv), at least in
2 and 3 dimensions. In one dimension, the precise dynamics of the DP and the full
ISP only agrees qualitatively.

6.4. Wave trains. In parallel to the DP regime, a different behavior can emerge
in the same parameter range. For most simulation trials, the pathogen population
follows a DP dynamics. There are, however, rare events, where in one lattice point
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Figure 8. Pathogen filling fraction as a function of dif-
fusion rate. The stochastic simulations results in 2 dimensions
(d = 2). The lattice size is 100x100. The parameters used for this
figure are :α = 1.6, γ = 0.1, λ = 0.4, ν = 0.004, σ = 0.1Dy = 0.01 .
For low and high values of pathogen diffusion rates, the pathogen
population goes to extinction. For high values of Dx, there are
rare events of population survival. The number of such events de-
creases as Dxgrows. Note that the curve is non symmetric. For
low diffusion rates, a part of the space is occupied, while for high
diffusion rates, either all or nothing is occupied. The filling fraction
is defined as the fraction of lattice points with non-zero pathogen
values.

the pathogen population does not disappear in multiple passes near zero. In each
following pass, the disappearance probability decreases until it is negligible. This
point can then convert nearby points to the stable fixed point through the prop-
agation of Fisher waves [20], until the entire space converges to the positive fixed
point. The Fisher waves advance with a linear rate, and the filling fraction (the
fraction of space with non-zero pathogen population values) grows proportionally
to the dimension of the system (see, for example, a quadratic growth in a two di-
mensional system in Fig. 10). A similar process was observed when computing the
dynamics of a predator and a prey occupying a new territory [70,71], and is called
wave trains when the central point is marginally stable.

Since P localdisapearanc is finite, there is a chance in any system that has not converged
to the zero pathogen state in the entire system to converge locally to the wave trains
regime. Following the local convergence, the entire system will eventually attain
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Figure 9. Percolation results and comparison to filling
fraction. The solid line is the percolation transition in the DP
model (lattice filling fraction versus (p(inv))) which is in good
agreement with the full ISP simulation results (scatter plot) (lattice
filling fraction versus Dx). For the 2d and 3d systems, the Monte
Carlo simulation and DP simulation results coincide for p(inv) =
P localdisappearance = 0.35. In the one dimensional case, the diffu-

sion itself affects P localdisappearanceyielding an effective P localdisappearanceof
0.19. The parameters used in the Monte Carlo simulation are:
α = 1.2, γ = 0.2, λ = 0.6, ν = 0.08, σ = 0.58

the positive fixed point value. The only mechanism limiting the transition to the
wave trains regime and following it to the stable fixed point is the transition to the
absorbing state. The transition probability to the absorbing state in the directed
percolation regime is inversely proportional to the exponent of the system size [31].
At any given time, the transition probability to the wave trains regime is linearly
proportional to the system size. Thus as the system grows, at finite times, there is
a higher probability of transition to the wave trains regime and a lower probability
of transition to the absorbing state (Fig. 11). Note that for any system size, the
system will always eventually converge to the absorbing state, but the transition
rate to extinction may be exponentially small.

To summarize, this system expresses most of the features expressed by the previ-
ous ones, mainly the balance between (the pathogen) extinction and its colonization
of new regions. An interesting feature made clear by this model is the bell shape
relation between the diffusion and the reactant density. At low diffusion value, the
bell shape is obtained following the DP phenomena. At high diffusion rate, this is
obtained because for high enough diffusion the system converges to the mean field
approximation, and collapses back to zero (pathogens).
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Figure 10. Wave train dynamics. The upper drawing repre-
sents the pathogen filling fraction, which is a quadratic function
of time, since the wave front advances at a linear rate in a two
dimensional space. The thin gray line is a line representing y = t2.
The lower drawing represents the wave creation and propagation
in space-time. The first snapshot refers to the uniform filling of the
two dimensional space by pathogens. In the second snapshot, the
pathogen extinction can be observed in all pixels but two. These
two pixels are the source of the following wave that is seen propa-
gating in the next snapshots. The tenth snapshot shows the pop-
ulation survival following the wave filling the 2d space.
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Figure 11. Effect of system size on survival probability.
The ISP simulations were run with the same parameters (α =
1, 6, γ = 0.1, λ = 0.4, ν = 0.004, σ = 0.1, Dx = 0.8, Dy = 0.01)
for different two dimensional system sizes, ranging from 10x10 to
150x150. For each system size, 50 realizations were done and the
average fraction of non-empty sites was calculated. The filling frac-
tion rises sharply as the system size passes 1/P localdisappearance until it
saturates on 1 in systems significantly larger than that.

7. Model 4 - Resource production.

7.1. The model - mean filed approximation. One more model that we discuss
is a model of resource production [8]. This model presents the relation between A
and B, where A is knowledge and B is capital. The model contains the following
reactions:

• ∅ → A with a rate of βA;
• A→ ∅ with a rate of δA;
• B → B +A with a rate of αA;
• A+A→ A with a rate of µ;
• B → ∅ with a rate of δB ;
• A+B → A+B +B with a rate of βB ;
• B +B → B with a rate of ε.

This model is quite similar to the previous model, where the main difference is the
feedback of the B agents on the A agents. The ODE approximation of this model
is described in model (9):
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dA

dt
= βA − δAA+ αAB − µA2 (9)

dB

dt
= βBAB − δBB − εB2

Figure 12. Phase space analysis. The number of the fixed
points as a function of βAand ε. The transitions in the system are:
three fixed points to one fixed point (by changing ε) , three fixed
points to two fixed points and one fixed point to two fixed points
(by changing βA).

The system in Eq.(9) has three possible combinations of fixed points (Figure 12):
A single stable fixed point, two fixed points or three fixed points. We focus on the
range of the parameters where the system has three fixed points. In this case, this
system has two stable fixed points: an absorbing state and a positive fixed point,
and one unstable fixed point in between. The values of the fixed points are shown in
figure 13 as a function of ε. The solid line is a stable fixed point and the dashed line
is an unstable fixed point. Such models classically express a hysteresis mechanism.
When starting from a non-zero state, increasing epsilon will lead to a collapse to
the absorbing state. However, reducing epsilon back will not return the system to
the non-zero state. Such a phenomenon is called hysteresis.
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Figure 13. The average of B as a function of εwith the pa-
rameters: δA = 0.02, αA = 0.01, βB = 0.002, δB = 0.01, µ =
0.00005, βA = 0.005, with diffusions of A and B at 0.001, initial
conditions of A = 30, B = 10, on a 100x100 lattice. The solid
line is the stable fixed points in the ODE. The dashed line is the
unstable fixed points in the ODE. The square line is the fixed point
in the stochastic system. The results of the stochastic simulation
are continuous, and the transitions in the stochastic simulation are
shifted compared with the ODE.

7.2. Stochastic results. The stochastic simulation stabilizes around a different
average from the ODE. Figure 13 shows the mean of B agent density in the sto-
chastic simulation, when ε is varied.

The difference between the hysteresis expected from the ODE model and the
stochastic simulation is the result of the non-symmetric transition between the
upper fixed point and the absorbing state. In intermediate values of ε, the balance
between these two mechanisms produces an inhomogeneous distribution that has a
stable average, which is based on a constantly changing spatial distribution of the
A and B concentrations (Figure 14).

Figure 15 describes the transition between two stable fixed points in phase space.
In a short time, all the values of the B agents in the lattice go to the line that
connects between three fixed points. Stochastic fluctuations can then transfer lat-
tice sites from one stable fixed point to the other. This transfer is however non-
symmetrical since the low fixed point is an absorbing state. If in a given lattice
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Figure 14. Lack of long term correlations. Upper drawing.
The correlation between the B agents spatial distribution as a func-
tion of time, with the following parameters: δA = 0.002, αA =
0.005, βB = 0.002, δB = 0.01, µA = 0.01, µ = 0.00005, ε =
0.0041.The lower drawing represents the average B concentration
as a function of time. The average B concentration is constant over
time, while the correlation goes to zero.

site the B population is extinct (i.e. goes to the low fixed point (B = 0)), it can-
not leave this point purely through stochastic fluctuations. The only way that this
lattice point can be preoccupied by B agents is through diffusion from neighboring
lattice sites. In contrast, a lattice site that goes to the high fixed point can jump
to the other side of the schematic line through loss to its neighbors induced by
diffusions, or following stochastic fluctuation.

When the transition probability from the lower to the higher fixed point is higher
than the opposite transition probability, a fisher wave is observer [36], where the
high density region converts the low density region at a constant speed (see linear
increase in the total A population in Figure 16D and the step by step growth of the
region occupied by the higher fixed point in Figure 16B). If on the other hand the
transition probability from the upper to the lower fixed point is higher, a natural
decay occurs simultaneously over the entire region that is in the upper fixed point,
as can be seen in the exponential decrease in the total A population (Figure 16C)
and in the local collapse of the A population (Figure 16A).

To summarize, this last system shows all the properties of the previous system,
with a bell shape relation between the diffusion rate and the catalyst density (data
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Figure 15. detailed phase space. Absolute value of gradient as
a function of A and B values. Darker colors are closer to zero. One
can clearly see that the gradient rises sharply beyond the thin line
connecting the three fixed points. The two extreme fixed points
are stable (large circles), while the intermediate fixed point (small
circle) is not.

not shown), the balance between extinction and invasion and the stark differences
between the stochastic and deterministic description of the system.

Thus in many different systems, the balance between the invasion of empty posi-
tions in space and the extinction of existing positions determined a diffusion depen-
dent steady state that is not predicted at all by the ODE description of the same
systems.

8. Discussion. Catalyst induced growth is a frequent phenomenon in many bi-
ological and economic systems. These phenomena were previously studied in the
context of mean field equations that predict an extinction transition when the aver-
age catalyst induced growth rate is equal to the natural death rate. In the generic
case of logistic growth or predator prey models, the transition in parameter space
is typically assumed to be independent of the diffusion rates. On the other hand,
we have previously shown that the stochastic character of the interaction among
discrete entities may lead to different behavior as autocatalytic fluctuations may
adapt themselves to the fluctuating environment [72]. This phenomenon, and its
dependence upon dimensionality (see also [40]) has to do with the features of the
localized solutions of the Schrdinger equation for quantum particle in heterogeneous
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Figure 16. Dynamics following initial condition with half
space in the upper state and half in the absorbing state
(The higher figures) Snapshot after 200,000 iterations of the simula-
tion with the parameters δA = 0.002, αA = 0.005, βB = 0.002, δB =
0.01, µA = 0.01, µ = 0.00005, ε = 0.002 and ε = 0.004, diffusion of
A and B of 0.001, on a 1000x1 lattice. The black line is the ini-
tial distribution, the dark gray line is the distribution after 100,000
iterations, and the light gray line is after 200,000 iterations. The
lower figures are the averages of A as a function of time. When the
system goes to the higher steady state, all the lower points (ab-
sorbing state) go to the high steady state in order, and the average
of the system goes linearly to the higher steady state ,since the
absorbing state goes to higher value through diffusion . When the
system goes to the lower steady state, all the lattice sites residing
in the high steady state can transfer in parallel to the low steady
state, and the average of the system is decreasing approximately
exponentially.

environment, very similar to the results obtained in the context of Anderson local-
ization problem [4], and a diffusive motion of the catalysts (i.e., the fact that the
random potential of the Anderson-like problem is time dependent) is not strong
enough to retain the mean field value.

We have here used a set of models with saturations and predations, all having
both an absorbing state and a positive fixed point (in the broad sense of the word,
including divergence). The first model studied was a catalyst induced growth model,
with a limited catalyst lifespan. The second model studied was a similar model
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with limited carrying capacity. The third model included a negative feedback of
the reactants on the catalysts producing an extension of the Lotka-Voltera predator
prey model. Finally, the fourth model studied contained a positive feedback loop
of the reactants on the catalysts producing an economic model where catalysts are
actually produced by the reactants.

We have shown that in all these models the dynamics significantly differs from
their mean field counterparts. Instead a bell shape response to the diffusion is
observed, where at low diffusion rates, the system collapses to the absorbing state
locally (and eventually globally). At high values of the diffusion rate, the system
synchronizes and converges uniformly to the absorbing state. In between, there is
a finite range of diffusion rates where the total reactant population in the system
stays finite over exponentially long periods.

Thus two types of transition occur as a function of the diffusion rate: a first
transition from low to intermediate diffusion rates, characterized by a transition
from extinction to survival, and a second transition from medium to high diffusion
rates characterized by the opposite transition.

A simple way to look at the first transition is as a problem of directed percola-
tion with different shapes in the d+1 spatio-temporal dimensions. The mean field
description has points like object, while the classical AB model (in the strong cou-
pling limit of low A density) has infinitely growing cones. Accordingly, the directed
percolation threshold is in the first case one, and in the second case zero. In the
two first models studied, the objects are of finite size in space and time. These
colonies have a percolation threshold between zero and one. The difference is in the
island shapes, and through it in the percolation threshold. Similarly, in the third
model studied, pathogen growth in a host can occur if the pathogen occupies a new
niche, before its current niche is destroyed. In the last model studied, resources
can collapse following stochastic fluctuations and be reoccupied following diffusion.
The balance between these two states is again a DP problem.

Grassberger and Janssen [26,34] proposed that under a set of limiting conditions,
many dynamical systems belong to the DP universality class. Only recently the
experimental validation of directed percolation was found in (2+1) dimensions [75].
However, altogether, there are very few known two variables systems with a DP
behavior. Our work here attempts to provide an example of DP dynamics in a set
of more realistic two variable systems.

However, as mentioned above, in contrast with the DP model, these systems have
a second opposite transition, where increasing the diffusion rate leads to a collapse
of the population. This transition is equivalent to the transition occurring in the
AB model, where increasing diffusion leads to a collapsing mean field description of
the system.

It thus seems that in many systems, DP describes properly the dynamics at low-
medium diffusion rates, while the AB model describes properly the dynamics at
medium to high diffusion rates. Realistic systems probably contain a combination
of the two. In some parameter regimes, there is no survival region in between, while
in others this region (in phase space) is large.

An interesting aspect observed in the studied models, not directly tied to the
current analysis is the emergence of Fisher waves. We have also previously studied
the relation of PP systems with Fisher waves in the context of HIV dynamics [30].
This was done in the context of a local seeding of the pathogen, and the expansion of
the zone where the stable fixed point was attained. One of the currently proposed
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models shows that a similar regime can emerge even if the pathogen is seeded
uniformly [2]. This is however beyond the scope of the current analysis.
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