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Abstract. Bacterial competition is an important component in many prac-
tical applications such as plant roots colonization and medicine (especially in

dental plaque). Bacterial motility has two types of mechanisms — directed

movement (chemotaxis) and undirected movement. We study undirected bac-
terial movement mathematically and numerically which is rarely considered

in literature. To study bacterial competition in a petri dish, we modify and

extend the model used in Wei et al. (2011) to obtain a group of more general
and realistic PDE models. We explicitly consider the nutrients and incorporate

two bacterial strains characterized by motility. We use different nutrient media

such as agar and liquid in the theoretical framework to discuss the results of
competition. The consistency of our numerical simulations and experimental

data suggest the importance of modeling undirected motility in bacteria. In
agar the motile strain has a higher total density than the immotile strain, while

in liquid both strains have similar total densities. Furthermore, we find that in

agar as bacterial motility increases, the extinction time of the motile bacteria
decreases without competition but increases in competition. In addition, we

show the existence of traveling-wave solutions mathematically and numerically.

1. Introduction. Bacteria are a major domain of single-celled microorganisms and
play an essential role in the maintenance of energy and nutrients throughout our
world. In most natural environments, bacteria compete with neighbors for space
and nutrients [7]. Bacteria can be beneficial or harmful to us when they grow
and reproduce. Bacterial strains are recognized by their appearance, the types of
nutrients they can grow on, the types of substances they produce, etc..

Motile bacteria can move using flagella or glide over surfaces by movement mecha-
nisms [30, 25]. The majority of bacteria can display self-propelled movement (motil-
ity) under suitable conditions [4, 8]. The most studied bacterial cell movements are
recognized as direct (runs) and undirect (tumbles). When a bacterial cell moves
towards a chemical (attractants) or directly away from a chemical (repellents), this
process is called chemotaxis [22, 10, 30]. In some cases, chemotaxis climbs a chem-
ical gradient because of the chemical distribution. On the other hand, bacteria
with flagella and other mechanisms can move in random directions [28]. In the
absence of chemotaxis, a species with a small enough random motility can grow
to a larger population size than a second population with a greater growth rate.
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[15]. Many existing theoretical studies assume that bacteria have to move in the
direction of nutrients [19, 18, 5, 6]. However, there have been a few papers that do
not assume directional movement of motile bacteria [28, 14, 24]. The recent PNAS
paper [28] suggests that undirected movement has been overlooked in literature. In
most cases, flagella evolved after motility was in place [28]. Some types of bacteria,
such as E.coli, move in a random direction when the coordinated motion of the
flagella stops because the flagella has turned in the opposite direction [31, 32]. In
this theoretical work, we assume that bacteria have undirected movement to reach
nutrient. Recent studies show that motility provides a selective compensation in
the unshaken cultures because motile cells could move actively to acquire growth-
limiting nutrients [29]. In addition, undirected motility can be more important
in resource-homogeneous environments or when the chemicals are not chemotactic
stimuli.

A few studies have been done to discuss the role of random motility on bacte-
rial competition. Lauffenburger et al. (1981) developed a reaction diffusion model
for a bacterial population to study the effects of chemical diffusion and cell ran-
dom motility in a finite one-dimensional, non-mixed region. In this system, the
effect of random motility of the population depended on the relative magnitude of
the diffusion coefficient compared to the growth rate. Lauffenburger et al (1983)
extended their earlier work by including chemotaxis. They studied a competitive
growth of two randomly motile populations in a finite non-mixed region. This sys-
tem yielded up to three possible steady states. Later, Wei et al. (2011) developed
a reaction diffusion model to study the existence of undirected motility in bacte-
ria. Their work was motivated by lab experimental results testing their theoretical
predictions. They used different nutrient media such as agar and liquid in their
experiments. Their study suggested that chemotaxis evolved in bacteria that were
already capable of self-propulsion in random directions. Our work is motivated by
the experimental observations of Wei et al. (2011). We extend a Wei et al. (2011)
model by including mortality rates to study competitive results of motile and im-
motile bacterial strains in a finite one and two-dimensional, non-mixed region. Our
motivation is to test whether the model is suitable for elucidating bacterial random
motility by comparing numerical results with the experimental results of Wei et al.
(2011). Beyond this comparison, we additionally obtain extinction time (for long
term competition) and traveling-wave solutions (for invasion).

The focus of our work is to use bacteria as a model organism to study the
competition of two strains in a petri dish. The assumption for our model is that
there are two kinds of bacterial strains: the motile strain that moves quickly and
the immotile strain that moves very slowly [27, 17]. Nutrient media vary from
agar to liquid by changing the nutrient diffusion rate. We apply this theoretical
framework to verify the study of undirected motility in bacterial movement and
discuss the role of motility and nutrient medium types in determining bacterial
competition. Our simulation results exhibit that the role of undirected motility is
preferred by bacteria in the agar case because it increases the chance of getting
nutrients. We run one-dimensional spatial simulations to compute extinction times,
traveling-wave solutions and the total densities of both bacterial strains, and we
run two-dimensional spatial simulations to exhibit pattern formation. We present
rigorous mathematical analysis of steady states, asymptotical behaviors of solutions,
and traveling-wave solutions. Proofs of mathematical results are placed in the
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Appendix. Our PDE model can elucidate and validate petri dish experimental
results [28] under homogeneous nutrient distribution.

2. Mathematical model. In literature, many papers have considered the directed
and undirected movements of bacteria [28, 24, 14, 19, 18]. We extend the existing
model [28] to incorporate mortality rates and general diffusion terms (especially in
polar coordinates for the disk shape of petri dish). With these new components in
the theoretical framework, we can discuss the long term behavior of solutions such
as steady states, asymptotic behavior, and extinction time.

Agar is a gelatinous substance made from red algae. It is used as a solid culture
media for bacteria and other microorganisms. We consider the reaction-diffusion
competition model for agar media as follows:

∂Bi
∂t

= Di∆Bi + [hi(N)− δi]Bi,

∂N

∂t
= −

∑
i

1

γi
hi(N)Bi,

where ∆ = ∂2

∂x2 , i = 1, 2, · · · ,m, ~x ∈ Ω and the consumption function hi(N)
satisfies the conditions hi(0) = 0, h′i(t) > 0, and h′′i (t) ≤ 0, for example, hi(N) =
αiN/(ki+N) or hi(N) = αiN . Here m is a positive integer representing the number
of competing bacterial species. The model has initial conditions: N(0, ~x) = N0 for
~x ∈ Ω, Bi(0, ~x) = B0 (small and supported in a small disk) for each i on Ω, and
Neumann boundary conditions (zero flux): ∇B ·~n = 0 on ∂Ω, where ~n is a outward
normal vector to the boundary ∂Ω.

Here Bi(x, t), N(x, t) represent the density of ith bacterial strain and the density
of nutrients respectively, with diffusion coefficients Di. Ω is a bounded domain in
[0, L] ⊆ R or R2, δi is a mortality rate, and γi is the yield constant (1/γi units of
nutrient are consumed in producing one unit of bacterial biomass). All parameters
are nonnegative constants.

In the next few sections, we establish the case of a single bacterial strain (no
competition) and the case of two competing bacterial strains (motile versus im-
motile). The liquid media case will be introduced for a comparison with the agar
media case. mathematical results will only be provided for agar models, which are
our main focus.

3. Single bacterial species in a petri dish. First, we consider the model for a
single bacterial strain in one-dimensional and two-dimensional spaces. We perform
rigorous mathematical analysis including uniform and non-uniform steady states,
traveling-wave solutions, and non-extinction of nutrients. Finally, we compute the
extinction time and determine its dependence on key parameters.

3.1. Mathematical analysis. The single species model is provided by

∂B

∂t
= D∆B + (h(N)− δ)B,

∂N

∂t
= − 1

γ
h(N)B, where γ < 1 is the yield constant,

(1)

the initial conditions are:

B(x, 0) = B0 (small and supported in a small disk),

N(x, 0) = N0,
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(a) Diffusion D1 = 0.0002, t = 11
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(b) Diffusion D1 = 0.0002, t = 101
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(c) Diffusion D1 = 0.008, t = 11
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(d) Diffusion D1 = 0.008, t = 101

Figure 1. Numerical simulations show the existence of traveling-
wave solutions for the system (1) with D1 = 0.0002 or D1 = 0.008.
We run simulations for the shorter time (t = 11) and the longer
time (t = 101). Different curves represent different times. The
details of panels (b), (c), (d) are similar to panel (a). The param-
eter c is the traveling wave speed. If we make a cross-section, the
distances between any two consecutive curves are the same.

the boundary conditions are:

∂B

∂x
(0, t) =

∂B

∂x
(L, t) = 0 on ∂Ω.

Our first theorem states equilibrium results for one-dimensional and two-dimensi-
onal (disk case) spaces.

Theorem 3.1. The system of equations (1) with Neumann boundary conditions
admits infinitely many steady states (0, N) where N = N(~x) ≥ 0, ~x is the vector
of spatial variable(s). In addition, we show that for equilibrium solutions, if N = 0
then B = 0.

We study traveling-wave solutions for a system of two equations representing a
single bacterial strain and nutrient. For simplicity, we only discuss one-dimensional
space case. The effect of growth and random movement in a homogeneous envi-
ronment on the bacterial population, which generates a colony, leads to traveling
wave. Now we discuss the existence of traveling-wave solutions and their minimum
traveling speed.

We are looking for traveling-wave solutions of the reaction-diffusion model (1) in
a homogeneous nutrient environment. There exists some solution (B(t, x),N(t, x))
which satisfies the following conditions:
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(i) B(t, x) tends to a solitary wave such that [9]

Bx → 0 as x→ ±∞,

B → 0 as x→ ±∞,
and (ii) N(t, x) tends to a transition wave such that [9]

N → 1 as x→ +∞,

N → n(−∞)(= n) as x→ −∞.
Note that n(−∞) = n is an unknown constant. Based on the above conditions, we
have the following theorem:

Theorem 3.2. The model (1) admits traveling-wave solutions if c ≥ cmin = c∗ ≡
2(Dσ(1)

γ )1/2, where σ(N̄s) = −h(N̄s)φ
′(N̄s), φ(N̄) = γ

(
1− N̄ − δ

∫ 1

N̄
dn̄
h(n̄)

)
. The

parameter c is the traveling wave speed.

Biologically, the bacterial population creates a symbiosis with nutrient source
causing the formation of traveling wave. In our case, the bacterial population
invades an area of the petri dish where the nutrient has already stabilized.

In Fig.1, we numerically show traveling-wave solutions for different diffusion rates
of motile bacteria with long and short time periods. As the motility of motile
bacteria increases, traveling waves propagate faster, thus it takes less time for motile
bacteria to occupy the non-centered region of the petri dish.

It follows from second equation of (1) that for fixed ~x ∈ Ω, the nutrient density
N(~x, t) is monotone decreasing in t with the limit N∞(~x). Based on these results,
we have the following theorem:

Theorem 3.3. When the consumption function h(N) takes natural forms αN or
αN
k+N , then nutrient never gets completely consumed at any position. More precisely,

if N(~x, 0) > 0, then N∞(~x) = limt→∞N(~x, t) > 0.

3.2. Liquid case. Chemically defined basal liquid media, simply made by nutrient
soup, are used to provide nutrients for cell growth in lab. Our model was developed
to study competition in agar media but can be easily modified for liquid media. We
use the following liquid model to compare with the agar case because the experiment
was performed to test both cases. The single species model for liquid media is
provided by

∂B

∂t
= D∆B + (h(N)− δ)B,

∂N

∂t
= D3∆N − 1

γ
h(N)B, where γ < 1 is the yield constant,

the initial conditions are:

B(x, 0) = B0 (small and supported in a small disk),

N(x, 0) = N0,

the boundary conditions are:

∂B

∂x
(0, t) =

∂B

∂x
(L, t) = 0 on ∂Ω.

The two species model for liquid media will be presented in section 4.3.
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(a) T0 vs δ (b) T0 vs γ

Figure 2. Extinction time (T0) vs mortality rate (δ) and yield
constant (γ).

(a) single strain case (b) competition case

Figure 3. Extinction time (T0) vs motility (D)-agar case.

3.3. Computation of extinction time. Extinction is the end of an organism or
group of species. The extinction threshold ε0 is defined as the minimum total density
of bacteria, below which bacteria go extinct. We define the extinction time T0 as
the maximum time for the total density of bacteria to stay above the extinction
threshold. We analyze the dependence of the extinction time T0 on δ (death rate)
(see Fig.2(a)) and γ (yield constant) (see Fig.2(b)) and D (motility rate) (see Figs.3-

4). The total density of bacteria over the space is defined as B̃(.) =
∫

Ω
B(x, .)dx.

Fig.2 directly follows common sense: when the mortality rate increases, the ex-
tinction time decreases (see panel (a)); when the yield constant increases, the ex-
tinction time increases (see panel (b)). According to Fig.3, for the agar media,
larger motility results in shorter survival of a single strain, while larger motility of
motile strain prolongates the extinction time of the motile strain in competition
with the immotile strain. More nutrients consuming by bacterial species leads to
higher population death. Intrinsic fluctuations and traveling wave speeds also lead
to extinction. For a single species (no competition), increasing motility is not fa-
vorable, because single strain goes extinct faster if it consumes more nutrients by
spreading out. However, in the case of two competing species, the motile strain gets
more nutrient, leading to the earlier extinction of the immotile strain. Competition
case should be better than single species case. According to Fig.4, for the liquid
case, the extinction time is almost independent of motility because liquid nutri-
ents move almost infinitely fast. Two species competition models will be clearly
presented in section 4.
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(a) single strain case (b) competition case

Figure 4. Extinction time (T0) vs motility rate (D)-liquid case.

4. Two competing bacterial species in a petri dish. We start with two species
competing for the same nutrients in one-dimensional space. These species are ge-
netically identical except for their movement speed: the first strain is motile while
the second one is immotile. Culture medium ranges from agar to liquid. We per-
form mathematical analysis including global stability for non-special case and the
existence of traveling-wave solutions.

We consider the following reaction-diffusion competition spatial model for agar
media:

∂B1

∂t
= D1∆B1 + [h1(N)− δ1]B1,

∂B2

∂t
= D2∆B2 + [h2(N)− δ2]B2,

∂N

∂t
= − 1

γ1
h1(N)B1 −

1

γ2
h2(N)B2,

(2)

where hi(N) = αiN
ki+N

.

B1(x, t)-density of motile strain; B2(x, t)-density of immotile strain;
D1-diffusion constant of motile strain; D2-diffusion constant of immotile strain;
D1 >> D2;
α1 = α2 - maximum resource uptake rates;
k1 = k2 - half-saturation constants for resource uptake (representing resource uptake
efficiencies);
δ1 = δ2 - bacterial mortality rates;
γ1 = γ2 - yield coefficient (mass of viable cells produced per unit of nutrient).

4.1. Mathematical analysis. We first consider the following ODE model

dB1

dt
= [h1(N)− δ1]B1,

dB2

dt
= [h2(N)− δ2]B2,

dN

dt
= − 1

γ1
h1(N)B1 −

1

γ2
h2(N)B2.

(3)

For this ODE model, we have the following global stability result, which states that
eventually the nutrient density approaches some equilibrium level.
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Theorem 4.1. The equilibrium line (0, 0, ζ), where ζ is an arbitrary nonnegative
number, is globally attracting.

For the spatial model, the following theorem summarizes the necessary condition
for the existence of traveling-wave solutions for system (2).

Theorem 4.2. The necessary condition for existence of traveling-wave solutions
for the agar model (2) is√

D2
1(δ2 − h2) +D2

2(δ1 − h1)

(D1 +D2)
≥ c ≥ | D1(h2 − δ2)−D2(h1 − δ1) |√

(D1 +D2)(δ1 + δ2 − h1 − h2)
.

Investigating traveling wave solutions in competition allows us to understand how
the nutrients can be ruled by the bacterial strains. Our system admits traveling
wave solutions depending on the initial condition. When the nutrients stay at
their stable state in the petri dish, adding bacterial strains may result in a “wave
of transition” of bacterial strains. We obtain maximum and minimum traveling
speeds for traveling-wave solutions.

4.2. Numerical simulations. One goal of numerical simulations is to determine
whether our theoretical results are consistent to experimental results in [28]. We
run simulations in one-dimensional and two-dimensional spaces to illustrate the data
fitting. Simulation results in one-dimensional space were obtained using MATLAB,
and simulation results in two-dimensional space were obtained using COMSOL.
For all the simulations, zero flux boundary conditions were used. Furthermore, we
compute extinction times of bacteria, traveling-wave solutions, and ratios of total
densities of the two competing strains. We estimate the reasonable ranges of pa-
rameters from literature (see Table 1). We choose proper parameter values from
these ranges to run simulations.

We start with the simulations on one-dimensional space. We place motile and
immotile bacterial strains in the middle of the petri dish and observe competition
outcomes (see Fig.5). We select parameter values from the corresponding ranges
given in Table 1 [1, 3, 14, 19, 26, 13, 11]: α1 = α2 = 0.6, k1 = k2 = 0.06,
δ1 = δ2 = 0.03, γ1 = γ2 = 0.5, D1 = 0.002, D2 = 0.0002, and the initial conditions:

B1(x, 0) =

{
0.05, |x− 0.5| ≤ 0.03;
0, |x− 0.5| > 0.03;

B2(x, 0) =

{
0.05, |x− 0.5| ≤ 0.03;
0, |x− 0.5| > 0.03;

and

N(x, 0) = 0.5 (high resource) or 0.05 (low resource).
From Fig.5, initially, both strains grow in the middle. After a few hours the motile

strain moves out and grows on the boundary, while the immotile strain grows quickly
in the middle. And finally both strains die out due to the nutrient-closed system.
Fig.6 illustrates that the motile strain is dominant in total density (integration of
density over space). After half a day, the ratio of motile strain to immotile strain is
around 10 : 1 (see Fig.9). This result is consistent to the experimental data of the
agar case [28]. Fig.5 shows the spatial distributions of both bacterial strains and
resource over time.

Now we run a simulation on two-dimensional space. We place one drop of motile
strain in the middle of the petri dish and one drop of immotile strain a bit away from
the middle. We compute the density distributions of both strains and resource over
time, and record these spatial distributions at 0hr, 12hrs, 15hrs and 20hrs in Fig.11.
Following Table 1, we choose: α1 = α2 = 0.6, k1 = k2 = 0.04, δ1 = δ2 = 0.03,
γ1 = γ2 = 0.5, D1 = 0.002, D2 = 0.0002. Note that the unit of diffusion coefficients
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Figure 5. One dimensional simulation for the competition of
motile and immotile strains in a homogeneous nutrient environment
- agar case. Chosen values of parameters are α1 = α2 = 0.6h−1,
k1 = k2 = 0.04(dm)−3, δ1 = δ2 = 0.03h−1, γ1 = γ2 = 0.5,
D1 = 0.002(dm)2h−1, D2 = 0.0002(dm)2h−1, N(x, 0) = 0.5.
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(a) high resource-agar
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Figure 6. Total densities of motile and immotile strains in one
dimensional agar case. Solid and dash lines represent total den-
sity of motile and immotile strains. (a) high resource. (b) low
resource. Chosen values of parameters are α1 = α2 = 0.6h−1,
k1 = k2 = 0.04(dm)−3, δ1 = δ2 = 0.03h−1, γ1 = γ2 = 0.5,
D1 = 0.002(dm)2h−1, D2 = 0.0002(dm)2h−1, N(x, 0) = 0.5.

in two-dimensional space is different from that in one-dimensional space. We choose
the following initial conditions to run a simulation in COMSOL:

B1(x, y, 0) = exp[(−(x− 0.5)2 − (y − 0.5)2)/0.0001],

B2(x, y, 0) = exp[(−(x− 0.4)2 − (y − 0.5)2)/0.0001],

N(x, y, 0) = 0.5.

We use these initial conditions to mimic two drops of bacteria in the petri dish.
Actually after a very short time, two drops will become these initial functions for
bacterial densities. Note that these initial conditions are similar to those in one-
dimensional space.

To mimic experiments, we start our simulation (Fig.11) at time t = 0. Motile
and immotile strains start to grow on the same position as placed, and the density
of the immotile strain is higher than the density of the motile strain. After twelve
hours, the density of the immotile strain starts to decrease and the density of
motile strain starts to increase. After fifteen hours, the motile strain moves out and
grows mainly outside the middle region, and a heterogeneous pattern occurs. After
twenty hours, the motile strain grows everywhere and dominates most of the petri
dish, the immotile strain has very low density (even in the middle region) due to
lack of resource, and most nutrients are used but actually some remain according to
Theorem 3.3. However, in real experiments the density of nutrients can be extremely
low.

4.3. Competition in liquid media. We consider two bacterial strains, genet-
ically identical except for their motility, in a finite one-dimensional space, with
homogeneous diffusible liquid nutrient. The model is provided by

∂B1

∂t
= D1∆B1 + [h1(N)− δ1]B1,

∂B2

∂t
= D2∆B2 + [h2(N)− δ2]B2,

∂N

∂t
= D3∆N − 1

γ1
h1(N)B1 −

1

γ2
h2(N)B2,

(4)
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Figure 7. One dimensional simulation for the competition of
motile and immotile strains in a homogeneous nutrient environment
- liquid case. Chosen values of parameter are α1 = α2 = 0.6h−1,
k1 = k2 = 0.04(dm)−3, δ1 = δ2 = 0.03h−1, γ1 = γ2 = 0.5,
D1 = 0.002(dm)2h−1, D2 = 0.0002(dm)2h−1, D3 = 4(dm)2h−1.
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(b) low resource-liquid

Figure 8. Total densities of motile and immotile strains in one
dimensional liquid case. Solid and dash lines represent total den-
sity of motile and immotile strains. (a) high resource. (b) low
resource. Chosen values of parameters are α1 = α2 = 0.6h−1,
k1 = k2 = 0.04(dm)−3, δ1 = δ2 = 0.03h−1, γ1 = γ2 = 0.5,
D1 = 0.002(dm)2h−1, D2 = 0.0002(dm)2h−1, D3 = 4(dm)2h−1.

Figure 9. Quantitatively fitting the ratio data by computing the
total density ratio of motile strain to immotile strain (M/IM) from
simulations. The x-axis is time (hrs), and the y-axis is extinction
time (T0). The first column (blue) at each time plots the ratio for
the agar case, and the second column (red) at each time plots the
ratio for the liquid case.

where the nutrient diffusion coefficient D3 >> D1 >> D2. Pattern formation
in liquid is not as interesting as in agar. Numerical simulations in this section
show liquid media competition results including spatial distribution over time, total
densities, and extinction times.

We consider the simulations on one-dimensional space. Similar to the agar
case, we place motile and immotile bacterial strains in the middle of the petri
dish and observe competition outcomes in Fig.7. Following Table 1, we choose:
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Figure 10. The dependence of the density ratio M/IM and the
extinction times on the nutrient diffusion rate D3. The two curves
plot extinction times of motile strain (diamond) and immotile
strain (square). The bars plot the ratios of motile/immotile strains
at t = 15 under different nutrient diffusion rates.

α1 = α2 = 0.6, k1 = k2 = 0.06, δ1 = δ2 = 0.03, γ1 = γ2 = 0.5, D1 = 0.002,

D2 = 0.0002, D3 = 4, and initial conditions: B1(x, 0) =

{
0.04, |x− 0.5| ≤ 0.03;
0, |x− 0.5| > 0.03;

B2(x, 0) =

{
0.04, |x− 0.5| ≤ 0.03;
0, |x− 0.5| > 0.03;

and N(x, 0) = 0.4 (high resource) or 0.04

(low resource).
The motile strain moves out only a bit more than the immotile strain. Actually,

both strains grow around the middle of the petri dish (see Fig.7) and have almost
the same density (see Fig.8). In the liquid case, bacterial motility is useless because
liquid nutrients move almost infinitely fast compared to bacterial movement. When
the nutrient density becomes low in the middle, liquid nutrient spreads inward to
the middle. Thus, the motile strain has no advantage in liquid media (see Fig.8).
The ratio of motile strain to immotile strain is around 1 : 1 (see Fig.9). It is almost
consistent to the experimental data of the liquid case [28].

In Fig.10, we vary the nutrient diffusion coefficient D3 from 0 to 10 in log scale, in
which interval agar and liquid media are two extremes, to examine how the resource
type determines the ratio of the motile strain to the immotile strain and extinction
times of both strains. The ratio of the motile strain to the immotile strain at t = 15
decreases as D3 increases. The extinction time of the motile strain decreases and
that of the immotile strain increases as D3 increases, and the extinction times of
both strains coincide when D3 is large enough (D3 > 1).
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(a) Density of M at t = 0 (b) Density of IM at t = 0 (c) Density of N at t = 0

(d) Density of M at t = 12 (e) Density of IM at t = 12 (f) Density of N at t = 12

(g) Density of M at t = 15 (h) Density of IM at t = 15 (i) Density of N at t = 15

(j) Density of M at t = 20 (k) Density of IM at t = 20 (l) Density of N at t = 20

Figure 11. Two dimensional simulations (2 − D figures) at t =
0, 12, 15, 20. M represents the motile strain, IM represents the im-
motile strain and N represents the nutrients. In these figures, the
dark red color represents high bacterial densities, the blue color
represents almost zero densities, and the color changing from dark
red to blue represents the density of bacterial strain changing from
high to low.
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Table 1. Variables and Parameters

Var/Par Definition Unit Value Reference
B1 Density of motile

bacteria
M(dm)−3 - -

B2 Density of immotile
bacteria

M(dm)−3 - -

N Density of nutrient M(dm)−3 - -
D1 Diffusion coefficient

of motile bacteria
(dm)2h−1 D2 − 0.36 [14, 11]

D2 Diffusion coefficient
of immotile bacteria

(dm)2h−1 0− 0.036 [14, 11]

αi Resource uptake
rates

h−1 0.02− 0.86 [14, 3, 26,
13]

δi Bacterial mortality
rates

h−1 0.01− 0.07 [14, 3]

γi Yield constants - 0.5 [14, 11]
ki Half-saturation con-

stants
mole(dm)−3 0.001−0.08 [14, 19, 1]

D3 Diffusion coefficient
of nutrient

(dm)2h−1 >> D1 > 0 [12]

5. Discussion. In this paper, we study a mathematical model for competition
of motile and immotile bacterial strains in a homogeneous nutrient environment,
with the purpose of exploring the role of nutrient and random (undirected) motil-
ity in bacterial competition. Directed motility of bacteria (chemotaxis) has been
widely studied empirically and theoretically. The undirected motility was thought
to be unimportant and thus was rarely examined specifically in literature about
bacterial competition. However, undirected motility can be more important in
resource-homogeneous environments. Motivated by a series of lab experiments [28],
we discuss the theoretical aspects of the undirected motion of bacteria in this paper.

Our theoretical framework shows even though nutrients always exist, eventually
bacteria will go extinct when lack of nutrients. If we incorporate a nutrient input
as chemostat-type models (nutrient-open), then the bacterial community can be
sustained. We show the existence of traveling-wave solutions by additionally pro-
viding their minimum and maximum traveling speeds. The minimum or maximum
spreading rate is an increasing function with respect to diffusion coefficient. Thus,
the existence of traveling wave solutions provide a lower and an upper bound for
the bacterial spreading rate. This result seems novel because almost all previous
models show that traveling-wave solutions have a minimum traveling speed.

Using numerical simulations, we show that in agar media the motile strain grows
on the boundary after a few hours, but in liquid media it always grows in the
middle. In both media the immotile strain grows in the middle, and it has much
higher total density in liquid media than in agar media. In agar media the motile
strain is dominant in total density, while in liquid media bacterial motility is not
that important. This result is consistent with experimental data [28]. Simulation
and experimental results illustrate the advantage of undirected motility in agar
media and in the absence of chemotaxis.
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Our theoretical framework is based on coupled reaction-diffusion-type equations
with multiple assumptions, such as undirected motility without chemotaxis, ge-
netically identical bacterial strains except motility, and one type of resource. We
construct and discuss a PDE model in the explicit consideration of nutrient and dif-
ferent bacterial strains characterized by motility. In liquid media, if we assume that
immotile strain utilizes nutrient more efficiently than the motile strain (k1 > k2)
due to energy cost of movement, then the total density ratio of motile strain to
immotile strain is far less than one. Models in two-dimensional space are enough
to mimic the petri dish experiment [28], although some applications such as biofilm
in teeth and bath tub may need three-dimensional space.

More theoretical work and lab experiments need to be accumulated to validate
undirected motility in bacteria and its effects on competition. The assumptions
of the existing models require further verification in experiments. Some well orga-
nized lab experiments in heterogeneous nutrient environments will be important to
understand the significance of undirected (random) cell movement.
Appendix.
Proof of Theorem 3.1 We consider the one-dimensional space case and the two-
dimensional space (disk petri dish) case separately.
For spatially uniform steady states, where solutions are independent of time and
space, we have the following algebraic equations:

(h(N)− δ)B = 0,

− 1

γ
h(N)B = 0,

(5)

the second equation of (5) implies B = 0 or N = 0.
If B = 0, then N ≥ 0.
If N = 0, substituting it into the first equation of (5) leads to B = 0.
For spatially non-uniform steady states, where solutions are independent of time,
we have the following equations:

D
d2B

dx2
+ (h(N)− δ)B = 0,

− 1

γ
h(N)B = 0,

(6)

the second equation of (6) implies B = 0 or N = 0.
If B = 0, then N ≥ 0.
If N = 0, then substituting it into the first equation of (6) leads to

D
d2B

dx2
− δB = 0. (7)

From steady states we can see that B(x) = 0 is always a solution of the above
equation. Therefore we shall look for solutions other than the trivial zero solution.
Let B = ewx, where w is a constant ready to be determined, then equation (7) leads
to w2 − δ

D = 0, and thus the solution is

B = C1e
wx + C2e

−wx. (8)

One important characteristic of a boundary value problem is that it may not have
a solution, while the initial value problem always has a solution and the solution is
unique. The equation (7) has no solution when δ/D < 0. If the equation (7) has a
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solution, then

B = C1e
√

δ
D x + C2e

−
√

δ
D x (9)

for some constants C1 and C2 and we can solve the constants using boundary
conditions ∂B

∂x (0, t) = ∂B
∂x (L, t) = 0. Thus C1 = C2 = 0. Therefore equation (7) has

only zero solution.
Now we consider the single species model in a petri dish Ω (disk shape):

∂B

∂t
= D(Bxx +Byy) + (h(N)− δ)B,

∂N

∂t
= − 1

γ
h(N)B,

(10)

or equivalently in polar coordinates

∂B

∂r
= D(Brr +

1

r
Br +

1

r2
Bθθ) + (h(N)− δ)B,

∂N

∂r
= − 1

γ
h(N)B.

(11)

Spatially uniform steady states are similar to the one-dimensional space case.
Now we discuss spatially non-uniform steady states.
The second equation of (11)implies B = 0 or N = 0.
If B = 0 then N ≥ 0.
If N = 0, substituting it into the first equation of (11) leads to

Brr +
1

r
Br +

1

r2
Bθθ −

δ

D
B = 0, (12)

with r dependent boundary conditions

∂B

∂r
(a, θ) = 0, |B(0, θ)| <∞,

and θ dependent boundary conditions

B(r, π) = B(r,−π),
∂B

∂θ
(r, π) =

∂B

∂θ
(r,−π).

Consider the product solution

B(r, θ) = R(r)Θ(θ),

where θ is a polar angle with

Θ(θ + 2π) = Θ(θ).

Plugging the product solution into the equation, we find

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ − δ

D
RΘ = 0

⇒ Θ(R′′ +
1

r
R′ − δ

D
R) = − 1

r2
RΘ′′

⇒ r2R
′′

R
+ r

R′

R
− r2 δ

D
R = −Θ′′

Θ
= λ where λ is a separation constant.

Hence

r2R
′′

R
+ r

R′

R
− r2 δ

D
R = λ and

−Θ′′

Θ
= λ.

(13)



416 SILOGINI THANARAJAH AND HAO WANG

The second equation of (13) implies

Θ′′ + λΘ = 0.

The Θ equation has 2π-periodic solutions if and only if

λ = n2, n = 0,±1,±2, ....

This leads to the equation

Θ′′ + n2Θ = 0 and r2R
′′

R
+ r

R′

R
− r2 δ

D
R = n2

with

Θ(π) = Θ(−π),
∂Θ

∂θ
(π) =

∂Θ

∂θ
(−π).

We know that the eigenvalues are λ = n2 for n = 0, 1, · · · , although it is not
a regular Sturm-Liouville problem due to the periodic boundary conditions. The
corresponding eigenfunctions are Θ(θ) = sinnθ and Θ(θ) = cosnθ. Hence, the
general ODE has the form

Θ(θ) = c5 cosnθ + c6 sin(nθ), n integer.

On the other hand,

r2R′′ + rR′ +

(
− δ

D
r2 − n2

)
R = 0 with (14)

∂R

∂r
(a) = 0, |R(0)| <∞.

Equation (14) looks similar to Bessel’s differential equation, but it has the oppo-
site sign in front of the r2 term. If we let

q =

(
δ

D

)
r,

then the equation (14) becomes

q2 ∂
2R

∂q2
+ q

∂R

∂q
+ (−q2 − n2)R = 0,

which is a modified Bessel’s differential equation, and the solution is

R = c3Kn

(
δ

D
r

)
+ c4In

(
δ

D
r

)
,

where

Kn =
π

2

I−n(q)− In(q)

sin(nπ)
and In =

∞∑
p=1

(q/2)n+2p

p!(p+ n)!
.

Using the boundary condition |R(0)| <∞ and since Kn is singular at r = 0 and In
is not, it follows that c3 = 0 and R(r) is proportional to In

(
δr
D

)
. Note that both

Kn(q) and In(q) are non-oscillatory and are nonzero for q > 0.
Therefore,

R(r, θ) = c4In

(
δr

D

)
.

The boundary condition ∂R
∂r (a, θ) = 0 implies that

δ

D
c4I
′
n

(
δ

D
a

)
= 0,
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which leads to

c4
In−1

(
δ
Da
)

+ In+1

(
δ
Da
)

2
= 0.

Since In−1

(
δ
Da
)

and In+1( δDa) are nonzero for a > 0, we have c4 = 0. Consequently,
the equation (12) has only zero solution (δ > 0, D > 0).

From spatially uniform steady states and spatially non-uniform steady states, we
conclude that for both one-dimensional and two-dimensional cases, if B = 0 then
N ≥ 0 and if N = 0 then B = 0. �

Proof of Theorem 3.2 We look for traveling-wave solutions of the form

B(t, x) = B̄(η), N(t, x) = N̄(η),

where η = x − ct. With this specific form of traveling waves, the PDE system
becomes an ODE system:

−cdB̄
dη

= D
d2B̄

dη2
+ (h(N̄)− δ)B̄,

−cdN̄
dη

= − 1

γ
h(N̄)B̄,

(15)

Letting dB̄
dη = R, the equation (15) can be written as a system of first-order

ODEs:

dB̄

dη
= R,

dR

dη
= − c

D
R− h(N̄)− δ

D
B̄,

dN̄

dη
=

1

γc
B̄h(N̄),

(16)

and the critical points are all points on the N̄ axis.
Integrating equation (15) from −∞ to +∞, we have

−c[B̄]+∞−∞ = D

[
dB

dη

]+∞

−∞
+

∫ +∞

−∞
(h(N̄)− δ)B̄dη,

∫ +∞

−∞
(h(N̄)− δ)B̄dη = 0 ( since B → 0 as x→ ±∞), (17)

−c[N̄ ]+∞−∞ = − 1

γ

∫ +∞

−∞
h(N̄)B̄dη,

− c(1− n) = − 1

γ

∫ +∞

−∞
h(N̄)B̄dη (18)

( since N → 1 as x→ +∞, N → n as x→ −∞).

Now (17)
γ + (18) implies

c(1− n) =
1

γ

∫ +∞

−∞
δB̄dη = cδ

∫ 1

n

dn̄

h(n̄)
(replace N̄ with n̄ for integral).
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From equation (16), we have

dR

dη
= − c

D

dB̄

dη
− γc

D

dN̄

dη
+
δγc

D

1

h(N̄)

dN̄

dη
. (19)

Integrating equation (19) from η to +∞ to get

D

c
R = φ(N̄)− B̄, (20)

where

φ(N̄) = γ

(
1− N̄ − δ

∫ 1

N̄

dn̄

h(n̄)

)
. (21)

Obviously, we have φ(1) = 0, and from equation (21) we have

φ(n̄) = γ

(
1− n̄− δ

∫ 1

n̄

dn̄

h(n̄)

)
= γ(1− n− (1− n)) = 0.

This defines a invariant manifold for the system. If a trajectory starts on it, it stays
on it, and since

φ(n) = φ(1) = 0,

(0, 0, n), (0, 0, 1) are both on it, we can reduce (16) to the planar system

dB̄

dη
=

c

D
(φ(N̄)− B̄),

dN̄

dη
= (γc)−1B̄h(N̄).

(22)

We need to look for eigenvalues at the critical points (B̄s, N̄s). The Jacobian matrix
of the system (16) is [

B̄′

N̄ ′

]
=

[
− c
D

c
Dφ
′(N̄)

h(N̄)
γc 0

] [
B̄
N̄

]
,

which leads to the characteristic equation at (B̄s, N̄s):

λ2 +
c

D
λ− c

γD
φ′(N̄s)h(N̄s) = 0.

The set of eigenvalues for the above matrix is given by

λ1 =
−c+

√
c2 − 4D

γ σ(N̄s)

2D
,

λ2 =
−c−

√
c2 − 4D

γ σ(N̄s)

2D
,

where σ(N̄s) = −h(N̄s)φ
′(N̄s).

The trajectory representing a wave must approach (0, 0, n) as η → −∞, so it is
necessary that one of the eigenvalues has positive real part if σ(n) < 0. If this is
the case, λ1 and λ2 are real. Similarly, the trajectory must approach (0, 0, 1) as

η →∞. We have the restriction on the wave speed that c ≥ 2(Dσ(1)
γ )1/2 ≡ c∗. We
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see that c ≥ c∗ is only the necessary condition, c ≥ cmin = c∗. Hence the mini-

mum traveling-wave speed is c∗ ≡ 2(Dσ(1)
γ )1/2 ≤ c, where σ(N̄s) = −h(N̄s)φ

′(N̄s).�

Proof of Theorem 3.3 The claim follows if we can prove that∫ ∞
0

B(~x, t)dt <∞.

Let

B(~x, t) =

∫ t

0

B(~x, s)ds.

Since ∂B/∂t = B, we can rewrite the first equation of (1) as

∂2B
∂t2

= (D4− δ)∂B
∂t
− γ ∂N

∂t
,

which can be rewritten as

∂

∂t

(
∂B
∂t
− (D4− δ)B(~x, t) + γN(~x, t)

)
= 0. (23)

Integrating equation (23) to obtain

∂B(~x, t)

∂t
− (D4− δ)B(~x, t) + γN(~x, t) = A(~x),

for some smooth function A(~x). By the sophisticated version of the Method of
Variation of Parameters, the solution can be written as

B(~x, t) =

∫ t

0

e(D4−δ)(t−s)(A(~x)− γN(~x, s))ds ≤
∫ t

0

e(D4−δ)(t−s)A(~x)ds

=

(∫ t

0

e(D4−δ)(t−s)ds

)
A(~x) = (−D4+ δ)−1A(~x) <∞.

Integrating the second equation of (1) yields∫ t

0

1

h(N)

∂N

∂s
∂s =

∫ t

0

− 1

γ
B(~x, s)∂s. (24)

Case I: h(N) = αN Equation (24) implies∫ t

0

∂N

N
=

∫ t

0

−α
γ
B∂t = −α

γ
B,

which leads to

N(~x, t) = N(~x, 0)e−
α
γ B,

that causes a contradiction when N → 0.

Case II: h(N) = αN
k+N Equation (24) implies∫ N(~x,t)

N(~x,0)

k +N

N
∂N = −α

γ
B,

which leads to

k(logN(~x, t)− logN(~x, 0)) +N(~x, t)−N(~x, 0) = −α
γ
B > −∞.

When N → 0, the left hand side goes to −∞ but the right hand side never goes to
−∞, it is a contradiction. �
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Remark: Even though the function h(N) satisfies the conditions h(0) = 0, h′(t) >

0, and h′′(t) ≤ 0, we cannot reach theorem 3.3. Counter example: If h(N) =
√
N ,

then h′(N) = 1
2N
− 1

2 > 0 and h′′(N) = − 1
4N
− 3

2 < 0. Hence, we have∫ N(~x,t)

N(~x,0)

N−
1
2 ∂N = − 1

γ
B, (25)

2(N(~x, t)
1
2 −N(~x, 0)

1
2 ) = − 1

γ
B. (26)

When N → 0, the left hand side goes to zero and the right hand side also goes to
zero. We cannot obtain Theorem 3.3 using the same approach.

Proof of Theorem 4.1 It is obvious that any point on the line (0, 0, ζ), ζ ≥ 0 is
an equilibrium. We will show that there exists T > 0 such that δ1 > h1(N) and
δ2 > h2(N) when t > T , by contradiction.
If this claim is not true, we have δ1 < h1(N) for all t or δ2 < h2(N) for all t.
Therefore

dB1

dt
≥ εB1 for all t or dB2

dt ≥ εB2 for all t. (27)

Integrating equation (27) with respect to t implies

B1 ≥ aeεt for all t or B2 ≥ beεt for all t.

When t → ∞, then B1 → ∞ or B2 → ∞. On the other hand, if we consider the
Lyapunov function

V (B1, B2, N) = 1/2(B2
1 +B2

2 +N2),

V̇ (B1, B2, N) = B1Ḃ1 +B2Ḃ2 +NṄ

= B2
1(h1(N)− δ1) +B2

2(h2(N)− δ2)−N(
1

γ1
h1(N)B1 +

1

γ2
h2(N)B2)

< 0, for t > T,

then any solution approaches some point on the line (0, 0, ζ), ζ ≥ 0, that is, the
equilibrium line (0, 0, ζ), ζ ≥ 0 is globally attracting. A contradiction. �

Proof of Theorem 4.2 Consider the equations

∂B1

∂t
= D14B1 + (h1(N)− δ1)B1,

∂B2

∂t
= D24B2 + (h2(N)− δ2)B2,

∂N

∂t
= − 1

γ1
h1(N)B1 −

1

γ2
h2(N)B2,

(28)

Let B1(t, x) = B1(x− ct), B2(t, x) = B2(x− ct), and N(t, x) = N(x− ct), then
the equations become

−cB′1 = D1B
′′
1 + (h1(N)− δ1)B1,

−cB′2 = D2B
′′
2 + (h2(N)− δ2)B2,

−cN ′ = − 1

γ1
h1(N)B1 −

1

γ2
h2(N)B2.

(29)
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Now let B′1 = B11 and B′2 = B22,

−cB11 = D1B
′
11 + (h1(N)− δ1)B1,

−cB22 = D2B
′
22 + (h2(N)− δ2)B2,

−cN ′ = − 1

γ1
h1(N)B1 −

1

γ2
h2(N)B2,

(30)

and then

B′11 =
−c
D1

B11 −
1

D1
(h1(N)− δ1)B1,

B′1 = B11,

B′22 =
−c
D2

B22 −
1

D2
(h2(N)− δ2)B2,

B′2 = B22,

N ′ =
1

cγ1
h1(N)B1 +

1

cγ2
h2(N)B2.

At critical point (0, 0, ζ), ζ ≥ 0, let h1(ζ) = h1 and h2(ζ) = h2, the Jacobian matrix
is 

−c/D1 −(h1 − δ1)/D1 0 0 0
1 0 0 0 0
0 0 −c/D2 −(h2 − δ2)/D2 0
0 0 1 0 0

0 h1

cγ1
0 h2

cγ2
0


and thus the characteristic polynomial is given by

χ(λ) =

∣∣∣∣∣∣∣∣∣∣
−c/D1 − λ −(h1 − δ1)/D1 0 0 0

1 0− λ 0 0 0
0 0 −c/D2 − λ −(h2 − δ2)/D2 0
0 0 1 0− λ 0

0 h1

cγ1
0 h2

cγ2
0− λ

∣∣∣∣∣∣∣∣∣∣
.

The characteristic equation χ(λ) = 0 is

0 = λ5 + (c/D1 + c/D2)λ4 + (
c2

D1D2
+

(h1 − δ1)

D1
+

(h2 − δ2)

D2
)λ3

+
c

D1D2
(h1 + h2 − δ1 − δ2)λ2 +

(h1 − δ1)(h2 − δ2)

D1D2
λ.

We apply the Routh-Hurwitz criterion to obtain the following:[
1 c2

D1D2
+ (h1−δ1)

D1
+ (h2−δ2)

D2

(h1−δ1)(h2−δ2)
D1D2

c
D1

+ c
D2

c
D1D2(h1+h2−δ1−δ2) 0

]

b1 =
c2(D1 +D2) +D2

1(h2 − δ2) +D2
2(h1 − δ1)

D1D2(D1 +D2)
b2 =

(h1 − δ1)(h2 − δ2)

D1D2
0

c1 =
c

D1D2

(
[D1(h2 − δ2)−D2(h1 − δ1)]2 + c2(D1 +D2)(h1 + h2 − δ1 − δ2)

)
c2(D1 +D2)−D2

1(δ2 − h2)−D2
2(δ1 − h1)

0

and d1 = b2.
If b2 > 0 and c1 < 0 then (0, 0, ζ) is unstable.
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If b2 < 0 and c1 > 0 then (0, 0, ζ) is unstable.
If b2 > 0 and c1 > 0 then (0, 0, ζ) is locally asymptotically stable, which imply

(h1 − δ1)(h2 − δ2)

D1D2
> 0 (31)

and

c

D1D2

[D1(h2 − δ2)−D2(h1 − δ1)]2 + c2(D1 +D2)(h1 + h2 − δ1 − δ2)

c2(D1 +D2)−D2
1(δ2 − h2)−D2

2(δ1 − h1)
> 0. (32)

The first condition (31) leads to two cases:
(i) (h1 − δ1) > 0 and (h2 − δ2) > 0;
(ii) (h1 − δ1) < 0 and (h2 − δ2) < 0.
For the case (i) (h1 − δ1) > 0 and (h2 − δ2) > 0, we have b1 > 0. Thus (0, 0, ζ) is
locally asymptotically stable.
On the other hand, if (h1−δ1) > 0 and (h2−δ2) > 0, then there exists ξ > 0 (small
enough) such that

∂B1

∂t
= D1∆B1 + (h1(N)− δ1)B1 ≥ D1∆B1 + εB1,

for (B1(0), B2(0), N(0)) ∈ Bξ((0, 0, ζ)),

∂B2

∂t
= D2∆B2 + (h2(N)− δ2)B2 ≥ D2∆B2 + εB2,

for (B1(0), B2(0), N(0)) ∈ Bξ((0, 0, ζ)).

Differentiating B̃(t) =
∫

Ω
B(~x,~t)d~x yields

∂B̃1

∂t
≥
∫

Ω

D1∆B1d~x+ εB̃1,

∂B̃2

∂t
≥
∫

Ω

D2∆B2d~x+ εB̃2.

The integral is zero due to the zero flux hypothesis and Stoke’s theorem. We thus
obtain

∂B̃1

∂t
≥ εB̃1,

∂B̃2

∂t
≥ εB̃2.

(33)

Integrating equation (33) with respect to t yields

B̃1 ≥ aeεB̃1 ,

B̃2 ≥ beεB̃2 .

It contradicts the result that (0, 0, ζ) is locally asymptotically stable.
For the case (ii) (h1 − δ1) < 0 and (h2 − δ2) < 0, the second condition (32) for
asymptotic stability leads to

[D1(h2 − δ2)−D2(h1 − δ1)]2 > c2(D1 +D2)(δ1 + δ2 − h1 − h2) and

c2(D1 +D2) > D2
1(δ2 − h2) +D2

2(δ1 − h1),
(34)
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or

[D1(h2 − δ2)−D2(h1 − δ1)]2 < c2(D1 +D2)(δ1 + δ2 − h1 − h2) and

c2(D1 +D2) < D2
1(δ2 − h2) +D2

2(δ1 − h1).
(35)

Equations (34) and (35) are equivalent to

D2
1(δ2 − h2) +D2

2(δ1 − h1)

(D1 +D2)
< c2 <

[D1(h2 − δ2)−D2(h1 − δ1)]2

(D1 +D2)(δ1 + δ2 − h1 − h2)
(36)

or

D2
1(δ2 − h2) +D2

2(δ1 − h1)

(D1 +D2)
> c2 >

[D1(h2 − δ2)−D2(h1 − δ1)]2

(D1 +D2)(δ1 + δ2 − h1 − h2)
. (37)

To show the following inequality

D2
1(δ2 − h2) +D2

2(δ1 − h1)

(D1 +D2)
≥ [D1(h2 − δ2)−D2(h1 − δ1)]2

(D1 +D2)(δ1 + δ2 − h1 − h2)
,

we only need to show that

[D2
1(δ2 − h2) +D2

2(δ1 − h1)](δ1 + δ2 − h1 − h2) ≥ [D1(h2 − δ2)−D2(h1 − δ1)]2.

Now

LHS = D2
1(δ2−h2)(δ1−h1) +D2

1(δ2−h2)2 +D2
2(δ1−h1)(δ2−h2) +D2

2(δ1−h1)2,

RHS = D2
1(δ2 − h2)2 − 2D1D2(δ1 − h1)(δ2 − h2) +D2

2(δ1 − h1)2.

Obviously,

LHS ≥ RHS.
Hence, (36) can never be satisfied, and (37) is the only choice, i.e.√

D2
1(δ2 − h2) +D2

2(δ1 − h1)

(D1 +D2)
≥ c ≥ | D1(h2 − δ2)−D2(h1 − δ1) |√

(D1 +D2)(δ1 + δ2 − h1 − h2)
.
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