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Abstract. This paper proposes and analyzes a mathematical model on an
infectious disease system with a piecewise smooth incidence rate concerning

media/psychological effect. The proposed models extend the classic models

with media coverage by including a piecewise smooth incidence rate to repre-
sent that the reduction factor because of media coverage depends on both the

number of cases and the rate of changes in case number. On the basis of prop-

erties of Lambert W function the implicitly defined model has been converted
into a piecewise smooth system with explicit definition, and the global dynamic

behavior is theoretically examined. The disease-free is globally asymptotically

stable when a certain threshold is less than unity, while the endemic equilib-
rium is globally asymptotically stable for otherwise. The media/psychological

impact although does not affect the epidemic threshold, delays the epidemic
peak and results in a lower size of outbreak (or equilibrium level of infected

individuals).

1. Introduction. During the outbreak of influenza A (H1N1) in 2009, media cov-
erage plays an important role in helping both the government authority make inter-
ventions to contain the disease and people response to the disease [14]. Individuals’
reactions range from avoiding social contact with infected individuals to wearing
protective masks, or vaccination. Human behavior change consequently leads to
reduction in number of real susceptible individuals or effective contact rates. The
mass media have been used as a way of delivering preventive health messages due
to their potential influence on people’s behavior [7]. To curb the spread of infec-
tious diseases it is then crucial to examine the role of media coverage on disease
outbreaks.

Although, the precise functioning of media coverage of epidemics is not well
understood, a number of mathematical models has been formulated to describe
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the impact of media coverage on the transmission dynamics of infectious diseases
[19, 11, 10, 24, 25]. To model the reduction in contacts due to behavioral change,
as awareness of the presence of the disease, functions of the number of infectives
are formulated to response to the reported information of cases [28]. The negative
exponential function βe−mI or βe−α1E−α2I−α3H , where H denotes hospitalized in-
dividuals, has been embedded into the transmission term by Cui et al. [10] and Liu
et al. [19] to examine the impact of media on the spreading of the disease. While
Cui et al. [11], Tchuenche et al. [24] and Sun et al. [23] incorporated non-linear
function of the number of infectives, c(I) = c1 − c2f(I), in their transmission term
to investigate the effects of media coverage on the transmission dynamics. Liu et
al.[19] obtained the potential for multiple outbreaks and sustained oscillations of
emerging infectious diseases, and Cui et al. [10] concluded that multiple positive
equilibria are possible when the media effect is sufficiently strong.

However, these changes of individual avoidance and contact patterns, as aware-
ness of the presence of the disease, are response to not only the reported information
of cases but also the changing rate in case number. During the early stage of out-
break of an emergent infectious disease like A/H1N1 influenza and SARS [18], the
reported high growth rate of cases puts great pressure on people and cause people
to stay home or wear face masks when going outside. While as disease further
spreads, the massive cases number exhibits great influence on people’s behaviors.
So, during the whole outbreak people are aware of presence of disease either in the
case number or in their changing rate or both reported by mass media.

The purpose of this paper is to formulate a particular function to describe the re-
duction factor induced either by large number of cases (I), or by significant changes
in the number of cases (dI/dt). Awareness through media and education plays a
tremendous role in changing behaviors or contact patterns, and hence in limiting
the spread of infectious disease. Whether this media function induced by both cases
and changes in cases affect the size of an epidemic outbreak or the peak time, or
bring interesting findings remains unknown, and falls within the scope of this study.
We then examine the system with incident function dependent on both cases num-
ber and their changing rate. Firstly we convert this implicitly defined system into a
explicitly defined system, which is actually a piecewise smooth system [4, 6, 29], by
using the property of the Lambert W function [9]. The piecewise smooth system is
then theoretically and technically analyzed. Finally the epidemiological conclusions
on effect of media coverage are addressed.

2. The SIR model. We consider the dynamics of susceptibles S, infecteds I and
recovereds R. Let Λ be the (constant) recruitment rate and µ be the natural
death rate of the population. Assume that β is basic the transmission coefficient,
γ is the recovery rate from infection, and α is disease-related death rate. Such
media/psychological impact, as awareness of the presence of the disease, is simply
described by an exponential decreasing factor, resulting the transmission coefficient
as βe−M(I,dI/dt), where

M(I, dI/dt) = max

{
0, p1I(t) + p2

dI(t)

dt

}
, (1)

where p1, p2 are non-negative parameters to measure the effect of media/psychologic-
al impact of media reported cases and changing rate. Then we have the model
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

dS

dt
= Λ− e−M(I,dI/dt)βIS − µS,

dI

dt
= e−M(I,dI/dt)βIS − γI − µI − αI,

dR

dt
= γI − µR.

(2)

The choice of M function ensure that it is non-negative and is simply denoted by
M(t) afterwards. For simplification we denote m = γ + µ+ α. It is not difficult to
get the system (2) is well defined, that is, any solution initiating from R3

+ will stay
in it and of course is eventually bounded [3]. Note that this is an implicitly defined
system, which bring lots of difficulties in theoretical analysis. Can we convert this
implicitly defined system into a explicit system? In the following we shall address
this issue.

Let M1(t) = p1I(t)+p2dI(t)/dt. When M1(t) > 0, then M(t) = M1(t). It follows
from the second equation of (2) that we have

p2

(
dI

dt
+mI

)
exp

[
p2

(
dI

dt
+mI

)]
= p2βSI exp [−p1I + p2mI] ,

and then by employing the definition of Lambert W function (see Appendix A and
[9]) we have

dI

dt
=

1

p2
W [p2βSI exp (−p1I + p2mI)]−mI. (3)

Thus M(t) reads

M(t) = M1(t) = p1I + p2
dI
dt

= W [p2βSI exp (−p1I + p2mI)]− (−p1I + p2mI).
(4)

Now we examine the condition under which M1(t) > 0. To this end, we consider
M1(t) = 0, which is

W [p2βSI exp (−p1I + p2mI)]− (−p1I + p2mI) = 0. (5)

Following from properties of Lambert W function (5) gives

(−p1I + p2mI) exp(−p1I + p2mI) = p2βSI exp (−p1I + p2mI) ,

which yields,

S =
−p1 + p2m

p2β

.
= Sc. (6)

Since M1(t) defined by (4) is strictly monotone function with respect to S, then we
have M1(t) > 0 is equivalent to S > Sc.

Then the system (2) without considering dynamics of the removed individuals
becomes as follows 

dS

dt
= Λ− e−εM1(t)βIS − µS,

dI

dt
= e−εM1(t)βIS − γI − µI − αI,

(7)

with

ε =

{
0, S − Sc ≤ 0,
1, S − Sc > 0,

(8)
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where the function M1(t) = W [p2βSI exp (−p1I + p2mI)]− (−p1I + p2mI) and Sc
is given in (6). Systems (7) with (8) say that there is a threshold for susceptibles
under which no media/psychological impact is present, whilst above which media
exhibits impact in reduction in transmission. Note that when a disease breaks
out in a human population, not all people are susceptible, the susceptible class
is actually the number of individuals who were exposed to the virus. Therefore,
when the number of susceptibles is relatively large, possibly reaches a certain level,
media/psychological impact would be effective to response to disease outbreak by
affecting susceptible behavior changes such as giving up risky behavior or taking
precautionary measures.

Let H(Z) = S − Sc with vector Z = (S, I)T , and

FG1
(Z) = (Λ− βIS − µS, βIS − γI − µI − αI)

T
,

FG2
(Z) =

(
Λ− e−M1(t)βIS − µS, e−M1(t)βIS − γI − µI − αI

)T
,

then the model (7) with (8) can be rewritten as following non-smooth system [13]

Ż(t) =

{
FG1

(Z), Z ∈ G1,
FG2

(Z), Z ∈ G2,
(9)

where

G1 = {Z ∈ R2
+ : H(Z) ≤ 0}, G2 = {Z ∈ R2

+ : H(Z) > 0}

and R2
+ = {Z = (S, I) : S ≥ 0, I ≥ 0}. Note that R2

+ is the invariant set of system
(2). We assume that −p1 + p2m > 0 holds true, suggesting Sc > 0. Otherwise,
we have Sc < 0, then the set G1 becomes empty, and the non-smooth system (9)

becomes the system Ż(t) = FG2(Z), which is smooth one and will be examined in
the following section.

We define the switching line Σ by

Σ = {Z ∈ R2 : H(Z) = 0}.
From now on, we call non-smooth system (9) defined in region G1 as system SG1,
and defined in region G2 as system SG2. It is interesting to note that the implicitly
defined system (2) can be converted into a piece-wise smooth (PWS) system [5] by
using properties of Lambert W function. Many dynamical systems arising in appli-
cations are non-smooth such as the occurrence of impacting motion in mechanical
systems [8], switchings in electronic circuits [4], and hybrid dynamics in control sys-
tems [6]. There are many different approaches to the study of non-smooth dynamics
such as complementarity systems [17], differential inclusions [12, 2], and Filippov
systems [13]. The system (9), a particular form of Filippov system, can also be
theoretically investigated by using general dynamical method but with great math-
ematical techniques (see details in [29]). The following definitions on all types of
equilibria of non-smooth system (9)[5] are necessary throughout the rest paper.

Definition 2.1 A point Z∗ is called a regular equilibrium of system (9) if FSG1
(Z∗)

= 0, H(Z∗) ≤ 0, or FSG2
(Z∗) = 0, H(Z∗) > 0. A point Z∗ is called a virtual

equilibrium of system (9) if FSG1
(Z∗) = 0, H(Z∗) > 0, or FSG2

(Z∗) = 0, H(Z∗) ≤
0.

3. Global dynamics of PWS system (9). In this section we pay attention to
the global dynamics of non-smooth system (9). To this end we initially examine
the dynamics of system SG1 and SG2 separately.
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3.1. Dynamics of system SG1. Obviously, the dynamics of system SG1 is classic.
There is a disease-free equilibrium for system SG1, denoted by E0 = (Λ/µ, 0). It
is easy to get that if R0 = βΛ/(mµ) < 1, the equilibrium E0 is locally stable for
system SG1. Note that

Λ

µ
− Sc =

p2mµ(R0 − 1) + p1µ

p2βµ
,

then, if R0 > 1 the disease-free equilibrium E0 lies in the region G2 and is unstable.
While R0 < 1, E0 could lie either in the region G1 if p2mµ(1−R0) ≥ p1µ, or in the
region G2 if p2mµ(1−R0) < p1µ (as shown in Fig.1).

The interior equilibrium for the system SG1, denoted by E∗1 = (S∗1 , I
∗
1 ) with

S∗1 =
m

β
, I∗1 =

µ

β

(
Λ

m

β

µ
− 1

)
=
µ

β
(R0 − 1) ,

exists if R0 > 1. Moreover, it is asymptotically stable if it is feasible for the system
SG1. Note that S∗1 > Sc holds true, which implies that the equilibrium E∗1 lies in
the region G2 and hence it is a virtual equilibrium. It implies that for R0 > 1,
any trajectory starting from the region G1 follows the system SG1 initially, and
then enters into the region G2 due to its stable endemic state E∗1 is virtual. Since
trajectories initiating from G2 follows the system SG2, then the asymptotically
stable equilibrium E∗1 can not be reached. Hence there is no closed orbit which is
totally in the region G1 since no interior equilibrium is in it.

3.2. Dynamics of system SG2. Note that although system SG2 is smooth and
explicitly defined system, it is difficult to investigate dynamics of system SG2 since
the model equations involve the Lambert W function. The system SG2 reads

dS

dt
= Λ− e−M1(t)βIS − µS,

dI

dt
= e−M1(t)βIS − γI − µI − αI,

S > Sc (10)

with function M1(t) given in (4). The disease-free equilibrium for system (10) or
SG2 exists, which is (Λ/µ, 0), and is coincided with its counterpart for system SG1.
We also denote it by E0. It is easy to get that if R0 < 1, the equilibrium E0 is
locally stable for system SG2.

Existence of endemic equilibrium To show the existence of the endemic equi-
librium, we shall change the subsystem (10) into a simple form. For this purpose,
in the function M1(t) we denote

f1(S, I)
4
= p2βSI exp (−p1I + p2mI) , g1(I)

4
= −p1I + p2mI,

then M1(t) = W (f1(S, I)) − g1(I). According to the properties of Lambert W
function, we have

exp(−M1(t)) = exp (−W (f1(S, I)) + g1(I))

= W (f1(S,I))
f1(S,I) exp(g1(I)) = W (f1(S,I))

p2βSI
.

(11)
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Substituting above equation into the model (10), then subsystem (10) becomes
dS

dt
= Λ− W (f1(S,I))

p2
− µS,

dI

dt
= W (f1(S,I))

p2
−mI,

S > Sc. (12)

Let the endemic equilibrium be denoted by E∗2 = (S∗, I∗). Then dI/dt = 0 gives
W (f1(S, I)) = p2mI. By using property of the Lambert W function we have

S∗ =
m

β
exp(p1I

∗). (13)

Substituting it into dS/dt = 0 and applying W (f1(S, I)) = p2mI yield

mµ

β
exp(p1I

∗) +mI∗ = Λ. (14)

Rearranging above equation, one yields

p1

(
Λ

m
− I∗

)
exp

[
p1

(
Λ

m
− I∗

)]
=
p1µ

β
exp

(
p1Λ

m

)
. (15)

According to the definition of Lambert W function and solving above equation with
respect to I∗ we have

I∗ =
Λ

m
− 1

p1
W

[
p1µ

β
exp

(
p1Λ

m

)]
. (16)

It is feasible (i.e. I∗ > 0) provided

p1Λ

m
> W

[
p1µ

β
exp

(
p1Λ

m

)]
. (17)

which is equivalent to

R0 =
Λβ

µm
> 1. (18)

Substituting (16) into (13) and using the properties of Lambert W function we have

S∗ =
m

β
exp(p1I

∗) =
m

β
exp

(
p1Λ

m

)
exp

[
−W

(
p1µ

β
exp

(
p1Λ

m

))]

=
m

β
exp

(
p1Λ

m

) W

(
p1µ

β
exp

(
p1Λ

m

))
p1µ

β
exp

(
p1Λ

m

)
=

m

p1µ
W

(
p1µ

β
exp

(
p1Λ

m

))
.

(19)

Therefore, the endemic state E∗2 = (S∗, I∗) with S∗ and I∗ defined in (19) and (16)
exists if R0 > 1. Note that the susceptible component of both the interior equilibria
E∗2 is no less than Sc (that is, S∗ > Sc), which indicates the E∗2 lies in the region
G2, and hence it is a regular equilibrium.

Local stability of the endemic equilibrium E∗2 In the following we shall check
the Jacobian matrix at the endemic equilibrium E∗2 for the subsystem (10). To this
end we still consider the system (12) and let b = −p1 + p2m, and

P2(S, I) = Λ− W (f1(S, I))

p2
− µS, Q2(S, I) =

W (f1(S, I))

p2
−mI,
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then the Jacobian matrix can be calculated as follows

J =

(
∂P2

∂S
∂P2

∂I
∂Q2

∂S
∂Q2

∂I

)
=

( − 1
p2
F1 − µ − 1

p2
F2

1
p2
F1

1
p2
F2 −m

)
, (20)

where F1 and F2 are defined by

F1 := ∂W (f1(S,I))
∂S = W (f1(S,I))

f1(S,I)(1+W (f1(S,I)))
∂f1

∂S ,

F2 := ∂W (f1(S,I))
∂I = W (f1(S,I))

f1(S,I)(1+W (f1(S,I)))
∂f1

∂I ,

with ∂f1/∂S = p2βI exp(bI), ∂f1/∂I = p2βS exp(bI)(1+bI). By simple calculation
at equilibrium E∗ = (S∗, I∗) we have

F1 = p2mI
∗

f1(S∗,I∗)(1+p2mI∗)p2βI
∗ exp(bI∗) = p2mI

∗

S∗(1+p2mI∗) ,

F2 = p2mI
∗

f1(S∗,I∗)(1+p2mI∗)p2βS
∗ exp(bI∗)(1 + bI∗) = p2m(1+bI∗)

1+p2mI∗
.

(21)

Therefore, the characteristic equation at E∗2 with respect to λ is given as follows

λ2 +

[
F1

p2
− F2

p2
+ µ+m

]
λ+

m

p2
F1 −

µ

p2
F2 +mµ = 0

with F1 and F2 defined in (21). It is easy to determine that this characteristic
equation has two negative roots, which means that the interior equilibrium E∗2 is
locally asymptotically stable in the region G2.

The nonexistence of closed orbits We shall exclude existence of closed orbits
of system (10) by constructing the suitable Dulac function. Here, we choose the
Dulac function B2(S, I) = eM(S,I)/SI and get

∂(B2P2)
∂S + ∂(B2Q2)

∂I = ΛeM1(S,I)

S2I

(
W (f1)

1+W (f1) − 1
)
− eM1(S,I)W (f1)

1+W (f1) · µSI

−me
M1(S,I)

S

(
W (f1)

1+W (f1) ·
1+bI
I − b

)
.

(22)

Note that S > Sc = b/(p2β) is equivalent to f1 > bIebI , which implies W (f1) > bI,
then we have

W (f1)

1 +W (f1)
· 1 + bI

I
− b > 0.

Then, we get ∂(B2P2)/∂S + ∂(B2Q2)/∂I < 0, which implies that system (10) does
not have closed orbits totally in the region G2. Therefore, the regular equilibrium
E∗2 is globally asymptotically stable in the region G2.

3.3. Dynamics of system (9). When R0 < 1 we know that the disease-free
equilibria for system SG1 or SG2 coincide with each other (i.e. (Λ/µ, 0)) and are
locally asymptotically stable in the region G1 or G2 respectively. Moreover, the
disease-free equilibrium could either be in the region G1 or in G2. Without loss of
generality, assume it lies in the region G1, then any trajectory starting from G2 hits
the line S = Sc initially and enters into the region G1; while trajectories initiating
from G1 will finally approach the disease-free equilibrium (as shown in Fig.1).

For R0 > 1, the endemic state E∗1 ( or E∗2 ) is locally asymptotically stable for
system SG1 (or SG2) in the region G1 (or G2). Moreover, we have shown that
system SG1 or SG2 does not have closed orbits in the region G1 or G2, respectively.
In the following, we shall show there is no closed orbit of system (9) across the
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switching line Σ. Generally speaking, the approach of Dulac functions applies to
smooth vector fields. Then whether it can still be applicable to the piecewise smooth
system (7) with (8) where the vector field is not smooth at the switching line Σ?
Making use of the distribution theory, we extend the classic theory of Bendixson-
Dulac in the two-dimensional case to Filippov systems where the vector field is not
smooth at the switching line, and a Lemma is given in Appendix B in order to
exclude the existence of closed orbits.

Let x = S − Sc, y = I, then model (7) with (8) becomes{
dx(t)
dt = Λ− e−H(x)M∗

1 (t)β(x(t) + Sc)y(t)− µ(x(t) + Sc) := P (x, y),
dy(t)
dt = e−H(x)M∗

1 (t)β(x(t) + Sc)y(t)−my(t) := Q(x, y),
(23)

where M∗1 (t) = W [p2β(x+Sc)y exp(−p1y+p2my)]− (−p1y+p2my) and the Heav-
iside function H satisfies

H(x) =

{
0, x ≤ 0,
1, x > 0.

(24)

The general derivative of H(x) with respect to x is the Dirac function given as
follows

δ(x) =

{
0, x 6= 0,
+∞, x = 0.

(25)

Take a Dulac function B = eH(x)M∗
1 (t)/((x(t) + Sc)y(t)), and from (23) we have

F := ∂(BP )
∂x + ∂(BQ)

∂y

= ΛeH(x)M∗
1

y(x(t)+Sc)2

(
δ(x)M∗1 (x+ Sc) +

H(x)W (f∗
1 )

1+W (f∗
1 ) − 1

)
−µe

H(x)M∗
1

y

(
δ(x)M∗1 +

H(x)W (f∗
1 )

(x+Sc)(1+W (f∗
1 ))

)
−mH(x)eH(x)M∗

1

x+Sc

(
W (f∗

1 )
1+W (f∗

1 )
1+by
y − b

)
,

where f∗1 = p2β(x+Sc)y exp(−p1y+p2my). Making use of the definition of functions
H(x) and δ(x) and noting that M∗1 = 0 for x = 0, we get the F is negative for any
x and y (≥ 0) due to

F =


− Λ
y(x(t)+Sc)2 < 0, x < 0,

ΛeM
∗
1

y(x(t)+Sc)2 (A− 1)− µeM
∗
1

y
A

x+Sc
− meM

∗
1

x+Sc

(
A(1+by)

y − b
)
< 0, x > 0,

− Λ
yS2
c
< 0, x = 0,

(26)
where A = W (f∗1 )/(1 + W (f∗1 )). Therefore, it follows from the Lemma in the Ap-
pendix B that the system (7) with (8) does not have a limit cycle.

In a word, any trajectory starting from G1 hits the switching line Σ initially
and enters into the region G2 due to its asymptotically stable equilibrium E∗1 is
virtual and lies in the region G2. While trajectories initiating from the region G2

will finally tend to the endemic equilibrium E∗2 since E∗2 is regular and is globally
asymptotically stable in the region G2 (as shown in Fig.2). We also showed that
no closed orbit of system (7) with (8) crosses the switching line Σ, which gives the
globally stability of the endemic state E∗2 . Hence we have the following conclusion.

Proposition 3.1 For the PWS system (9), the disease-free equilibrium E0 is glob-
ally asymptotically stable if R0 < 1, while the positive equilibrium E∗2 is globally
asymptotically stable if R0 > 1.
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It is interesting to note that the media parameters p1 and p2 affect the disease
evolution. To understand how these two media parameters influence the model
dynamics, and particular the number of infected individuals we examine variation
in the endemic equilibrium with parameters p1 and p2. It follows from (16) and (19)
that the endemic equilibrium E∗2 is independent on parameter p2 but on parameter
p1. Further, it is easy to get

∂S∗

∂p1
= m

µp2
1

W( p1µ
β exp( p1Λ

m ))
1+W( p1µ

β exp( p1Λ
m ))

[
−W

(
p1µ
β exp

(
p1Λ
m

))
+ p1Λ

m

]
> 0

(27)

due to R0 > 1, and hence
∂I∗

∂p1
= − µ

m

∂S∗

∂p1
< 0. (28)

This shows that the equilibrium value of I decreases with increasing parameter p1.
Note that p1 represents the efficacy level of the prevention and control strategies
implemented when facing disease prevalence due to media coverage. So, the higher
value of parameter p1 the less the eventual level of the infectives. Therefore, it
is important to maximize the impact of communications campaigns that promote
protective behavior during the outbreak of diseases [22, 27].

3.4. Dynamics of system (9) without demography. It is interesting to exam-
ine the media effect for the SIR model without population dynamics and investigate
how media/psychology impact influences the size of outbreaks and peak time. Sim-
ilarly, the system with media effect can also be converted into the following PWS
system with S̄c := (−p1 + p2γ)/(p2β)

dS

dt
= −e−εM2(t)βIS,

dI

dt
= e−εM2(t)βIS − γI,

(29)

where M2(t) = W [p2βSI exp (−p1I + p2γI)]− (−p1I + p2γI) and

ε =

{
0, S − S̄c ≤ 0,
1, S − S̄c > 0.

(30)

To examine when the number of infected individuals reaches its maximum, let’s
set dI/dt = 0 for S > S̄c, that is,

e−M2(t)βIS − γI = 0,

which indicates that

exp(W (f2(S, I))) =
βS

γ
exp(g2(I))

with f2(S, I) = p2βSI exp (−p1I + p2γI) , g2(I) = −p1I + p2γI. It follows from
the relation of Lambert W function given by (A1) that we have

f2(S, I)

W (f2(S, I))
=
βS

γ
exp(g2(I)), (31)

i.e. W (f2(S, I)) = p2γI. Solving the equation with respect to S yields

S =
γ

β
exp(p1I) := S̄th. (32)
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This shows that any solution of system (29) with initial value satisfying

S0 > γ exp(p1I0)/β

will reach its maximum value along the curve given by (32). It follows from the clas-
sic SIR model without media coverage [1] that the number of infectives reaches its
maximum when susceptibles are at the threshold Sth = γ/β. Note that S̄th > Sth,
which implies that with media coverage a relatively large threshold for susceptibles
is obtained below which outbreak can not occur.

In the absence of media coverage (i.e. p1 = p2 = 0) the system (29) with (30)
becomes the classic SIR model from which we could easily obtain the final size
and peak time for the classic SIR model [1]. In the presence of media coverage
it is interesting to examine how two parameters (p1 and p2) introduced in the
definition of media impact in (1) affect disease dynamics such as the final outbreak
size and peak time. Unfortunately, we can not get the theoretical results due to
quite complicated media signal function M2(t) in system (29). However, numerical
studies on system (29) could suggest some interesting conclusions. We plot the phase
plane S-I for both system (29) and the classic SIR model, showing the switching
line S = S̄c and the lines S = S̄th or S = Sth where disease peaks in Fig.3(A). The
thick and the following thin curves denote the trajectories of system (29), and the
dash-dot curves represent trajectories of the classic SIR model. Fig.3(B) shows that
media coverage postpones the arrival of the infection peak. It also follows from the
Fig.3(A) and (B) that media coverage lowers the outbreak size definitely, and hence
decreases the severity of the outbreak. This is in agreement with the conclusion
obtained in [25, 15].

We explore the numerical studies to show how sensitive would the peak time and
final size be depending on the two parameters p1 and p2 in Fig.4. Fig.4(A) shows
that peak time increases as parameter p1 or p2 increases, which further consolidates
our conclusion that media coverage delays the peak of an epidemic. It follows from
Fig.4(B) that media coverage results in a smaller final size and hence reduces the
severity of an epidemic. It is interesting to note that for relatively small value of
parameter p1 final size declines with increasing p2, whilst for relatively large p1

final size increases with increasing p2. It indicates that parameters p1 and p2 have
a marked and complicated influence on the final size of an epidemic.

4. Conclusion and discussion. It has been observed that media coverage can af-
fect the spread and control of infectious diseases [19]. General speaking, awareness
through media and education and consequently changes in behavior play a tremen-
dous role in limiting the spread of infectious disease. In this study, media coverage
is described by a piecewise smooth function which is dependent both on the number
of cases and the rate of change in cases. Then the resulting system is non-smooth
and implicitly defined system, which bring the difficulties for theoretical analysis.
By using Lambert W function we initially convert this non-smooth, implicitly de-
fined system into a switching system with explicit definition. It is interesting to
note that the switching systems (7) with (8) says the classic SIR system is present
when the number of susceptibles is less than a threshold defined in (6), otherwise
the nonlinear function of the number of cases is embedded in the incidence rate
of the SIR model. It seems that only when the number of susceptibles exceeds a
threshold the reduction factor induced by media coverage will be effective.
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For this kind of systems with implicit definition, Tchuenche and Bauch [25] di-
rectly investigated the original SIHR system, where H denotes hospitalized indi-
viduals, and obtained the threshold and local dynamics of the model. Interestingly
in this study we initially converted this implicitly defined system (2) into an ex-
plicitly defined system (7) with (8) by technically employing Lambert W function.
Then we obtained the global dynamics by theoretically analyzing the converted
switching systems (7) with (8). The disease-free equilibrium (Λ/µ, 0) is globally
asymptotically stable if the basic reproduction R0 = βΛ/mµ < 1; while the en-
demic equilibrium E∗2 is globally asymptotically stable for R0 > 1. The epidemic
threshold R0 is not changed due to media coverage, which is agreement with that
obtained by Tchuenche and Bauch [25] and Funk et al. [15]. Comparing the infec-
tive components of the endemic states E∗1 for system SG1 and E∗2 for system SG2

gives that I∗ < I∗1 . It indicates that the media effect alone cannot drive an endemic
disease extinct, but it plays a significant role in reducing the number of infectives
and its proportion to the total population. Note that when R0 > 1 trajectories
initiating from the region G1 tend to its stable endemic state E∗1 which lies in the
region G2 and can not be reached. When trajectories cross the switching line Σ
they have to follow the dynamics of system SG2 and approach the endemic state
E∗2 (as shown in Fig.2). Therefore, media effect does not destabilize an endemic
steady-state, but can significantly reduce the number of infectives and prevalence.

We note that media coverage does not eradicate the disease because the me-
dia signal function fades when the number of cases declines to small value and
the changing rate in cases becomes negative, but it limits the spread of infectious
disease and contributes in lowering the epidemic size (shown in Fig.3 and Fig.2).
When considering demography media coverage does not affect the epidemic thresh-
old in that sense the basic reproduction number R0 is not changed. It is worthy
noting that the peak of an epidemic is postponed due to media/psychology impact
no matter whether we consider demography or not. This indicates that although
awareness through media or education does not influence the epidemic threshold, it
does change the timing of spread, delay the epidemic peak and result in a lower size
of outbreak (or low equilibrium level of infectives). In fact, continually updating
the media about the number of infected individuals or changing rate in cases will
immediately pass on the information to the general population, which causes some
susceptible individuals to choose to self-isolate such as using face masks, ceasing
risky behavior, using barrier protections and etc. Prompt depletion of susceptibles
due to self-isolation could slow down the spread of disease among the population,
then postpone the epidemic peak, and result in a dramatic decrease in the severity
of the outbreak, which agrees with the conclusion in [25, 15, 20].

Based on the classic SIR-type model Handel et al. [16] found that the best strat-
egy for multiple infectious disease outbreaks was to apply intervention measures in
such a way that the number of susceptibles reaches exactly the threshold level. Note
that here our results indicate that the threshold level for susceptibles varies with the
number of infectives due to media/psychological impact. Therefore, it is important
to emphasize that the intervention measures should be adjusted instantaneously
such that the number of susceptibles tends to the various threshold levels.

This study is just a preliminary exploration of media/psychological impact on the
spread of an infectious disease, and could be improved in many ways. In particular,
there inevitably exists a difference between the time when data is collected and
the time when audiences get to know it, so it may be reasonable to consider time
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delay in the dynamic system. We have assumed in our model that media coverage
is always beneficial in mitigating the spread of disease. However, it might also have
negative consequences (e.g. messages inciting fears over vaccine safety). So more
elaborate forms of the ‘media coverage effect function’ would be proposed. Further,
the data on media coverage is hard to gather and in most cases when available are
limited, which greatly affects the prior information on two parameters p1 and p2.
Hence, we leave fitting our model to the real data as our future study.
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Appendix A Lambert W function

We initially introduce some properties of Lambert W function.
Definition. The Lambert W function is defined to be a multivalued inverse of the
function z 7→ zez satisfying

LambertW(z) exp(LambertW(z)) = z. (A1)

It follows from above definition that we have

LambertW′(z) =
LambertW(z)

z(1 + LambertW(z))
. (A2)

First of all, the function zexp(z) has the positive derivative (z + 1)exp(z) if z >
−1. Define the inverse function of zexp(z) restricted on the interval[−1,∞) to
be LambertW(0, z) = LambertW(z). For simplicity we use W (z) to represent
LambertW(z) in the main text. Similarly, we define the inverse function of zexp(z)
restricted on the interval (−∞,−1] to be LambertW(−1, z). For more details of the
concepts and properties of the LambertW function, see Corless et al. [9].

Appendix B Nonexistence of closed orbits of the Filippov system

Consider the general Filippov system as follows:

Ẋ = f(X), (A3)

where X = (x, y)′ and f = (P,Q)′. We restrict the properties of the above system
under consideration by the following four major assumptions.

(I) Ω is an open region in R2, which is divided into a finite number of open
subregion Ωi satisfying

⋃
Ωi = Ω.

(II) If i 6= j and Ωi and Ωj are not disjoint, then Ωi
⋂

Ωj = Σi,j , where Σi,j are
piecewise smooth.
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(III) f is Lipschitz in each Ωi and discontinuous along Σi,j .
(IV) The vector field is directed from one side to the other at Σi,j , i.e. only

transversal sliding mode exists.

Lemma. (Extension of the Bendixson-Dulac criterion) Let the conditions (I)-(IV)
be satisfied and f be bounded in the simply connected region Ω and C1 in Ωi for the
Filippov system (A3). If there is a function B which is continuous in intR2

+ and
C1 in Ωi such that

∂(BP )

∂x
+
∂(BQ)

∂y
≤ 0(≥ 0), (x, y) ∈ Ω,

and is not identically zero in Ω, which is caculated in distribution sense, then (A3)
has no closed orbit in Ω.

Proof. On the basis of the method proposed by Melin [21] we give the simple
proof of this lemma. Denote f(x, y) = fi(x, y), fi(x, y) = (pi(x, y), qi(x, y)) and
B(x, y) = Bi(x, y), where (x, y) ∈ Ωi. Let χΩi be the characteristic function of
Ωi. Then f =

∑
i fi · χΩi =

∑
i(pi · χΩi , qi · χΩi) and Bf =

∑
iBifi · χΩi =∑

i(Bipi · χΩi , Biqi · χΩi). So we have

F :=
∂(BP )

∂x
+
∂(BQ)

∂y
=
∑
i

(∂x(Bipi · χΩi) + ∂y(Biqi · χΩi)) , (A4)

where F is defined in the sense of distribution theory and involves Dirac function.
Now, suppose there is a closed, continuous and piecewise smooth orbit Γ in Ω. Let
T = (ẋ, ẏ) be the tangent vector of Γ, N = (−ẏ, ẋ) be the normal vector of Γ, and
D = intΓ. Next, we consider the line integral

∫
Γ
〈Bf,N〉ds in Ωi, and assume t is

in some interval ∆i. Since∫
Γ

〈Bifi ·χΩi , N〉ds =

∫
∆i

(−Bipi · ẏ+Biqi · ẋ)dt =

∫
∆i

(−Bipi · qi +Biqi · pi)dt = 0,

we can get that∫
Γ

〈Bf,N〉ds =

∫
Γ

〈∑
i

Bifi · χΩi , N

〉
ds =

∑
i

∫
Γ

〈Bifi · χΩi , N〉 ds = 0.

However, according to the Green formula it can be seen that∫
Γ

〈Bf,N〉ds = −
∫∫
D

Fdxdy,

which yields
∫∫
D

Fdxdy = 0. This contradicts to the assumption of F, then we

exclude the existence of closed orbits. This completes the proof. �
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Figure 1. Phase plane S-I for SIR model, showing the global sta-
bility of the disease-free equilibrium. The thick and thin curves
represent the general orbits in the phase plane for the system (7)
with (8) in G2 and in G1. Parameters are β = 0.3, γ = 1.5,Λ =
1, µ = 0.2, α = 0.2 and (A) p1 = 0.2, p2 = 0.8; (B) p1 = 0.4, p2 =
0.6.
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Figure 2. Phase plane S-I for SIR model, showing the global sta-
bility of the endemic equilibrium. The thick and thin curves repre-
sent the general orbits in the phase plane for the system (7) with
(8) in G2 and in G1. Parameters are β = 0.5, γ = 1.5,Λ = 1, µ =
0.2, α = 0.2, p1 = 0.2, p2 = 0.8.
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Figure 3. A comparison of the SIR model with media coverage
(29) with (30) and the classic SIR model (i.e. p1 = p2 = 0 in
system (29)). (A) Phase plane S-I for two SIR models, showing
the switching line S = S̄c and the lines S = γ exp(p1I)/β and
S = γ/β where disease peaks for two models. (B) Time series for
the infected individuals I(t) for two models. The thick and thin
curves represent the orbits in the phase plane or solutions for the
system (29) with (30), and the dash-dot curves are those for the
classic SIR model. Parameters are β = 3, γ = 1, p2 = 0.8, p1 = 0.2.
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