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Abstract. In this work a new probabilistic and dynamical approach to an

extension of the Gompertz law is proposed. A generalized family of probabil-
ity density functions, designated by Beta∗(p, q), which is proportional to the

right hand side of the Tsoularis-Wallace model, is studied. In particular, for

p = 2, the investigation is extended to the extreme value models of Weibull and
Fréchet type. These models, described by differential equations, are propor-

tional to the hyper-Gompertz growth model. It is proved that the Beta∗(2, q)

densities are a power of betas mixture, and that its dynamics are determined
by a non-linear coupling of probabilities. The dynamical analysis is performed

using techniques of symbolic dynamics and the system complexity is measured

using topological entropy. Generally, the natural history of a malignant tu-
mour is reflected through bifurcation diagrams, in which are identified regions

of regression, stability, bifurcation, chaos and terminus.

1. Introduction. In recent decades, the growth models, whether populational or
tumoral, has been one of the research topics of greatest relevance. The number of
phenomenological growth models based on competition of two terms, one represent-
ing the production and the other associated with death, is amazingly large. Con-
sider all particular cases of the generalized logistic model and also of the Tsoularis-
Wallace-Schaefer model, among other models studied, see [13], [14], [24], [27] and
references therein.

The Gompertzian model of growth was initially introduced as an actuarial func-
tion for the study of aging processes. Nowadays, the Gompertz function is widely
used with success in demographic, economic, ecological, biological and medical stud-
ies. Its application is highlighted in gene expression, enzyme kinetics, oxygenation
of hemoglobin, intensity of photosynthesis and in the growth of organisms, cells,
organs, tissues, tumours or populations, among other topics of investigation, see for
example [7], [8], [9], [25], [29] and [32].

The Gompertz function plays an important role in the extreme value theory,
where it is known as Gumbel distribution function. The Gumbel extreme stable
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law has in its domain of attraction laws with infinite right endpoint and others with
finite right endpoint, [20]. In fact, laws in the Gumbel model domain of attraction
are not heavy tailed, and this can be a serious drawback for the Gompertz growth
model studied by Laird and Waliszewski, among others, as a cancer growth model,
see for example [8], [9] and [32]. An extension of the differential equation, whose
solution is the Gompertz function, leads to the Fréchet or Weibull extremes value
models, which for appropriate values of the shape parameter can be very heavy or
light tailed, respectively.

As in the Gompertz model, our models predict infinite growth rates for small
tumors. Hence, the tumour free equilibrium is unstable. So, it is verified that the
immune system would never be able to totally suppress even the smallest tumour
cell aggregates, which is a strong inference. The medical implications that come
from there are deep, i.e., the impossibility to completely recover from any type
of tumors whatsoever. On the contrary, it is usual to assume that the immune
system may be able, in some cases, to kill a relatively small aggregate of cancer
cells. Underlying cancer therapies is implicit the assumption that the drug will kill
the vast majority of malignant cells, and the remaining residual cells may, in certain
cases, be eliminated by the immune system. Given this hypothesis, the tumour free
equilibrium should have the possibility to be locally asymptotically stable, and as a
consequence, the growth rates for small tumours should be bounded. This discussion
has been the subject of several studies, see for example [18] and references therein.
In future work, we intend to address this limitation in our models.

One of the greatest contributions of this work is the study and discussion of new
growth models, defined by ordinary differential equations, whose particular solu-
tions are extreme value distributions of Weibull and Fréchet type. Some authors
have observed that the major limitation of Verhulst and Gompertz models was the
inflexibility of the inflection point, which leads to consider the number of individ-
uals or cells, when the growth rate is maximum, always constant, see for example
[27]. The models of Weibull and Fréchet type under investigation have the great
advantage of consider that the number of individuals or cells, when the growth rate
is maximum, can be variable. The inflection points associated to these models con-
verge to a fix number in the Gompertz model. We remark that, these models lead
to a wide diversity of dynamics and its retardation factors are of polynomial type.
The dynamical study of these growth laws depends on two parameters: the intrinsic
growth rate of the number of individuals or cells and the growth-retardation factor.

In previous studies, Aleixo et al [1], [2] and [3], presented a new dynamical
approach to study population growth models, proportional to Beta(p, 2) densities,
based on natural extensions of the logistic Verhuslt model. In the present work, we
investigate a family of probability density functions tied to the classical beta family,
designated by Beta∗(p, q). These density functions are proportional to the right
hand side of the growth models under study. Some of these densities are generalized
Pareto, that span the possible regular variation of tails. More specifically, we extend
the investigation to other extreme stable models, namely Weibull’s and Fréchet’s
types in the General Extreme Value (GEV) model.

The layout of this paper is as follows. In Sec.2, we present some preliminar-
ies notions and results on Beta∗(p, q) probability density functions and Gompertz
growth models. Sec.3 is devoted to the study and investigation of Weibull and
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Fréchet growth type models, defined as ordinary differential equations. In a prob-
abilistic approach, made in Sec.4, we prove that these models are powers of a mix-
ture of betas densities. Our more versatile family of models inherits and amplifies
the interplay between Malthusian growth term and retroactive term of the logistic
parabola, which results in an interesting heavy and light tail equilibrium result. The
difference equations correspondent to the Weibull and Fréchet growth models are
interpreted as non-linear coupling of probabilities, which determine Frechetzian and
Weibullzian dynamics. Then, in Sec.5, we consider dynamical systems defined as
a family of unimodal maps proportional to Beta∗(2, q) densities, with q > 1. The
complex dynamical behaviour of these maps is developed and investigated using
iteration theory and symbolic dynamics. This dynamical analysis is characterized
on a parameter space, which is split into different regions, according to the chaotic
behaviour of the models, in terms of topological entropy. This characterization re-
flects the natural history of the malignant tumour. At last, we discuss our numerical
results and provide some relevant conclusions.

2. Preliminaries. In this section, we introduce some notions and basic results on
probability density functions and the correspondent growth models. A particular
attention is given to the Gompertz growth model.

Observing that the logistic parabola

fr,2,2(x) = r x (1− x) (1)

is proportional to the Beta(2, 2) density, where x ∈ [0, 1] and r > 0 is the Malthu-
sian parameter, Aleixo et al, [1], [2] and [3], investigated the complex dynamical
behaviour of some models of the type

fr,p,q(x) = r xp−1 (1− x)q−1

which are proportional to Beta(p, q) densities1, with x ∈ [0, 1] and p, q > 1
shape parameters. The dynamics of these probabilistic models were studied in the
parameter space, in terms of topological entropy. In particular case of q = 2, these
models are typically used to study populations of whales and forest fires. The
parameter p measures the difficulty of the mating process. In forest fire models it
expresses the number of burning trees necessary to set fire to a green tree, [5]. Note
that, the equation introduced by Blumberg, [4], which is called as hyperlogistic law,
its right hand side is proportional to Beta(p, q) densities. The dynamical analysis
of the growth models related to Blumberg’s equation is presented in [23].

In Pestana et al, [21], is considered an extension of the beta function and of the
beta densities to develop a general approach of Verhulst growth model, leading to
the Gompertz function. Observe that,

− lnx =

∞∑
k=1

(1− x)k

k
(2)

when x→ 0, so the Euler’s Beta function

B(p, q) =

∫ 1

0

xp−1 (1− x)q−1 dx

1If X is a random variable with Beta(p, q) distribution, denoted by X _ Beta(p, q), then the

corresponding probability density function is hp,q(x) = 1
B(p,q)

xp−1 (1 − x)q−1I(0,1), p, q > 0,

where B(p, q) is the Euler’s beta function.
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may be viewed as a first order approximation of a non-trivial extension of

B∗(p, q) =

∫ 1

0

xp−1 (− lnx)q−1 dx.

The main purpose of this work is to study a new family of probability density
functions, which for certain values of the parameters includes the Gompertz model
and models of Weibull and Fréchet type. This claim is attained using the first order
approximation of the function − lnx on the Beta(p, q) probability density function
hp,q(x), as introduced in [21]. A new probabilistic model designated by Beta∗(p, q),
whose probability density function, denoted by h∗p,q(x), is defined by

h∗p,q(x) =
1

B∗(p, q)
xp−1 (− lnx)q−1 I(0,1) (3)

with p, q > 0, 1
B∗(p,q) = pq

Γ(q) , where Γ(q) =

∫ +∞

0

xq−1e−xdx is the gamma func-

tion. Remark that, the function B∗(p, q), defined above, plays a similar role to
the of Euler’s Beta function in the probability density function of the usual Beta
distribution.

Note that, the right hand side of the Tsoularis-Wallace model, defined in [27],
is proportional to the Beta∗(p, q) densities. It is also to emphasize that, the right
hand side of the hyper-Gompertz law proposed by Turner et al in [28], as a limit
case of a general class of three-parameters power-law models, which includes the
so called hyper-logistic law, is proportional to the Beta∗(2, q) densities. Also, the
right hand side of the generalized Gompertz model, suggested by Marus̃ić et al in
[14], is proportional to the Beta∗(p, 2) densities. In [13] and [19], readers can find
many more details, approaches and references.

In particular, the probabilistic model described by Beta∗(2, 2) density

h∗2,2(x) = 4 x (− lnx) I(0,1) (4)

is proportional to the normalized Gompertz derivative

dfN (t)

dt
= b fN (t) (− ln fN (t)) , with b > 0. (5)

The interest of the Beta∗(2, 2) model lies in the construction of an extension of
the Verhulst model. This show that, stable laws for maxima provide a natural
framework to study growth when some external behavior is expected, as in the
case of cancer growth. A particular solution of the differential equation (5) is the
normalized Gompertz function given by

fN (t) = e−e
−bt

(6)

which represents a normalized number of individuals or cells at time t (t is a dimen-
sionless variable given in some specific units). This function defines the Gompertzian
distribution, for t ∈ R, which has a sigmoid curve representation, see Fig.1. From
an initial population size fN (t0), at an initial time t0, growth models are used to
predict the size fN (t) of the population at an arbitrary time t > t0.

The interpretation of the graphic of Eq.(6) was made by Laird, in order to com-
pare dynamics of tumour growth in several host organisms. In this context, the
growth data for all analyzed malignant tumours have been overlapped after adjust-
ment of the units on the two axes, with the inflection point of the Gompertz curve
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as the point of reference, [9]. Note that, the number of cells at the inflexion point
of the Gompertz sigmoid curve

fN (0) = e−1 = Ninf

corresponds to the number of cells when the growth rate is maximum. So, the
inflexion point for the Eq.(6) is fixed for any parameter b > 0, see Fig.1.

The differential equation (5) suggests that at least two different dynamic pro-
cesses states dynamics of tumour growth. The analysis of this equation confirms
that the coupling of the probabilities has a complex and non-linear algebraic form,
see Sec.4.

In general, the differential equation

df(t)

dt
= a b e−bt f(t) (7)

usually designated by derivative of the Gompertz function, admits as a solution the
sigmoid Gompertz function, given by

f(t) = ea(1−e−bt)

in which f (t) is the number of tumour cells or their weight at time t, a and b are
experimental coefficients determining the slope of the curve. These coefficients can
also be interpreted as a = γ0

β and b = β, where γ0 is the initial growth rate in bio-

logical scale or proliferation rate and β is the retardation factor, [17]. This function
can represent the growth curve for neuron-like differentiating cells or malignant tu-
mours, [29]. The derivative of the Gompertz function, given by Eq.(7), reflects the
speed of tumour growth. As a particular case, when the retardation factor tends to
zero, the Gompertz function is the exponential growth model, [8], [29] and [30].

Note that, considering the normalized Gompertz solution of Eq.(5)

fN (t) = fN (t0) e−e
−bt
⇔ e−bt = − ln

fN (t)

fN (t0)

replacing in Eq.(7) we obtain the normalized Gompertz differential equation

dfN (t)

dt
= a b fN (t)

(
− ln

fN (t)

fN (t0)

)
(8)

which will allow to deduce the corresponding difference equation in Sec.4.

3. Gompertz growth model and extensions. The logistic parabola Eq.(1) can
be transformed to the algebraic form of a differential equation, if the time t is a
continuous entity, given by

dfN (t)

dt
= b fN (t) (1− fN (t)) .

This equation produces a symmetric bell-shaped curve. Several works were devel-
oped in order to study more complex models which exhibit asymmetry, namely
introducing power exponents in the logistic equation, see for example [1] and [3],
obtaining

dfN (t)

dt
= r fN (t)p−1 (1− fN (t))

q−1
, with p, q > 1

where r is the Malthusian parameter, p and q are shape parameters. Note that, we
consider the shape parameters p, q > 1, because for 0 < p, q ≤ 1 the models under
study cannot be studied as unimodal maps, see Sec.5. Taking into account the
series expansion given by Eq.(2), the differential equation (5), which represents the
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normalized Gompertz derivative, is generalized by introducing power exponents, as
follows

dfN (t)

dt
= b fN (t)p−1 (− ln fN (t))

q−1
, with p, q > 1 (9)

leading to more complex models, with another kind of skewness. The parameter
b is proportional to the retardation factor and is an experimental coefficient that
determines the slope of the curve. We remark that, the normalized number of
individuals or cells at time t, fN (t), given by Eq.(6), verifies 0 < fN (t) ≤ 1, hence
the Eq.(9) does not include complex numbers.

In particular, if p = q = 2 in Eq.(9) then the normalized Gompertz derivative
Eq.(5) is obtained. Considering the parameters p = 2 and 1 < q < 2, the differential
equation (9) models growths governed by Weibull distribution. On the other hand,
if p = 2 and q > 2 then the differential equation (9) leads to Frechetzian growths. In
the next subsections, growth models governed by Weibull and Fréchet distributions
are studied.

3.1. Models of Weibull type. The expression of the normalized differential equa-
tion, that defines growth models of Weibull type, is given by

dfN (t)

dt
= c fN (t) (− ln fN (t))

1− 1
α , with 0 <

1

α
< 1. (10)

This model has light left tail and finite right endpoint, see Fig.3(a). Attending to
an adequate variable change, this ordinary differential equation has a particular real
solution, for c = 1,

fN (t) = e−(−t)α , with t ∈ R.
Considering a restriction of this particular solution for t ∈ ]−∞, 0[ and stating that
fN (t) = 1, for t ≥ 0, becomes defined a Weibull−α extreme value distribution, [20],
i.e.,

fN (t) =

{
e−(−t)α if t < 0
1 if t ≥ 0

. (11)

The graphics of this family of functions, which we designated by normalized Weibull
functions, are sigmoidal curves, with 0 < fN (t) ≤ 1, see Fig.1. In this work, the
generalization parameter α is related to the growth-retardation phenomena. Of
course the physical meaning of parameters has to be adapted to the one assumed
by fN (t). The difference equation counterpart generates Weibullzian dynamics, see
Subsec.4.2.

Note that, the number of cells at the inflexion point of the Weibull sigmoid curve

fN

(
−
(
α− 1

α

) 1
α

)
= e−(1− 1

α ) = Ninf (12)

that corresponds to the number of cells when the growth rate is maximum, satisfies

0 < N0 < e−1 < Ninf < 1 (13)

where N0 = fN (t0) is the number of cells at the initial time t0. Indeed, the second
inequality is necessary to achieve the number of cells at the inflexion point. If 1

α → 0

then Ninf → e−1, i.e., for large values of α is attained the number of cells when
the growth rate is maximum for the Gompertz function. On the other hand, if
1
α → 1 then Ninf → 1, i.e., when α → 1 the number of cells when the growth rate
is maximum tends to the normalized carrying capacity, see Fig.1.
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Figure 1. Normalized sigmoidal curves: Weibull (left), Gompertz

(center) and Fréchet (right), with α = b = 1.3, 1.5, 1.9, 2, 4, 6. At the

center, we have the sigmoid representation of the Eq.(6), the normalized

Gompertz curves, where the inflexion point is fixed for any parameter

b. At the left, the sigmoid normalized Weibull curves of the Eq.(11)

are presented, where the number of cells at the inflexion point verify

Ninf → e−1, when 1
α
→ 0, see Eqs.(12) and (13). At the right, we have

the normalized Fréchet curves of the Eq.(19), where the number of cells

at the inflexion point verify Ninf → e−1, when 1
α
→ 0, see Eqs.(20) and

(21).

The normalized Weibull function Eq.(11) satisfies the Banach fixed point theorem
(in Banach space of real numbers), because the normalized Weibull derivative is a
contraction mapping, i.e.,

f ′N (t) = α(−t)α−1 e−(−t)α ≤ fN (t) ≤ 1 (14)

with α > 1 and t → +∞. This property confers a fractal structure to the curve
generated by Eq.(11).

In a general way, the Weibull function is defined by the expression

f(t) = ea(1−(−t)α) (15)

which is a particular solution of the differential equation

df(t)

dt
= a α(−t)α−1f(t). (16)

Note that, considering the normalized Weibull solution

fN (t) = fN (t0) e−(−t)α ⇔ (−t)α−1 =

(
− ln

fN (t)

fN (t0)

)α−1
α

and replacing in the differential equation (16), we obtain

dfN (t)

dt
= a α fN (t)

(
− ln

fN (t)

fN (t0)

)1− 1
α

. (17)
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3.2. Models of Fréchet type. In this work are also studied growth models of
Fréchet type, which are defined by the normalized differential equation

dfN (t)

dt
= c fN (t) (− ln fN (t))

1+ 1
α , with

1

α
> 0. (18)

Laws in the extreme value Fréchet domain of attraction for maxima must have
infinite right endpoint, and can be severely heavy-tailed. Its right tail is heavier
than in the standard gaussian, which is in the Gumbel domain of attraction, see
Fig.3(c). The difference equation associated to Eq.(18) generates the Frechetzian
dynamics, see Subsec.4.2. A particular real solution of Eq.(18), for c = 1, takes the
form

fN (t) = e−t
−α
, with t ∈ R.

Considering now a restriction of this particular solution for t ∈ ]0,+∞[, and claiming
that fN (t) = 0, for t ≤ 0, it results in the Fréchet−α extreme value distribution,
[20], i.e.,

fN (t) =

{
0 if t ≤ 0

e−t
−α

if t > 0
(19)

which we designated by normalized Fréchet function, with 0 < fN (t) ≤ 1, see Fig.1.
In this case, the number of cells at the inflexion point of the Fréchet sigmoid

curve

fN

(
−
(
− α

1 + α

) 1
α

)
= e−(1+ 1

α ) = Ninf (20)

satisfies

0 < N0 < Ninf < e−1. (21)

If Ninf < N0 then the inflexion point is near the origin and the number of cells must
be considered at the initial time N0, ensuring that the Ninf is never attainable, [27].
This extreme behavior is reflected in the existence of the spontaneous extinction
or the regression tumour region, that ensure the possibility of immune surveillance,
see Subsec.5.1. When 1

α → 0, the upper bound of the normalized number of cells
growth corresponds to the number of cells when the growth rate is maximum for
the Gompertz function, see Fig.1.

The Banach fixed point theorem is satisfied by the normalized Fréchet function
(19), as follows

f ′N (t) = αt−(α+1)e−t
−α
≤ fN (t) ≤ 1 (22)

with α > 0 and t → +∞. The mapping with these features, given by Eq.(19),
generates a fractal curve. Note that, the derivative reflects the speed of the tumour
growth.

In general, the differential equation of the first order

df(t)

dt
= a α t−(α+1) f(t) (23)

has the particular solution

f(t) = ea(1−t−α) (24)

which is designated by Fréchet function. Note that, the parameter α in Eqs.(15)
and (24) plays the role of the retardation factor. While in the Gompertz model,
proposed by Laird in [8] and [9], the retardation factor is of exponential type, in
the Weibull and Fréchet models, investigated in this work, this retardation factor
is of polynomial type.
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Attending to that, the normalized Fréchet solution

fN (t) = fN (t0) e−t
−α
⇔ t−(α+1) =

(
− ln

fN (t)

fN (t0)

)α+1
α

and, replacing in Eq.(23), we obtain the normalized Fréchet differential equation

dfN (t)

dt
= a αfN (t)

(
− ln

fN (t)

fN (t0)

)1+ 1
α

. (25)

The feature of the Eqs.(16) and (23) suggests that at least two different dynamic
processes determine dynamics of the Weibullzian and Frechetzian growths, where
one of the processes is determined by an approximation of the exponential function.
Observing Fig.1, it can be evidenced that the sigmoid Weibullzian and Frechetzian
curves generated by Eqs.(11) and (19), respectively, can be divided into three seg-
ments, as Laird defined for the Gompertz function. The first segment is defined
until the inflexion point. In this part, the curve is concave upwards, and represents
the dynamics of the initial stages of tumour development. The second one, is defined
from the inflexion point until the later time point, where the growth rate stabilizes,
and reflects dynamics of tumour growth until the death of the tumour-host system.
The last segment describe the dynamics of the system if the host has continued to
live, [8], [9] and [29].
Remark. It is important to emphasize that, the length of these segments are
different according to the type of the model and to the respective parameters values,
stating that the dynamics of tumour progression is different in each interval of the
natural history of malignant tumour, see Fig.1:
• The Weibull type models describe tumour growths in which the initial growth

phase is very long. After the initial growth phase, the period of time of the
tumor development until dead is very short.

• The Fréchet type models represent tumour growths in which the initial growth
phase is short. The period of the tumour development to the death is highly
variable, i.e., the tumor growth can stabilize near reaching the carrying ca-
pacity or can take a long time to reach this value.

Generally, as bigger the value of the parameter α, smaller is the time for the
sigmoid growth curve to reach the carrying capacity. Therefore, the models pro-
posed could be considered as having the basic ingredients to model more complex
and irregular types of growths of tumourigenesis of several human and animal ma-
lignancies. In Subsec.5.1 is presented a more detailed and complex approach of the
tumour growth, using the theory of dynamical systems.

4. Probabilistic approach. In a previous work [21] it was shown that the
Beta∗(2, 2) probability density function h∗2,2(x), given by Eq.(4), is a convex mixture
of the Beta(2, k + 1) densities, with weights wk, i.e.,

h∗2,2(x) =

∞∑
k=1

wk h2,k+1(x) =

∞∑
k=1

4

k (k + 1) (k + 2)
h2,k+1(x)
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where

∞∑
k=1

wk = 1. On the other hand, it was proved that each h2,k+1(x) is a signed

mixture of Beta(j + 2, 1) densities with weights w∗j , i.e.,

h2,k+1(x) =

k∑
j=0

w∗j hj+2,1(x) =

k∑
j=0

(−1)j
(
k
j

)
B (2, k + 1) (j + 2)

hj+2,1(x)

where

k∑
j=0

w∗j = 1. Therefore, the Beta∗(2, 2) probability density function h∗2,2(x)

is a signed mixture of Beta(j + 2, 1) densities, with weights

w∗∗kj =
4 (−1)j

(
k
j

)
k (j + 2)

, where

∞∑
k=1

k∑
j=0

w∗∗kj = 1.

So, theBeta∗(2, 2) probability density function, proportional to Gompertz growth
model, is a signed mixture of power laws with natural exponents. In this growth
law, each positive even component that contributes to the growth rate is moderated
by the retroaction of the next negative odd term.

Furthermore, in several works it was suggested that at least two different dynam-
ics processes determine dynamics of tumour growth, [8], [29] and [30]. In particular,
from Eq.(8) and attending to Euler’s algorithm, it is usual to consider the model of
growth (when there is a limit to growth) given by the difference equation

pn+1 = r pn (− ln pn) + pn (26)

where r = a b ∆t, with ∆t → 0, pn = fN (tn)
fN (t0) , with initial value p0, and time t

is measured in time-steps, n ∈ N. This equation is also known as the iterative
normalized Gompertz function. In fact, the Gompertzian distribution represents a
coupling of probabilities, [29], [31] and [30]. We note that, as stated by Waliszewski
and Konarski in [30], the Eq.(26) generates a Feigenbaum-like diagram, see Fig.2(b).
However, to be observed a chaotic behavior in this model is necessary to consider
2.5357 < r < 2.7184, see numerical results of Table 1.

The number of cells in the (n+1)th generation is represented by pn+1 and pn is a
number (fraction or probability) of cells undergoing divisions in the nth generation.
The expression 1−pn is interpreted as a first order linear discrete approximation of
− ln pn, meaning the approximate number (fraction or probability) of cells among
the population of the nth generation which do not divide. Thus, Eq.(26) has a
similar algebraic structure to the logistic difference equation. In the nth step itera-
tion, this difference equation describe the co-existence of two antagonistic processes
or events, one with probability pn and the other with “approximate” probability
1− pn.

In next subsections, we extend the above probabilistic approaches to the Weibull
and Fréchet growth models type.

4.1. Beta∗(2, q) models as a power of betas mixture. In this context, it is
proved that the Beta∗(2, q) probability density function, with q > 1, proportional
to the hyper-logistic growth law, is a power of mixture of beta densities. Considering
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Eqs.(3) and (2), we can write

h∗2,q(x) =
1

B∗(2, q)
x (− lnx)q−1 =

2q

Γ(q)
x

( ∞∑
k=1

(1− x)k

k

)q−1

=

( ∞∑
k=1

(
2q

Γ(q)

) 1
q−1 1

k
x

1
q−1 (1− x)k

)q−1

=

( ∞∑
k=1

w̃k h q
q−1 ,k+1(x)

)q−1

with weights

w̃k =

(
2q

Γ(q)

) 1
q−1 B

(
q
q−1 , k + 1

)
k

, where

∞∑
k=1

w̃k = 1.

Thus, the Beta∗(2, q) densities h∗2,q(x) are described as powers of order q − 1 of

mixture of Beta
(

q
q−1 , k + 1

)
densities h q

q−1 ,k+1(x), with q > 1 and k ∈ N. On

other hand, these Beta
(

q
q−1 , k + 1

)
densities can be rewritten as follows,

h q
q−1 ,k+1(x) =

1

B( q
q−1 , k + 1)

x
1
q−1 (1− x)k =

k∑
j=0

w̃∗j hj+ q
q−1 ,1

(x)

with weights

w̃∗j =
(−1)j

(
k
j

)
B
(
j + q

q−1 , 1
)

B
(

q
q−1 , k + 1

) , where

k∑
j=0

w̃∗j = 1.

Therefore, the Weibull and Fréchet growth models type are powers of order q−1

of mixture of Beta
(
j + q

q−1 , 1
)

densities hj+ q
q−1 ,1

(x), i.e.,

h∗2,q(x) =

 ∞∑
k=1

k∑
j=0

(−1)j
(
k
j

)
k

(
2q

Γ(q)

) 1
q−1

B

(
j +

q

q − 1
, 1

)
hj+ q

q−1 ,1
(x)

q−1

.

The above results allow us to conclude that, in the models under study each
positive even component, that propels the growth, is moderated by the retroaction
of the next negative odd term. These power laws include regularly varying tailed
models but also asymptotic extreme value models. These phenomena occur in
malignant tumor cell populations.

4.2. Non-linear coupling of probabilities determines Weibullzian and
Frechetzian dynamics. In a first approach, simple coupling of probabilities for
two dynamic processes opposite to each other is not sufficient to generate Gom-
pertzian dynamics. It is necessary to consider a non-linear coupling of these an-
tagonistic processes. The typical asymmetric plot of the Gompertz derivative (7)
emerges if more complex coupling takes place. The models of Weibull and Fréchet
type described above, given by the Eqs.(10) and (18), respectively, exhibit behaviors
whose asymmetry is more pronounced, see Figs.1 and 3.
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Figure 2. Bifurcation diagrams generated by the normalized itera-
tive equations: Weibullzian dynamics (Eqs.(17) and (27), with α = 2),
Gompertzian dynamics (Eqs.(8) and (26)) and Frechetzian dynamics
(Eqs.(25) and (28), with α = 1

3
). Consecutive bifurcations lead that

systems towards deterministic chaos. In the models of Gompertz and
Weibull types, chaotic behavior is only observable for high values of r.
Furthermore, in the models of Fréchet type it is possible to identify
chaotic behavior for small values of r, see Fig.4.

The discretization of the Eq.(17) is obtained, applying Euler’s algorithm, as
follows

fN (tn+1)− fN (tn)

∆t
= aαfN (tn)

(
− ln

fN (tn)

fN (t0)

)1− 1
α

⇔ fN (tn+1) = r fN (tn)

(
− ln

fN (tn)

fN (t0)

)1− 1
α

+ fN (tn)

⇔ pn+1 = r pn

(
1

r
+ (− ln pn)

1− 1
α

)
(27)

with r = a α ∆t, ∆t → 0, pn = fN (tn)
fN (t0) and 0 < 1

α < 1. This difference equation

is designated by iterative normalized Weibull equation. The quantities involved in
this equation are analogous to the Eq.(26). The Eq.(27) describes a non-linear cou-
pling of probabilities, between two “quasi” antagonistic processes, that determine
the Weibullzian dynamics. The algebraic form of the Eq.(27) indicates that the
coupling of the probability pn of an event and the “approximate” probability 1−pn
of a “quasi” antievent is a necessary condition for the emergence of the sigmoid
Weibullzian dynamics.

Note that, this coupling of probabilities is much more complex than that ob-
served in the case of the iterative normalized Gompertz function. Analogously to
the iterative normalized Gompertz model, the iterative normalized Weibull equa-
tion generates Feigenbaum-like diagrams, see Fig.2(a). Also in this case, as in the
Gompertz model, to be observable a chaotic behavior is necessary to consider high
values of r, see numerical results of Table 1. The Weibull equation (27) reflects
the equilibrium between regular and chaotic states in the system with Weibullzian
dynamics.

In a similar way, from the Eq.(25), and using Euler’s algorithm, results the
iterative normalized Fréchet equation

pn+1 = r pn

(
1

r
+ (− ln pn)

1+ 1
α

)
(28)
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with r = a α ∆t, ∆t → 0, pn = fN (tn)
fN (t0) and 1

α > 0. This difference equation

describes the Frechetzian dynamics and represents also a complex non-linear cou-
pling of probabilities. The “quasi” antagonistic events involved in this process have
probabilities pn and 1− pn “approximately”. From the viewpoint of the non-linear
coupling of probabilities, the models of the Fréchet type naturally exhibit chaotic
behavior, for small values of the parameter r, according to the Eq.(28), see Fig.2(c)
and numerical results of Table 1.

Subsequently, the complex dynamical behavior of the Weibullzian and Frechet-
zian dynamics is investigated.

5. Dynamical approach. The dynamical behavior study of the Weibull and
Fréchet models is made using the dynamical systems theory, namely the symbolic
dynamics and the iteration theory of unimodal maps. This study is completely
characterized by the symbolic sequences associated to the critical point itinerary,
see appendix for details. A remarkable contribution lies in the fact that the critical
point be coincident with the number of cells when the growth rate is maximum.

In the sequence of the probability density function (3) and the differential equa-
tion (9), new dynamical systems are established. Considering the parameters values
p = 2 and q > 1, these dynamical systems describe growths governed by Weibull
(1 < q < 2), Gompertz (q = 2) and Fréchet (q > 2) distributions.

Thus, the family of maps proportional to the Beta∗(2, q) densities are defined by
gλ,q : ]0, 1]→ [0, 1], such that

gλ,q(x) = λ x (− lnx)
q−1

(29)

where x = fN (t) is the normalized number of tumour cells or tumour size, λ > 0 is
an intrinsic growth rate of the number of cells (individual contribution), that sum-
marizes mutual inhibitions between cells and the competition for nutrients, and it
is sometimes viewed as a retardation factor, and q > 1 is a shape parameter, that is
sometimes called the growth-retardation factor. We request claim particular atten-
tion to the diversity and complexity of this family of models, which is exemplified
in Fig.3. For each type of model, the several intrinsic growth rates were chosen in
order to illustrate the growth rates of the various regions studied in this section.

The maps (29) is a family of unimodal maps, satisfying the following conditions:
• gλ,q(0+) = gλ,q(1) = 0;
• gλ,q ∈ C3 (] 0, 1 [);
• g′λ,q(x) 6= 0,∀x ∈ ]0, 1[\{c}, with c = Ninf = e1−q the critical point of gλ,q;

• g′λ,q(c) = 0 and g′′λ,q(c) < 0;

• the Schwarz derivative of gλ,q(x) is given by

S (gλ,q(x)) =
g′′′λ,q(x)

g′λ,q(x)
− 3

2

(
g′′λ,q(x)

g′λ,q(x)

)2

= −
(q − 1)

(
q
(
q2 − 3q + 2

)
+ 4q(q − 2) ln(x)− 5(q − 1) ln2(x)− 2 ln3(x)

)
2x2 ln2(x) (q − 1 + ln(x))2

.

It can be seen that S (gλ,q(x)) < 0, for x ∈ ]0, 1[\{c}. This condition ensures a
“good” dynamic behavior of the models: continuity and monotonicity of topological
entropy, order in the succession of bifurcations, the existence of an upper limit to
the number of stable orbits and the non-existence of wandering intervals, [15] and
[26]. For some values at the beginning or at the end of the interval ]0, 1[, it is verified
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Figure 3. Growth rates of the number of tumour cells or tumour
size defined by gλ,q: Weibull for q = 1.5 and several intrinsic growth
rates λ = 0.5, 1, 1.4, 1.8, 2.1, 2.25, 2.33; Gompertz for q = 2 and
λ = 0.3, 0.7, 1.0, 1.8, 2.22, 2.54, 2.72; Fréchet for q = 5 and λ =
0.004, 0.03, 0.05, 0.094, 0.161, 0.213. The several intrinsic growth rates
were chosen in order to illustrate growth rates of the various regions
studied in the Subsec.5.1, see also Fig.4

that S (gλ,q(x)) ≥ 0. This failure in the conditions required for gλ,q be a unimodal
map does not disturb the dynamical behavior. Note that, S (gλ,q(c)) = −∞ and
the points x = 0 and x = 1 are repulsive.

5.1. Regression, stability, bifurcation, chaos and terminus. This subsection
is devoted to the study of the complex dynamical behavior of the Weibull and
Fréchet models. The complexity of these models, described by the maps gλ,q, defined
in (29), is displayed as a function of the parameters λ and q. Or, equivalently, the
dynamical behavior is analyzed according to the intrinsic growth rate of the number
of cells and the shape parameter q related with the growth-retardation phenomena.
This complexity is measured in terms of topological entropy, see appendix for details.
The parameter space is split into different regions, according to the chaotic behavior
of the models, and reflects the natural history of the malignant tumour, see Fig.4.
Similar studies were presented for the population growth logistic model and some
types of coupling, see for example [11] and [12]. The dynamics of human hosts and
tumours using bifurcation techniques and studying local stability can be seen, for
example, in [6].

5.1.1. Regression or spontaneous extinction region. The spontaneous extinction or
tumour regression region is characterized by growths models of very small tumours,
possibly unable to outwit immune surveillance. In this region, the iterates of the
maps gλ,q are always attracted to a fixed point x0 sufficiently close to zero, with
q > 1 and

0 < λ < λ1(q) = (− ln (x0))
1−q

. (30)

In this context, the concept of the fixed point x0 “sufficiently close to zero” must be
related to the specificity of the tumours growths investigation and clinical therapy.
Thus, the spontaneous extinction region illustrated in Fig.4 is upper bounded by
the curve λ1(q), considering x0 = 10−7. The symbolic sequences associated to the
critical point orbits of these maps are of the type CL∞, an aperiodic orbit, and its
topological entropy is null, [10] and [16], see appendix.
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Figure 4. Bifurcation diagram for Eq.(29): plot of intrinsic growth
rate λ versus growth-retardation phenomena q. The parameter space
(q, λ) is splited into different regions, according to the dynamical behav-
ior of the models: regression, stability or equilibrium, period doubling,
chaos and terminus. The vertical line q = 2 correspond to the Gom-
pertz model. The curves λi(q), with i = 1, 2, 3, 4, 5, are represented in
ascending order.

Remark. In the Fréchet model (q > 2), if Ninf < N0 then Ninf = e1−q → 0, when
q → +∞. On the other hand, the expression of the fixed points of gλ,q, given by
Eq.(30), goes to zero, when λ → 0+ and q → +∞, with a convergence rate higher
than Ninf = e1−q → 0. This means that, to sufficiently small values of the intrinsic
growth rate, the fixed point of gλ,q is below the critical point of the map. Since,
gλ,q is a unimodal map then the symbolic sequences, corresponding to the orbit of
the critical point, are CL∞. The orbit of the critical point tends to the single fixed
point, which goes to zero. So, we are dealing with a spontaneous extinction. Hence,
the iterates of the growth of tumour cells, when the growth rate is maximum, goes
to zero.

5.1.2. Stability or equilibrium region. In this region, the tumour growth remains
stable and balanced without verifying growth duplications. Globally, the iterates of
any map gλ,q, whose parameters values belong to this region, are always attracted

to the fixed point given by (− lnx)
q−1

= λ−1, with λ > 0. This means that, the
number of tumour cells or the tumour size remains fixed. This region is divided by
a super stable or super attractive curve, defined by

λ2(q) = (q − 1)
1−q
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with q > 1. For λ1(q) < λ < λ2(q), the symbolic sequences associated to the
critical point orbits are of the type CL∞, an aperiodic orbit. On the other hand,
for λ2(q) < λ < λ3(q), the symbolic sequences associated to the critical point
orbits are of the type CR∞, an aperiodic orbit. The curve λ3(q), where the period
doubling starts, is implicitly given by the equation

λ2
(
− ln

(
λe1−q (q − 1)

q−1
))q−1

= (q − 1)
1−q

.

The curve λ3(q), illustrated in Fig.4, is obtained using the values of intrinsic growth
rate λ corresponding to the 2-period symbolic sequences (CR)

∞
. The unimodal

maps gλ,q of this region do not exhibit chaotic behavior, its topological entropy
being null, [10] and [16].

5.1.3. Period doubling region. The period doubling region corresponds to the pa-
rameters values to which the number of tumour cells or the tumour size will evolve
between two values. A cascade of sudden changes provokes the oscillation of the (two
possible) numbers of tumour cells or the tumour size in several limit cycles of period
2n, with n ∈ N. This period-doubling cascade is bounded by λ3(q) < λ < λ4(q).
The geometric representation of the curve λ4(q), in Fig.4, is determinated using
values of intrinsic growth rate λ, corresponding to the first symbolic sequence with
non null topological entropy. In the numerical results presented in Table 1, this
symbolic sequence is

(
CRLR3

)∞
, a 6-periodic orbit, that usually identifies the be-

ginning of chaos. The unimodal maps gλ,q of this region also have null entropy, [10]
and [16].

5.1.4. Chaotic region. In this region, the evolution of the number of tumor cells or
tumor size is a priori unpredictable. This number may increase or decrease, it will
depend on where the chaotic attractor in the phase space is located. The intrinsic
growth rate of the cells number satisfies

λ4(q) < λ < λ5(q) = N−1
inf (q − 1)

1−q

where Ninf = c = e1−q is the number of cells when the growth rate is maxi-
mum. The iterates of the maps gλ,q originate orbits of several types, which already
present chaotic patterns of behavior; so, its topological entropy is positive and the
Sharkovsky order is verified. The value of the topological entropy increases with
the value of the parameter λ, until reaches the maximum value ln 2 (consequence of
the negative Schwartzian derivative), see Table 1, [15] and [16]. The full shift curve
λ5(q), which is a maximum isentropic curve, is the graphic of a monotone function
with an absolute maximum point in q = 2, corresponding to the Gompertz model.

5.1.5. Terminal region. The terminal phase describe the dynamics of the tumour
growth while the host has survival conditions, until the host itself perishes from
the tumour burden. In this region, where the intrinsic growth rate λ > λ5(p), the
tumour growth rate stabilizes. At this stage, the dynamics leads to Cantor sets.

5.2. Numerical results and discussion. In Table 1 are showed the numerical
results that illustrate the application of the iteration theory and the symbolic dy-
namics to Weibull, Gompertz and Fréchet models. It established a topological
order, depending on the growth-retardation factor and on the intrinsic growth rate,
which reflects the several phases of the tumour growth. Analyzing the results, it
was concluded that:
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Table 1: Topological order: intrinsic growth rate (λ) and topological entropy (htop (gλ,q)) for

growth-retardation factor q versus symbolic sequences S(λ) of period k.

k S(λ) q = 1.3 q = 1.5 q = 1.8 q = 2 q = 2.5 q = 3.5 q = 5 htop
2 (CR)∞ 1.8225 2.1063 2.2613 2.2184 1.7986 0.7417 0.0946 0.000
4 (CRLR)∞ 1.8740 2.2064 2.4357 2.4343 2.0674 0.9355 0.1371 0.000
8

(
CRLR3LR

)∞
1.8841 2.2264 2.4710 2.4784 2.1239 0.9786 0.1474 0.000

6
(
CRLR3

)∞
1.8971 2.2519 2.5165 2.5357 2.1979 1.0360 0.1614 0.241

8
(
CRLR5

)∞
1.9034 2.2646 2.5391 2.5642 2.2351 1.0654 0.1688 0.304

7
(
CRLR4

)∞
1.9113 2.2802 2.5673 2.5997 2.2817 1.1027 0.1784 0.382

5
(
CRLR2

)∞
1.9168 2.2911 2.5870 2.6247 2.3146 1.1294 0.1853 0.414

7
(
CRLR2LR

)∞
1.9212 2.3000 2.6030 2.6450 2.3416 1.1514 0.1912 0.442

8
(
CRLR2LR2

)∞
1.9246 2.3067 2.6152 2.6605 2.3622 1.1683 0.1957 0.468

3 (CRL)∞ 1.9273 2.3121 2.6250 2.6730 2.3789 1.1821 0.1994 0.481
6

(
CRL2RL

)∞
1.9280 2.3136 2.6276 2.6763 2.3833 1.1858 0.2004 0.481

8
(
CRL2RLR2

)∞
1.9301 2.3177 2.6352 2.6860 2.3963 1.1966 0.2033 0.499

7
(
CRL2RLR

)∞
1.9318 2.3210 2.6412 2.6936 2.4064 1.2050 0.2056 0.522

8
(
CRL2RLRL

)∞
1.9329 2.3234 2.6454 2.6991 2.4137 1.2111 0.2073 0.539

5
(
CRL2R

)∞
1.9333 2.3241 2.6467 2.7007 2.4159 1.2130 0.2078 0.544

8
(
CRL2R3L

)∞
1.9336 2.3248 2.6480 2.7023 2.4181 1.2141 0.2083 0.547

7
(
CRL2R3

)∞
1.9345 2.3265 2.6511 2.7063 2.4234 1.2192 0.2095 0.562

8
(
CRL2R4

)∞
1.9352 2.3280 2.6538 2.7098 2.4281 1.2232 0.2106 0.574

6
(
CRL2R2

)∞
1.9357 2.3288 2.6553 2.7117 2.4307 1.2253 0.2112 0.584

8
(
CRL2R2LR

)∞
1.9360 2.3294 2.6565 2.7132 2.4327 1.2270 0.2117 0.591

7
(
CRL2R2L

)∞
1.9363 2.3300 2.6576 2.7146 2.4346 1.2287 0.2121 0.601

4
(
CRL2

)∞
1.9365 2.3304 2.6584 2.7155 2.4359 1.2297 0.2124 0.609

∞ CRL∞ 1.9371 2.3316 2.6605 2.7183 2.4395 1.2328 0.2133 ln 2

• Monotonicity of the topological entropy: if the number of cells when the
growth rate is maximum is fixed and the intrinsic growth rate increases, then
the topological entropy is a non-decreasing function in order to the parameter
λ. Thus, the intrinsic growth rate determines the convergence rate to the
normalized carrying capacity (observed in the last column of Table 1).

• Isentropic curves: if the number of cells when the growth rate is maximum
varies then, for each of these values, there is an intrinsic growth rate λ such
that the topological entropy is constant (observed in each row of Table 1).

• If the number of cells when the growth rate is maximal decreases, in each
isentropic curve, then the intrinsic growth rate is a monotonic function with
an absolute maximum point, corresponding to the Gompertz model (observed
in each row of Table 1).

We believe that more results can be derived from the study of the dynamical
systems that describe these models. In particular, the analysis of the bifurcations
structure, based on the configurations of fold and flip bifurcation curves, and the
study of the respective basins.
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Appendix: Symbolic dynamics and topological entropy. Symbolic dynam-
ics is a theory composed by a set of results, methods and techniques, which have
a primordial role in the study of qualitative and quantitative properties of discrete
dynamical systems. The topological complexity of a dynamical system is usually
measured by its topological entropy. This numerical and topological invariant is
associated to the growth rate of the several states of dynamical systems, [10], [15],
[16] and [22].

Consider for each value of the parameter λ, the orbit of the critical point c = Ninf

Oλ(c) =
{
xk : xk = gkλ,q(c), k ∈ N0

}
defined by an iterative process, where xk = gkλ,q(c) = gλ,q(xk−1). Thus, for each
value of the intrinsic growth rate is considered the orbit of the number of cells when
the growth rate is maximum. In order to study the topological properties of these
orbits, we associate to each orbit Oλ(c) a sequence of symbols, corresponding to

the critical point itinerary, denoted by S(λ) = S
(λ)
0 S

(λ)
1 S

(λ)
2 . . . S

(λ)
k . . ., with k ∈ N0,

where S
(λ)
k belongs to the alphabet A = {L,C,R}, with each symbol defined by

S
(λ)
k =


L if gkλ,q(c) < c

C if gkλ,q(c) = c

R if gkλ,q(c) > c
.

Note that, the alphabet A is an ordered set of symbols, corresponding to the
intervals of monotonicity and to the critical point of the map gλ,q. The real line
order induces naturally an order relation in the alphabet A, so L ≺ C ≺ R. The
space of all symbolic sequences of the alphabet A is denoted by AN.

The expansive maps admit Markov partitions, whose existence is implicit in the
works of Bowen and Ruelle. In this study, we consider the existence of Markov
partitions, which are characterized by the orbit of the critical point of the map gλ,q,
[22]. Consider the set of points corresponding to the k-periodic orbit or kneading

sequence of the critical point S(λ) = (CS
(λ)
1 S

(λ)
2 . . . S

(λ)
k−1)∞ ∈ AN. This set of points

determines the Markov partition of the interval I =
[
g2
λ,q(c), gλ,q(c)

]
in a finite

number of subintervals, denoted by PI = {I1, I2, . . . , Ik−1}. The dynamics of the
map gλ,q is completely characterized by the symbolic sequence S(λ) associated to the
critical point itinerary. The map gλ,q and the Markov partition associated induce a
subshift of finite type whose Markov transition matrix A = [aij ], (k − 1)× (k − 1),
is defined by

aij =

{
1, if int (Ij) ⊆ gλ,q(int (Ii))
0, otherwise

.

Usually, the subshift is denoted by (
∑
A, σ), where σ is a shift map in

∑N
k−1 defined

by σ (S1S2 . . .) = S2S3 . . ., with
∑
k−1 = {1, . . . , k − 1} corresponding to the k − 1

subshifts states.
The topological entropy of the map gλ,q, in the phases space, is defined in the

associated symbolic space as the asymptotic growth rate of the admissible words
(finite symbolic sequences) in relation to the length of the words, i.e.,

htop (gλ,q) = lim
n→∞

lnN (n)

n

where N (n) is the number of admissible words of length n. For a subshift of finite
type, unidirectional or bidirectional, described by the Markov transition matrix A,
the topological entropy is given by htop (σ) = ln (λA), where λA is the spectral
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radius of the transition matrix A. For a more detailed approach about subshifts
of finite type and the Perron-Frobenius Theorem for Markov transition matrix, see
[10], [15], [22] and references therein.
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[13] A. S. Martinez, R. S. González and C. A. S. Terçariol, Continuous growth models in terms

of generalized logarithm and exponential functions, Physica A, 387 (2008), 5679–5687.
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