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Abstract. We consider global asymptotic properties for the SIR and SEIR

age structured models for infectious diseases where the susceptibility depends
on the age. Using the direct Lyapunov method with Volterra type Lyapunov

functions, we establish conditions for the global stability of a unique endemic

steady state and the infection-free steady state.

1. Introduction. The susceptibility of individuals varies significantly during their
life time. These variations are firstly due to the development of the immune system.
For a first few weeks or months of its life, a newly born is receiving maternal
antibodies with mother milk. In contrast, with the age the immune system can
degrade making an elderly individual more susceptible to infections. The individual
level of susceptibility can also change following changes in the life style. Thus, the
probability of being infected directly depends on the number of everyday contacts.
Contacts of a newborn are usually limited to the family, medical personal and care
givers. As a child grows, the number of contacts increases as well, and it explodes
when a child enters a school. During the school and college years, the number
of contacts remains large and approximately constant, and then it may decline
depending on an occupation and a social role. For an elderly or retired person, the
number of contacts may considerably drop to a rather limited group, which includes
family and care givers. The age-varying susceptibility is particularly apparent for
sexually transmitted diseases. For these infections, the probability of being infected
directly depends on the number of sexual contacts, and hence on the sexual life
style, which significantly varies with age.
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The susceptibility of individuals also varies throughout their life due to immunisa-
tion. Immediately after successful and completed vaccination course, the individual
susceptibility to a particular infection drops to virtually zero and remains at or
near zero level for very long (for most cases, during whole life). However, for some
infections the immunity acquired via vaccination can wane after some time leading
to a rise in the susceptibility. Pertussis is probably the most apparent example [13];
however even for measles, where the vaccine is reliable, there are cases of immunity
failure [13, 6]. This makes the models with age dependent susceptibility particular
relevant for vaccination scheduler planning [32].

In the framework of a compartmental model, the progression through a succession
of stages with different susceptibility can be modelled by a chain of susceptible
compartments,

−→ S1 −→ S2 −→ · · · −→ Si −→ · · · −→ Sn,

which are characterized by different susceptibility. The infectious individuals can be
assumed either identical, or progressing though the same number of infectious com-
partments. The simplest examples of such models are MSIR and MSEIR models
[6], where there are two susceptible compartments: a passively immune compart-
ment M which includes the newly born infants, and the susceptible compartment
S. A difficulty that is typical for this kind of models is their size, which makes their
application and analysis difficult. Another approach is applying an age-structured
model with the age dependent susceptibility. The latter type of models is considered
in this notice.

The models with age-dependent susceptibility mirror in a certain sense the models
with disease progression, where there is a single susceptible compartment whereas
the infectious are assumed to progress through a succession of stages. The global
asymptotic stability for the disease progression models with distributed infectiv-
ity was recently proved by C.C. McCluskey and collaborators [25, 23, 27]; the
global properties of compartmental disease progression models were also estab-
lished [4, 5, 29]. These proofs are based on the Volterra Lyapunov functions in
the form V (x) = x − a lnx/a. This function has been discovered by Volterra
himself [33, p.15] and proved to be extremely successful for a broad variety of
problems that arise in mathematical biology, including systems with an arbitrary
number of subpopulations [1, 2, 14], systems with distributed subpopulations and
delays [12, 20, 21, 26, 8, 10, 11], and systems with nonlinear functional responses
[7, 9, 3, 15, 17, 16, 18, 28] (see also [30] for contemporary survey). In this notes we
show that this type of Lyapunov functions can be successfully applied for analysis
of the age structured models as well.

2. Models with age-dependent susceptibility. We assume that the distribu-
tion of the susceptibles with respect to age a at time t is s(t, a), that the suscep-
tibility depends on the age a and this dependence is given by β(a), and that the
infectious population is homogeneous and is denoted by I(t). Then an SIR model
with the age-dependent susceptibility can be described by the following equations:

s(t, 0) = Λ,

∂s(t, a)

∂t
+
∂s(t, a)

∂a
= −m(a)s(t, a)− β(a)I(t)s(t, a),

dI(t)

dt
=

+∞∫
0

β(a)I(t)s(t, a)da− δI(t).

(1)
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Here, Λ is the constant recruitment rate, m(a) is the age-dependent mortality rate of
the susceptibles, and 1/δ is an average duration of the infective stage. The equation
for the recovered subpopulation R(t) is omitted, as we assume that the recovered
are immune and do not participate in the epidemic process.

If we assume that the disease has a latent state, and the infected individuals
prior to becoming infectious enter an exposed state, E, then we come to a SEIR
model. Under the assumption of the age-dependent susceptibility, the SEIR model
is described by the following equations:

s(t, 0) = Λ,

∂s(t, a)

∂t
+
∂s(t, a)

∂a
= −m(a)s(t, a)− β(a)I(t)s(t, a),

dE(t)

dt
=

+∞∫
0

β(a)I(t)s(t, a)da− µE(t),

dI(t)

dt
= εE(t)− δI(t).

(2)

Here E(t) is the exposed population, ε is the rate of progression of the exposed
individuals to the infectious state, and µ is the rate at which the exposed individuals
leave the compartment (due to all courses including progression to the infectious
stage and mortality); the other parameters are as above. The equation for the
recovered is omitted.

Steady states (s(a), E, I) of system (2) satisfy the equalities

s(0) = Λ,

∂

∂a
s(a) = −m(a)s(a)− β(a)Is(a),

0 =

+∞∫
0

β(a)Is(a)da− µE,

0 = εE − δI.

(3)

From the second and third equations, we have that either E = I = 0, or∫ +∞
0

β(a)s(a)da = δ/κ (where κ = ε/µ for the SEIR model) hold at a steady state.
Thus, the SEIR model has two kinds of steady states, namely (i) a disease-free

steady stateQ0 = (s0(a), E0, I0), where E0 = I0 = 0, s0(a) = Λ exp

(
−

a∫
0

m(σ)dσ

)
,

and (ii) an endemic (positive) steady state Q∗ = (s∗(a), E∗, I∗), where s∗(a), E∗,

I∗ > 0 and the equilibrium distribution s∗(a) satisfies the equality
+∞∫
0

β(a)s∗(a)da =

δ/κ. Likewise, assuming ∂s
∂t = 0 and dI

dt = 0 in (1), we obtain the equations for
steady states of (1):

s(0) = Λ,

∂

∂a
s(a) = −m(a)s(a)− β(a)Is(a),

0 = I

 +∞∫
0

β(a)s(a)da− δ

 .

(4)
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From the last equation, we have that either I = 0, or
+∞∫
0

β(a)s(a)da = δ/κ, where

κ = 1 for the SIR model, hold at a steady state. That is, system (1) has two steady
states as well.

The existence and properties of these steady states depend on the basic repro-
duction number R0, which for these models is defined as

R0 =
κ

δ

+∞∫
0

s0(a)β(a) da, (5)

where κ = 1 for SIR model (1), or κ = ε/µ for SEIR model (2).
The local properties of these and more complicated models with age-distributed

subpopulations were extensively studied; see [6, 31, 30] and bibliography therein.
In this notes we address global asymptotic stability of these systems constructing
appropriate Volterra type Lyapunov functions.

3. Properties of the models. The natural way to introduce a Lyapunov function
is to consider the global stability. The global stability of these models is given by
the following Theorem:

Theorem 3.1. (i) If R0 = κ
δ

+∞∫
0

s0(a)β(a) da > 1, then there exists a globally

asymptotically stable positive endemic steady state Q∗.
(ii) If R0 ≤ 1, then disease-free equilibrium state Q0 is globally asymptotically

stable.

Proof. (i) Since the explicit expressions for the endemic steady states of systems (1)
and (2) are not given, we have to prove that these exist and are positive, provided
R0 > 1. From the first and second equations of (3) or (4), we have s∗(a) =

Λ exp

(
−

a∫
0

m(σ) + I∗β(σ)dσ

)
. This equality should satisfy the rest of equations,

or, equivalently, the equality
+∞∫
0

β(a)s∗(a)da = δ/κ. This yields

κ

δ

+∞∫
0

β(a)s0(a) exp

− a∫
0

I∗β(σ)dσ

 da = 1.

Consider the left-hand side of the last equality as a function of I∗ and denote it by
f(I∗). It is easy to see that limI∗→+∞ f(I∗) = 0 and f(0) = R0. Hence, due to the

continuity, for all R0 > 1 there exist s∗(a) = Λ exp

(
−

a∫
0

m(σ) + I∗β(σ)dσ

)
> 0

and I∗ > 0 (and E∗ = δI∗/ε > 0), which satisfies (3) or (4), respectively.
We introduce the notation G(x) = x − lnx − 1 and start the proof of global

stability from the observation that G(x) is defined and positive-definite for all x > 0,
and that it has its unique global minimum G(x) = 0 at x = 1. This fact is widely
used in the proof.

Consider function

V (t) =

+∞∫
0

A(a)G

(
s(t, a)

s∗(a)

)
da+BG

(
E(t)

E∗

)
+ CG

(
I(t)

I∗

)
,
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where A(a) = s∗(a), B = E∗, C = I∗/κ = µE∗/δ for system (2), and B = 0 for
(1). It is easy to see that V (s∗, E∗, I∗) = 0, that the function is positive definite
and is defined for all s(a) > 0, E > 0, I > 0, and that Q∗ is the global minimum of
the function. For system (2), the function satisfies

d

dt
V (t) =

+∞∫
0

s∗(a)

(
1

s∗(a)
− 1

s(t, a)

)
∂s(t, a)

∂t
da

+E∗
(

1

E∗
− 1

E(t)

)
dE(t)

dt
+
I∗

κ

(
1

I∗
− 1

I(t)

)
dI(t)

dt

= −
+∞∫
0

s∗(a)

(
s(t, a)

s∗(a)
− 1

)(
sa(t, a)

s(t, a)
+m(a) + β(a)I(t)

)
da

+E∗
(

1

E∗
− 1

E(t)

) +∞∫
0

β(a)I(t)s(t, a)da− µE(t)


+
I∗

κ

(
1

I∗
− 1

I(t)

)
(εE(t)− δI(t))

= −
+∞∫
0

s∗(a)

(
s(t, a)

s∗(a)
− 1

)(
sa(t, a)

s(t, a)
+m(a) + β(a)I∗

)
da

+

+∞∫
0

β(a)I(t)s(t, a) da− µE(t)−
+∞∫
0

β(a)I(t)s(t, a)
E∗

E(t)
da+ µE∗

+µE(t)− δ

κ
I(t)− µI∗E(t)

I(t)
+ µE∗ −

+∞∫
0

s(t, a)β(a)I(t)da

+

+∞∫
0

s∗(a)β(a)I(t)da+

+∞∫
0

s∗(a)β(a)I∗
(
s(t, a)

s∗(a)
− 1

)
da,

where sa(t, a) denotes ∂
∂as(t, a). Note that

∂

∂a
G

(
s(t, a)

s∗(a)

)
=

(
sa(t, a)

s(t, a)
+m(a) + β(a)I∗

)(
s(t, a)

s∗(a)
− 1

)
,

and that, by (3), I∗
+∞∫
0

s∗(a)β(a) da = µE∗ = δI∗/κ, where κ = ε/µ. Hence, using

integration by parts,

d

dt
V (t) = −

[
s∗(a)G

(
s(t, a)

s∗(a)

)]+∞

0

−
+∞∫
0

β(a)I∗s∗(a)

(
s(t, a)

s∗(a)

I(t)

I∗
E∗

E(t)
− 1

)
da

+

+∞∫
0

s∗(a)β(a)I∗
(
s(t, a)

s∗(a)
− 1

)
da+

+∞∫
0

s∗a(a)G

(
s(t, a)

s∗(a)

)
da

−
+∞∫
0

β(a)I∗s∗(a)

(
I∗

E∗
E(t)

I(t)
− 1

)
da.
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The equality

+∞∫
0

s∗(a)β(a)I∗
(

ln
s(t, a)

s∗(a)

I(t)

I∗
E∗

E(t)
+ ln

I∗

I(t)

E(t)

E∗
− ln

s(t, a)

s∗(a)

)
da = 0,

follows from ln 1 = 0. Adding it to dV (t)
dt and recalling that

s∗a(a) = −m(a)s∗(a)− β(a)I∗s∗(a)

and that s(t, 0) = s∗(0) = Λ, we obtain

d

dt
V (t) = −

[
s∗(a)G

(
s(t, a)

s∗(a)

)]
a=+∞

−
+∞∫
0

β(a)I∗s∗(a)G

(
s(t, a)

s∗(a)

I(t)

I∗
E∗

E(t)

)
da

−
+∞∫
0

m(a)s∗(a)G

(
s(t, a)

s∗(a)

)
da−

+∞∫
0

β(a)I∗s∗(a)G

(
I∗

E∗
E(t)

I(t)

)
da ≤ 0.

That is, positive-definite function V (t) has negative-definite derivative d
dtV (t). Fur-

thermore, equalities V (t) = 0 and d
dtV (t) = 0 hold only if s(t, a) = s∗(a), I(t) = I∗

and E(t) = E∗ simultaneously. Hence, by Lyapunov asymptotic stability theorem
[19, 22], an endemic equilibrium state, if it exists, is globally asymptotically stable.

(ii) If R0 ≤ 1, we consider function

V (t) =

+∞∫
0

A(a)G

(
s(t, a)

s0(a)

)
da+BE(t) + CI(t),

where A(a) = s0(a), B = 1, C = 1/κ (κ = ε/µ) for the SEIR model (2); B = 0 and
κ = 1 for the SIR model (1). For the SEIR model (2), the function satisfies

d

dt
V (t) =

+∞∫
0

s0(a)

(
1

s0(a)
− 1

s(t, a)

)
∂s(t, a)

∂t
da+

d

dt
E(t) +

1

κ

d

dt
I(t)

= −
+∞∫
0

s0(a)

(
s(t, a)

s0(a)
− 1

)(
sa(t, a)

s(t, a)
+m(a) + β(a)I(t)

)
da

+

+∞∫
0

β(a)I(t)s(t, a)da− µE(t) + µE(t)− δ

κ
I(t)

= −
[
s0(a)G

(
s(t, a)

s0(a)

)]+∞

0

+

+∞∫
0

s0
a(a)G

(
s(t, a)

s0(a)

)
da

+I(t)

 +∞∫
0

s0(a)β(a)da− δ

κ

 ≤ I(t)
δ

κ
(R0 − 1) .

Here we integrated by parts and used the equalities

∂

∂a
G

(
s(t, a)

s0(a)

)
=

(
sa(t, a)

s(t, a)
+m(a)

)(
s(t, a)

s0(a)
− 1

)
,

s(t,0)
s0(0) = Λ

Λ = 1, s0
a(a) = −m(a)s(a) < 0 and the definition of R0 (5).
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Therefore, R0 ≤ 1 ensures that d
dtV (t) ≤ 0 holds. Note, that the strict equality

holds only if s(t, a)− s0(a) = 0. Obviously, Ω0 = {s(a)− s0(a) = 0} ⊆ Ω is not an
invariant subspace in the phase space Ω = (s(a), E, I): any trajectory, starting in
(s0(a), E, I) with non-zero E or I, leaves Ω0, since non-zero E(t) leads to growth
of I(t), and(

∂

∂a
+
∂

∂t

)(
s(t, a)− s0(a)

)
= −m(a)

(
s(t, a)− s0(a)

)
− β(a)I(t)s(a) 6= 0.

That is, positive-definite function V (t) has non-positive derivative d
dtV (t) ≤ 0, and

the only invariant subset, where d
dtV (t) = 0 holds, is point (s0(a), 0, 0). Hence by

Lyapunov-LaSalle asymptotic stability theorem, R0 ≤ 1 ensures that the equilib-
rium state (s0(a), 0, 0) is globally asymptotically stable.

For SIR model (1), the calculations and conclusions are analogous, and we omit
them.

Theorem 3.1 and the proof lead to a number of Corollaries.

Corollary 1. Positive endemic steady state Q∗ is unique when it exists.

Proof. The uniqueness immediately follows from the global asymptotic stability. If
this consideration is not convincing, note that d

dtV (t) = 0 necessary holds at an
equilibrium state, and that for both these models the sets where this equality holds
contain no invariant sets of the systems other than equilibrium states Q∗ or Q0,
respectively.

Corollary 2. Any solution for (1) or (2) with a non-negative initial condition
remains (i) non-negative and (ii) bounded for all t > 0.

Proof. Function V (s, E, I) tends to infinity as either of s, E, or I tends to zero, and
hence the non-negativeness follows. The surfaces V (s, E, I) are closed and bounded
and hence the boundedness follows.

Corollary 3. If R0 > 1, then systems (1) and (2) are uniformly persistent.

In other words, for R0 > 1 any solution for (1) or (2) with positive initial condi-
tion remains positive indefinitely.

4. Lyapunov function and global asymptotic stability for the Von Fo-
erster equation. The global stability for the Von Foerster equation immediate
follows from Theorem 3.1. The Von Foerster equation

∂x(a, t)

∂t
+
∂x(a, t)

∂a
= −m(a)x(a, t),

x(0, t) = Λ, t > 0,
(6)

where x(a, t) is the population of age a at time t, m(a) is the age-dependent mor-
tality rate, and Λ is the constant newborn inflow rate, describes the dynamics of an
age-structured population [6]. Assuming that ∂

∂tx(a, t) = 0, we obtain the steady

state distribution x∗(a) = Λe
−

a∫
0

m(s)ds
. The global asymptotic stability of system

(6) can be proved using Lyapunov function

V (t) =

+∞∫
0

x∗(a)G

(
x(t, a)

x∗(a)

)
da.
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It is easy to see that V (t) is positive definite. Its derivative satisfies

d

dt
V (t) =

+∞∫
0

x∗(a)
d

dt
G

(
x(a, t)

x∗(a)

)
da

=

+∞∫
0

x∗(a)

(
1

x∗(a)
− 1

x(a, t)

)
∂x(a, t)

∂t
da

= −
+∞∫
0

x∗(a)

(
1

x∗(a)
− 1

x(a, t)

)
(xa(a, t) +m(a)x(a, t)) da

= −
+∞∫
0

x∗(a)

(
xa(a, t)

x∗(a)
+m(a)

x(a, t)

x∗(a)
− xa(a, t)

x(a, t)
−m(a)

)
da.

(7)

Recalling that

∂

∂a
G

(
x(t, a)

x∗(a)

)
=
xa(t, a)

x∗(a)
+m(a)

x(t, a)

x∗(a)
− xa(t, a)

x(t, a)
−m(a)

and that x∗a(a) = −m(a)x∗(a) < 0, we have

dV (t)

dt
= −

+∞∫
0

∂

∂a

[
x∗(a)G

(
x(t, a)

x∗(a)

)]
da+

+∞∫
0

x∗a(a)G

(
x(t, a)

x∗(a)

)
da

= −
[
x∗(a)G

(
x(t, a)

x∗(a)

)]a=+∞

a=0

−
+∞∫
0

m(a)x∗(a)G

(
x(t, a)

x∗(a)

)
da

Here, G(y) ≥ 0 for all y > 0, and x(t,0)
x∗(0) = Λ

Λ = 1 for all t ≥ 0 thus giving

G(x(t,0)
x∗(0) ) = 0. Hence dV (t)

dt ≤ 0. That is, V (t) ≥ 0 and d
dtV (t) ≤ 0 hold for any

t ≥ 0, and hence the steady state x∗(a) of system (6) is globally asymptotically
stable.

We have to note that the solutions of the Von Foerster equation converge to the
steady state very fast making a range of Lyapunov functions applicable; thus, a

straightforward quadratic functional of the form
∫ +∞

0
u(a)(x(t, a) − x∗(a))2da can

be immediately employed for this equation [24].
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