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Abstract. A one-dimensional model for the transport of vitamin D3 in an

osteoblast cell is proposed, from its entry through the membrane to its activa-

tion of RANKL synthesis in the nucleus. In the membrane and cytoplasm, the
transport of D3 and RANKL is described by a diffusion process, while their

interaction in the nucleus is modeled by a reaction-diffusion process. For the

latter, an integral equation involving the boundary conditions, as well as an
asymptotic solution in the regime of small concentrations, are derived. Nu-

merical simulations are also performed to investigate the kinetics of D3 and
RANKL through the entire cell. Comparison between the asymptotics and

numerics in the nucleus shows an excellent agreement. To our knowledge, this

is the first time, albeit using a simple model, a description of the complete
passage of D3 through the cell membrane, the cytoplasm, into the cell nucleus,

and finally the production of RANKL with its passage to the exterior of the

cell, has been modeled.

1. Introduction. Bone is a composite structure of living cells embodied in an
organic, highly mineralized matrix. Bone is built during body growth by bone-
building cells, called osteoblasts, that synthesize and release organic molecules,
largely collagen. This constitutes the matrix onto which a variety of calcium salts
are deposited. The mature calcium salt is carbanato-hydroxyapatite. Bone is re-
sorbed by osteoclasts, cells that form a podosome, a tent-like membrane cover over
the bone surface into the space of which they secrete enzymes and hydrogen ions,
the combined action of which leads to mineral dissolution and matrix destruction.
Adult bone undergoes remodeling, i.e. resorption by osteoclasts, followed by re-
newed matrix synthesis and mineral deposition initiated by osteoblasts. Two types
of bone mineral structure are known: trabecular and compact. Trabecular bone,
approximately 20% of total adult bone, has struts and undergoes renewal at about
twice the rate of compact bone. It is trabecular bone that is primarily destroyed
in postmenopausal osteoporosis. Total bone renewal, i.e. trabecular and compact
averaged out, approximates 3.6% per year.

Bone formation is tightly regulated by the cells present inside the bone. Es-
pecially two key players, osteoclasts (bone resorbing cells) and osteoblasts (bone
forming cells), tightly regulate the amount of bone matrix. The balance between
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active osteoblasts and osteoclasts is crucial for proper bone formation and mainte-
nance. 1,25-Dihydroxyvitamin D3, the active form of vitamin D3, plays a critical
role during bone formation. As illustrated in Figure 1, it regulates the differentia-
tion of hematopoietic stem cells and preosteoblasts into osteoclast progenitor cells
and mature osteoblasts (see [3] for further details). It also induces osteoclast dif-
ferentiation from the osteoclast progenitor cell to the prosteoclast by affecting the
RANKL/RANK/OPG axis, by upregulation of RANKL. This enables the binding
of RANKL to RANK leading to the differentiation of the osteoclast progenitor.
1,25-Dihydroxyvitamin D3 also stimulates the secretion of collagenase, osteopontin,
C3, MGP and plasminogen, which in turn affect osteoclast differentiation.

In this paper, we propose a reasonably complete biological model of the pre-
osteoblastic cell and a simplified mathematical version for the transport of vitamin
D3 from its entry through the membrane surface to its activation of RANKL syn-
thesis in the nucleus. We indicate where we deviate from the biological system in
this initial attempt and where we might provide a more complete mathematical ver-
sion. The outgoing transport of RANKL from the nucleus to the membrane is also
described. Assuming spherical symmetry, the cell is defined by a one-dimensional
domain divided into three regions: the nucleus, the cytoplasm and the membrane.
In each region, the transport of D3 and RANKL is modeled by a diffusion process
with distinct properties. For the interaction problem in the nucleus, we derive a
simple integral equation involving the boundary conditions. We also identify an
asymptotic regime of parameters that allows us to linearize the nonlinear partial
differential equations of the nuclear model and derive an approximate analytical
solution. For the kinetics through the entire cell, we perform numerical simulations
based on a finite-difference scheme, which show that the various transport and syn-
thesis processes are well reproduced in the context of our model. The asymptotic
solution for the nucleus is also compared with the numerical solution, and a very
good agreement is found.

The remainder of the paper is organized as follows. In Section 2, we describe
the mathematical model for the kinetics of D3 and RANKL in an osteoblast cell,
including the diffusion equations in the membrane and cytoplasm, and the reaction-
diffusion equations in the nucleus. The integral equation together with the asymp-
totic solution of the nuclear model are derived in Section 3, and details are given
in the Appendix. Numerical simulations of the full cellular model are presented in
Section 4, including a description of the numerical methods and a discussion of the
numerical results. Finally, concluding remarks are given in Section 5.

2. Mathematical model. Typically, the vitamin D serum binding proteins,
exterior to the cell, are present at high concentrations and have high off rates relative
to the membrane receptors, VDRm, 1 that are present at much lower concentrations
but have higher binding affinities. These receptors are fast (seconds-minutes) and
mediate catabolic effects. There is also a nuclear receptor, VDRn, in osteoblast
cells that responds to D3, which is a slow (hours), non-calcemic receptor mediating
anabolic effects.

Vitamin D3 dissociates from the serum binding vitamin D3 protein (DBP) to the
membrane receptor, acting as a molecular switch for the activation of VDRn. This

1The membrane associated rapid response to steroids specific for vitamin D is also known as
MARRS [14].
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then activates responsive genes. In the model, for simplicity, we choose VDRn to
be located in the nucleus rather than in the cytoplasm.

VDRm then signals VDRn to shut down the production of OPG and promotes
transcription of the gene encoding receptor activator of RANKL [23]. Osteoclas-
togenesis can be inhibited by osteoprotegerin, OPG or RANKL, in their capacity
acting as a decoy receptor for RANKL [23]. Shutting down OPG is essential to
decreasing the maturation and metabolic effects of osteoclasts, resulting in a de-
crease of bone resorption. The RNA encoding RANKL or OPG is exported to the
cytoplasm where it is translated into protein on the ribosome. The new protein
is then inserted into the secretory pathway for export. The mechanism by which
RANKL is converted from a membrane to a soluble structure is unclear.

2.1. Assumptions concerning the model.

• The process of serum binding proteins passing along the hormone from one to
the next through a sequence of low affinity binding and release events 2 (the
buckets) until reaching the target (the receptor) is modelled by a sequence of
short distance diffusional events with a pause in between each. The length
of the pause (binding event) determines the rate of the movement of the
diffusing molecule. When the molecule binds to the receptor, the number of
molecules that enters is determined by the number of liganded receptors. In
this paper we eliminated this step as the mathematical model was sufficiently
complicated for an initial attempt. It will be included, however in subsequent
models.

• When D3 interacts with MARRS, the membrane diffusion coefficient changes
from a high off-rate to a lower value that allows a specific amount of D3

to cross the membrane. Once transfer is completed, the diffusion coefficient
reverts to the high off-value and transmembrane transfer is turned off.

• The saturation curve for the membrane receptor is biphasic.This means two
separate events may be initiated, such as opening a calcium channel and
permitting D3 to pass through the membrane. Calcium activates and, at
greater concentration, deactivates transcription. These events are symbolized
by changes in the kinetic coefficients.

• Calcium entering the cells initiates cross talk between the vesicles and the nu-
clear receptor via signal transduction pathways. We assume that this switch-
ing mechanism is located in the nuclear receptor, as nuclear receptor regulated
genes still turn on in 24 hrs when the membrane system is blocked. This is
modeled using a threshold concerning the number of occupied nuclear recep-
tors.

• The translocation of vitamin D3 to the nucleus occurs using a chaperon, DBP,
that moves along cytoskeletal tracks through the cytoplasm [17] and then
diffuses into the nucleus to reach the VDRn. However, in the present model
this is described by a diffusion process.

• The binding with VDRn is described by a reaction-diffusion equation that is
initiated by the signal cross-talk with MARRS. Signaling from the membrane
receptor to the nuclear receptor depends on a threshold effect that induces
a change in the kinetics of the nuclear response, with a time lag before the
signal is received. In the present mathematical model the reaction-diffusion

2This has been spoken of as an intracellular bucket brigade where the hormone moves from
one binding protein to the next [2].
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equation becomes valid upon the arrival of the D3. This is appropriate as
we use a diffusion model in the cytoplasm rather than transportation along
microtubules.

• D3 combines with the nuclear receptor and diffuses to the nucleus where it
initiates, by a hormone-like action, the target gene response. The effect of
this response may be slow, requiring hours.

• Biosynthesis of soluble RANKL is a multistep process, but will be modeled as
a single step. RANKL is a soluble decoy that is assumed to diffuse through the
nuclear space into the cytoplasm from which it exits through the membrane
into the body fluids.

2.2. Membrane-cytoplasm model. Assume that the cell is a small ball with
radius rem > 0 (Figure 2), the cell membrane is a spherical shell, and also assume
that the diffusion of vitamin D3 (1,25(OH)2D3) from the membrane to the nucleus
is independent of the spherical angles (θ, φ). Then we can model the interaction of
the 1,25(OH)2D3 and the receptors by a system of partial differential equations in
one space dimension.

In the following, we represent the membrane receptor, VDRm, by M and the
compound formed from D3 and VDRm by D ∗M . The genes for both OPG and
RANKL are regulated by the nuclear receptor for D3 and this is described in a
subsequent section. It is proposed that the VDRm complex that regulates calcium
signaling also regulates the intake of D3 into the cell.

One possibility is to model the entry of D3 into the cell by having the diffusion
coefficient for the membrane dependent on the concentration of D ∗M . This is
a transient phenomenon, namely increasing D3 in the serum suddenly above its
basal concentration leads MARRS to signal ER, allowing an increased flow of Ca2+

into the cell. This in turn signals a temporary change in the membrane diffusion
coefficient

κm(D ∗M) =

{
κHm for high intake
κLm for low intake

,

which then after a fixed time reverts to its non-entry state. Another possibility is
to have D3 collect in caveolae and have MARRS using Ca2+ to signal dynamin to
snip the vesicle containing D3. At this point, it is unknown exactly how D3 enters
the cell. We assume that MARRS signals the nuclear receptor using Ca2+, which
also signals the entry of D3. Hence, in some way, the concentration of Ca2+ is
tied to the entry of D3 into the cell. We make the simplifying assumption that the
boundary condition for D3 is proportional to Ca2+. We use the single-pool model
for intracellular Ca2+ from [1] to describe the calcium spiking. These spikes, when
they become large enough, switch the membrane diffusion coefficient from off to on,
etc. In this paper, we simplify the mechanism by assuming the flow of D3 into the
membrane is proportional to that of Ca2+.

In the membrane, we represent the concentration of D3 by the function Dm(r, t).
We model the transport of D3 through the membrane of the cell by a diffusion
process where the diffusion coefficient is chosen to match the time scale necessary
to pass the correct amount through the membrane during the time it is open.
After this time, the diffusion coefficient changes to permit essentially no D3 to pass
through the membrane. As mentioned in the previous section, this is controlled by
MARRS. In this section, we provide the analysis for the case where we either increase
or decrease the concentration of D3 in the serum. When the membrane diffusion
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coefficient has switched to its higher value κHm, Dm(r, t) satisfies the equation

κm
∂2Dm

∂r2
=

∂Dm

∂t
, rim < r < rem. (2.1)

In this paper, we assume that D3 obeys a diffusion law in the cytoplasm rather than
being transported along microtubules in the cytoplasm, namely

κc
∂2Dc

∂r2
=

∂Dc

∂t
, rn < r < rim.

Accurate measurements of D3 transport in osteoblast cells are usually difficult to
obtain. According to [18], the effective diffusion constant might be described by a
two-parameter power law. In [22], transport along microtubules or actin filaments
is compared. The microtubules are for long-range transport whereas the actin
filaments are for local movement of organelles. This is a possibility we might try
in the future; however for the present, we use diffusion transport, estimating κc by
Einstein’s formula

κc =
kBT

6πηrD
, (2.2)

where kB is Boltzmann’s constant, η the dynamic viscosity of water and T = 309
K (internal body temperature). Assuming spherical symmetry for the D molecule,
its radius is given by

rD = 0.066m
1/3
D , (2.3)

= 4.9294× 10−10 m = 0.4929 nm,

where mD = 416.64 g mol−1 is the molecular mass of 1,25(OH)2D3. As discussed
above, because diffusion is strong in the membrane during the Ca2+ influx, we
choose κm = 10κc.

We match the membrane and cytoplasm solutions at the inner membrane surface
r = rim, using the transmission conditions:

Dc(r
i,−
m , t) = Dm(ri,+m , t), κc

∂Dc

∂r
(ri,−m , t) = κm

∂Dm

∂r
(ri,+m , t). (2.4)

At the external membrane surface r = rem, we assume the effective concentration
is proportional to the Ca2+ spikes as described in [1]. These Ca2+ spikes obey the
system of ordinary differential equations

dDm

dt
= Jchannel − Jpump + Jleak, (2.5)

τn
dn

dt
= n∞(Dm)− n, (2.6)

where

Jchannel = kflux µ([IP3])n

(
b+

V1Dm

k1 +Dm

)
,

Jpump =
γDm

kγ +Dm
,

Jleak = β,

n∞(Dm) = 1− D2
m

k22 +D2
m

,

µ([IP3]) = µ0 +
µ1[IP3]

kµ + [IP3]
. (2.7)
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Parameter Value

b 0.111
V1 0.889
β 0− 0.02 µM s−1

γ 2.0 µM s−1

τn 2.0 s
k1 0.7 µM s−1

kγ 0.1 µM
k2 0.7 µM
kflux 8.1 µM s−1

Table 1. Parameter values in the boundary conditions (2.5)–(2.7)
at the external membrane surface. b represents a basal current
through the Ca2+ channel. V1 is the proportion of IP3Rs that are
activated by the binding of Ca2+. β is the constant rate of Ca2+

influx into the cytosol. γ is the maximum rate of Ca2+ pumping
from the cytosol. kγ is the concentration of Ca2+ at half-maximum
pumping. τn is the time constant for the dynamics of n. kflux is
the maximum total Ca2+ flux through all IP3Rs. Further details
can be found in [1].

Each J term represents a concentration flux, n is the dimensionless variable repre-
senting the proportion of receptor IP3Rs that have been filled by Ca2+, n∞ denotes
the steady state of n as a function of Dm, µ([IP3]) is the proportion of IP3Rs
that have their IP3 binding domain activated, and b + V1 = 1. The values of the
constants in (2.6)–(2.7) are taken from [1] and listed in Table 1. A numerical sim-
ulation of (2.5)–(2.7), starting from zero initial conditions and using the 4th-order
Runge–Kutta method, is depicted in Figure 3.

2.3. Nuclear model. It is assumed that the nucleus is a smaller concentric ball of
radius rn. Let Dn denote the concentration of D3 in the nucleus, N the concentra-
tion of VDRn and Vn = Dn ∗ N the compound formed with the nuclear receptor.
Their kinetics may be described by the reaction diagram

influx

↓ k3

Dn+ N 
 Dn ∗N
k4

↓
diffusion

Considering again isotropy, we model their dynamics as a reaction-diffusion process
of the form

∂Dn

∂t
= κn

∂2Dn

∂r2
+ k4Vn − k3(RN − Vn)Dn, (2.8)

∂Vn
∂t

= κvn
∂2Vn
∂r2

− k4Vn + k3(RN − Vn)Dn, (2.9)
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Parameter Value

k3 6.7× 10−9 pM−1 s−1

k4 1.96× 10−7 s−1

RN 10 pM

Table 2. Parameter values in the nuclear model (2.8)–(2.9). k3
is the rate of RANK-RANKL binding. k4 is the rate of RANK-
RANKL unbinding. RN is a fixed concentration of RANK. Further
details can be found in [13].

where k3, k4 and RN are taken from [13]. The values of these parameters, together
with their description, are given in Table 2. We choose κn = 0.1κc to allow for a
sufficient level of D in the nucleus so it can produce enough V to diffuse out, in a
reasonable amount of time.

At the surface r = rn of the nucleus, we have the transmission conditions

Dn(r−n , t) = Dc(r
+
n , t), κn

∂Dn

∂r
(r−n , t) = κc

∂Dc

∂r
(r+n , t),

and, at the center r = 0, we impose the reflecting condition

κn
∂Dn

∂r
(0, t) = κvn

∂Vn
∂r

(0, t) = 0,

which is a suitable choice of boundary condition at this location given the spherical
symmetry adopted in the problem.

The initial conditions are simply

Dn(r, 0) = Dc(r, 0) = Dm(r, 0) = 0, 0 < r < rem. (2.10)

2.4. Outgoing compound. In the previous section, we define the compound
RANKL formed with the nuclear receptor by Vn := Dn ∗ N . Assume that Dn

combines with the nuclear receptor and diffuses to the cytoplasm when it initiates.
Let Vc denote the concentration of RANKL in the cytoplasm and Vm the concentra-
tion in the membrane. This step is modelled as a diffusion process by the following
equations:

κvc
∂2Vc
∂r2

=
∂Vc
∂t

, rn < r < rim,

and

κvm
∂2Vm
∂r2

=
∂Vm
∂t

, rim < r < rem,

where κvc and κvm are the diffusion coefficients in the cytoplasm and membrane,
respectively. Applying again formula (2.3) to the V molecule, we estimate its radius
to be

rV = 1.8465× 10−9 m = 1.8465 nm,

which is about four times larger than rD, using the molecular mass mV = 21900 g
mol−1 of RANKL. Since the V molecule is bigger than the D molecule, we expect
its dispersion to be slower. We thus choose

κvn =
1

4
κn, κvc =

1

4
κc, κvm =

1

4
κm,
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Parameter Value

κn 6.559× 10−11 m2 s−1

κc 6.559× 10−10 m2 s−1

κm 6.559× 10−9 m2 s−1

κvn 1.639× 10−11 m2 s−1

κvc 1.639× 10−10 m2 s−1

κvm 1.639× 10−9 m2 s−1

Table 3. Diffusion coefficients for D and V based on Einstein’s
formula (2.2). We use kB = 1.3806488× 10−23 J K−1, T = 309 K
and η = 0.7× 10−3 N s m−2.

because the diffusion coefficient is inversely proportional to the molecular radius
by virtue of (2.2). The values of the various diffusion coefficients for D and V are
summarized in Table 3.

At the interfaces between the nucleus and cytoplasm, and between the cytoplasm
and membrane, we have the following transmission conditions:

Vn(r−n , t) = Vc(r
+
n , t), κvn

∂Vn
∂r

(r−n , t) = κvc
∂Vc
∂r

(r+n , t), (2.11)

and

Vc(r
i,−
m , t) = Vm(ri,+m , t), κvc

∂Vc
∂r

(ri,−m , t) = κvm
∂Vm
∂r

(ri,+m , t).

At the external boundary of the membrane, we consider the fast diffusion case
assuming that there is no build-up, namely

Vm(rem, t) = 0.

The initial conditions are given by

Vn(r, 0) = Vc(r, 0) = Vm(r, 0) = 0, 0 < r < rem. (2.12)

3. Asymptotic solution of the nuclear model. The reaction-diffusion model
(2.8)–(2.10), (2.11) and (2.12) for Dn and Vn in the nucleus is a nonlinear system
of partial differential equations. In this section, we derive a first-order analytical
solution in an asymptotic regime with prescribed fluxes through the surface of the
nucleus. We first examine the case of constant fluxes and then extend the solution
to time-dependent fluxes.

Consider a closed version of this reaction-diffusion model in the form

∂Dn

∂t
= κn

∂2Dn

∂r2
+ k4Vn − k3(RN − Vn)Dn,

∂Vn
∂t

= κvn
∂2Vn
∂r2

− k4Vn + k3(RN − Vn)Dn,

with initial conditions

Dn(r, 0) = Vn(r, 0) = 0, (3.1)

and boundary conditions

∂Dn

∂r
(0, t) =

∂Vn
∂r

(0, t) = 0, (3.2)

∂Dn

∂r
(rn, t) = g(t),

∂Vn
∂r

(rn, t) = h(t), (3.3)
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where g(t) and h(t) are prescribed fluxes at r = rn, which are assumed to be smooth
functions.

The first step is to identify a suitable asymptotic regime with a small param-
eter. For this purpose, we non-dimensionalize the equations by introducing the
dimensionless variables

D′ =
Dn

D
, V ′ =

Vn
D
, t′ =

t

T
, r′ =

r

R
,

with the characteristic values

D = D0
k4
k3
, R = rn, T =

R2

κn
, (3.4)

where D0 � 1 is a dimensionless scaling factor. Dropping the primes, the non-
dimensionalized version of (2.8)–(2.9) reads

∂D

∂t
=

∂2D

∂r2
− aD + bV + εDV, (3.5)

∂V

∂t
= α

∂2V

∂r2
+ aD − bV − εDV, (3.6)

where

α =
κvn
κn

, a =
RNk3R2

κn
, b =

k4R2

κn
, ε =

D0k4R2

κn
.

The values of these dimensionless constants are listed in Table 4. Clearly, diffusion
is the dominant process for both D and V , the other effects being much weaker. We
note that a and b are comparable while ε� a, b (because ε = D0b and D0 � 1). This
suggests that ε can be used as a small parameter in perturbation calculations, and
thus the nonlinear terms in (3.5)–(3.6) can be neglected as compared to the linear
terms. We could in fact only retain the diffusive terms and neglect all other terms in
good approximation. It turns out however that the linear terms in factor of a and b
can be solved exactly together with the diffusive terms, as shown below. Moreover,
these linear terms in factor of a and b represent the leading-order contributions
to the reaction process, and thus they should be taken into account. The scaling
D0 � 1 may be viewed as a regime of ‘small’ concentration, which is a reasonable
choice given the fact that only a fraction of the vitamin D3 serum eventually gets
into the nucleus to activate the production of RANKL.

In order to solve the pair of nonlinear partial differential equations (3.5)–(3.6),
we need to find a scheme by which to do so. As there is not one in the mathematical
literature, we list our results here formally as Theorems (see in particular Theorem
3.1)These results are formal and may be of slight interest to biologists, in which case
we urge the reader to pass over them. They are added to the paper, nevertheless,
for completeness.

Theorem 3.1. Let g(t) and h(t) in (3.3) be two integrable functions of t, and define

E(t) =

∫ rn

0

(D + V )dr.

Then the solution (D,V ) of (3.5)–(3.6) with initial conditions (3.1) and boundary
conditions (3.2)–(3.3) satisfies the integral equation

E(t) =

∫ t

0

[g(τ) + αh(τ)] dτ. (3.7)
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Proof. The coupling terms can be eliminated by adding (3.5)–(3.6) together, yielding

∂D

∂t
+
∂V

∂t
=
∂2D

∂r2
+ α

∂2V

∂r2
.

Then integrating in r and using the boundary conditions (3.2)–(3.3), we obtain∫ rn

0

∂

∂t
(D + V )dr =

∫ rn

0

(
∂2D

∂r2
+ α

∂2V

∂r2

)
dr,

=

[
∂D

∂r
+ α

∂V

∂r

]rn
0

,

= g(t) + αh(t).

Differentiation in t and integration in r can be interchanged on the left-hand side of
the above equation. Finally, integrating in t and using the initial conditions (3.1),
we arrive at ∫ rn

0

(D + V )dr =

∫ t

0

[g(τ) + αh(τ)] dτ.

In the case where g(t) = h(t) = 1, this equation reduces to∫ rn

0

(D + V )dr = (1 + α)t,

which concludes the proof of the theorem. �
An asymptotic solution can be found by regular perturbation in the form of a

power series in ε,

D(r, t) =

∞∑
j=0

εjD(j)(r, t), (3.8)

V (r, t) =

∞∑
j=0

εjV (j)(r, t). (3.9)

Plugging (3.8)–(3.9) in (3.5)–(3.6), and in the initial and boundary conditions, the
first-order solution (D(0), V (0)) satisfies the linear system

∂D(0)

∂t
=

∂2D(0)

∂r2
− aD(0) + bV (0), (3.10)

∂V (0)

∂t
= α

∂2V (0)

∂r2
+ aD(0) − bV (0), (3.11)

with
D(0)(r, 0) = V (0)(r, 0) = 0, (3.12)

and
∂D(0)

∂r
(0, t) =

∂V (0)

∂r
(0, t) = 0,

∂D(0)

∂r
(rn, t) = g(t),

∂V (0)

∂r
(rn, t) = h(t). (3.13)

Note the non-homogeneity in the boundary conditions (3.13). Although the linear
system (3.10)–(3.13) is a simplification of the nuclear model, it still exhibits impor-
tant features of the interaction problem, due to the linear coupling terms. Clearly,
the asymptotic solution (D(0), V (0)) also satisfies the integral equation (3.7), as can
be shown by following the proof of Theorem 3.1.

In the case of constant fluxes at r = rn, say g(t) = h(t) = 1 for simplicity, we
have the following result:
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Parameter Value

α 0.25
a 4.08× 10−7

b 1.19× 10−6

ε 1.19× 10−8

Table 4. Parameter values in the non-dimensionalized nuclear
model (3.5)–(3.6). We use rn = 2× 10−5 m and D0 = 10−2.

Theorem 3.2. Let g(t) = h(t) = 1 in (3.13). Assume (D(0), V (0)) is a series
solution of the linear problem (3.10)–(3.13). Then this solution can be written as(

D(0)(r, t)
V (0)(r, t)

)
=
∞∑
j=0

Wj(t) cos

(
jπr

rn

)
+

r2

2rn

(
1
1

)
, (3.14)

where

W0(t) =

 − [ β0

6rn(a+b)2
+ (a−b)rn

6(a+b)

]
e−(a+b)t + bγ0t

6rn(a+b)2
+ β0

6rn(a+b)2
− brn

3(a+b)[
β0

6rn(a+b)2
+ (a−b)rn

6(a+b)

]
e−(a+b)t + aγ0t

6rn(a+b)2
− β0

6rn(a+b)2
− arn

3(a+b)

 ,

with

β0 = (b2 − a2)r2n + 6a− 6ab, γ0 = 6(a+ b)(1 + α),

and the higher Fourier coefficients Wj(t) (j > 0) are given in the Appendix.

It can checked that the series expansion (3.14) of (D(0), V (0)) satisfies (3.7) for
g(t) = h(t) = 1. Indeed, since∫ rn

0

cos

(
jπr

rn

)
dr = 0, j > 0,

we have ∫ rn

0

(D(0) + V (0))dr =

[
γ0t

6rn(a+ b)
− rn

3

] ∫ rn

0

dr +

∫ rn

0

r2

rn
dr,

=
γ0t

6(a+ b)
,

= (1 + α)t.

The extension to the more general case of time-dependent fluxes is stated next:

Corollary 1. Let g(t) and h(t) be two smooth functions of t. Then a series solution
of (3.10)–(3.13) can be written in the form(

D(0)(r, t)
V (0)(r, t)

)
=

∞∑
j=0

Wj(t) cos

(
jπr

rn

)
+

r2

2rn

(
g(t)
h(t)

)
,

where

Wj(t) = etAj

∫ t

0

e−τAjYj(τ)dτ + etAjWj(0), j ≥ 0,

and the coefficients Wj(0) and Yj(t) are given in the Appendix.

Proofs: The proofs of the theorem and corollary are lengthy and are therefore
relegated to the Appendix.
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4. Numerical results for the full model. In this section, we present numerical
simulations of the full cellular model to investigate the kinetics of D3 from the
membrane to the nucleus, together with that of RANKL from the nucleus to the
membrane. We also take this opportunity to test and validate the asymptotic
solution, derived previously, against the numerical solution in the nucleus.

4.1. Numerical methods. The full cellular model (2.1)–(2.12) is solved numeri-
cally by a finite-difference method. Since it describes diffusion-dominated processes,
we use a second-order implicit scheme of Crank–Nicolson type. Let

(ua)δj = Da(rj , tδ), (va)δj = Va(rj , tδ), a = {m, c, n},

where rj = j∆r (j = {0, . . . , Ja}) and tδ = δ∆t (δ = {0, . . . , Ia}).
In the membrane and cytoplasm (a = {m, c}), the discretized form of the bulk

equation reads

(ua)δ+1
j − (ua)δj

∆t
= κa

[
(ua)δ+1

j+1 − 2(ua)δ+1
j + (ua)δ+1

j−1

2(∆r)2

+
(ua)δj+1 − 2(ua)δj + (ua)δj−1

2(∆r)2

]
.

A similar discretized equation holds for va. In the nucleus (a = n), we have

(ua)δ+1
j − (ua)δj

∆t
= κa

[
(ua)δ+1

j+1 − 2(ua)δ+1
j + (ua)δ+1

j−1

2(∆r)2

+
(ua)δj+1 − 2(ua)δj + (ua)δj−1

2(∆r)2

]
−k3RN (ua)δ+1

j + k4(va)δ+1
j

+k3(ua)δj(va)δj , (4.1)

(va)δ+1
j − (va)δj

∆t
= κva

[
(va)δ+1

j+1 − 2(va)δ+1
j + (va)δ+1

j−1

2(∆r)2

+
(va)δj+1 − 2(va)δj + (va)δj−1

2(∆r)2

]
+k3RN (ua)δ+1

j − k4(va)δ+1
j

−k3(ua)δj(va)δj . (4.2)

Note that the linear terms in (4.1)–(4.2) are treated implicitly while the nonlinear
terms are treated explicitly. Otherwise, if all the terms were treated implicitly, we
would need to solve a nonlinear system at each time step, which is a more demanding
computational task. As mentioned in Section 3, we consider more particularly the
regime of small concentrations in which the nonlinear contributions are weaker
than the linear ones. Therefore, the explicit treatment of the nonlinear terms is not
expected to significantly deteriorate the stability of the Crank–Nicolson scheme,
provided the time step ∆t is selected sufficiently small.

For the reflecting and transmission conditions, we use second-order backward and
forward finite-difference formulas. For example, at the interface r = rim between
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the cytoplasm and membrane (say at j = j1), we have

κm
−(um)δj1+2 + 4(um)δj1+1 − 3(um)δj1

2∆r

= κc
3(uc)

δ
j1
− 4(uc)

δ
j1−1 + (uc)

δ
j1−2

2∆r
,

and, at the interface r = rn between the nucleus and cytoplasm (say at j = j0), we
have

κc
−(uc)

δ
j0+2 + 4(uc)

δ
j0+1 − 3(uc)

δ
j0

2∆r

= κn
3(un)δj0 − 4(un)δj0−1 + (un)δj0−2

2∆r
.

Similar formulas are used for va. In this way, the full numerical scheme is second
order in both space and time.

Collecting all the discretized equations and expressing the resulting algebraic
system in matrix form, we obtain

Awδ+1 = Bwδ + bδ, (4.3)

where
wδ = (Dn,Dc,Dm,Vn,Vc,Vm)

>
,

with

Da =
(
(ua)δ1, (ua)δ2, . . . , (ua)δJa

)>
,

Va =
(
(va)δ1, (va)δ2, . . . , (va)δJa

)>
.

The sparse vector bδ on the right-hand side of (4.3) contains contributions from
the nonlinear terms in the nuclear model, and from the boundary condition (2.5)–
(2.6) at the external surface of the membrane. The coefficient matrices A and B
are sparse matrices resulting from the Crank–Nicolson discretization. Given the
solution wδ at time tδ, the solution wδ+1 at the next time tδ+1 is found by solving
the linear system (4.3) through direct Gaussian elimination.

4.2. Discussion of numerical results. Figure 4 shows snapshots of D(r, t) and
V (r, t) over the entire cell, 0 < r < rem, at various times during the first two Ca2+

spikes (Figure 3). For graphical purposes, the relative sizes of the nucleus, cytoplasm
and membrane are not imposed exactly. We particularly zoom in the nuclear re-
gion where the D-V interaction takes place. The variables are non-dimensionalized
according to (3.4) with D0 = 10−2, except that R = rem so that r ∈ [0, 1] spans
the entire cell. We choose rn = 0.4 and rim = 0.8. The computational domain is
discretized into Ja = 100 grid points and the time step is set to be ∆t = 10−3.

We first observe that both curves are continuous across the whole domain at all
times, which indicates that the transmission conditions at rn (nucleus-cytoplasm
interface) and rim (cytoplasm-membrane interface) are well simulated by the nu-
merical scheme. The difference in curve slope is representative of the different
diffusivities specified in the three regions of the cell.

We clearly see that, as D diffuses in, it activates the production of V in the
nucleus. During the increasing phase of the first Ca2+ spike (t . 12), the influx of
D through the membrane is high and, accordingly, the ingoing diffusion is strong.
Due to the reflecting boundary at r = 0, there is a gradual build-up of D in the
nucleus, which persists even during the Ca2+ decreasing phase (12 . t . 17). On
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the other hand, V steadily builds up in the nucleus during the whole Ca2+ spike,
while diffusing out to the membrane. The successive increasing and decreasing
phases of Ca2+ spiking are clearly indicated by the changes in D level at r = rem.
The zero Dirichlet boundary condition for V at r = rem, corresponding to instant
diffusion out of the cell, is also well reproduced numerically.

During the second Ca2+ spike (17 . t . 29), this reaction-diffusion process
repeats itself. The new influx further raises the D concentration in the nucleus
before it has a chance to diffuse all out. As a result, more V is created there.
This suggests that tying the boundary conditions to the calcium spikes may not be
correct and that a more complicated mechanical procedure is necessary to monitor
the intake of D3, such as receptor-mediated endocis or perhaps through the closing
and snipping of caveolae suggested earlier. These models will be investigated in a
future work. Note the resemblance of concentration profiles for D between t = 20
and t = 30 which correspond to a periodic Ca2+ cycle (Figure 3). In contrast, the
V concentration in the nucleus continually increases during those two Ca2+ spikes.
It remains five orders of magnitude lower than the D concentration up to t = 30.
According to our non-dimensionalization (3.4), the typical diffusion time through
the cell is O(1). Therefore, the simulation time up to t = 30 is sufficiently long to
illustrate the reaction-diffusion process between D and V through the entire cell
during at least two Ca2+ spikes.

Furthermore, a version of the numerical scheme described in the previous section,
was implemented to solve the nuclear model (3.5)–(3.6) with g(t) = h(t) = 1, in
view of testing the asymptotic solution (D(0), V (0)) of Theorem 3.2. Figure 5 shows
the comparison between the asymptotic and numerical solutions (for both D and V )
at various times. Here we choose R = rn so that r ∈ [0, 1] only spans the nucleus.
Again Ja = 100 and ∆t = 10−3. A number of 10 terms is used in the Fourier
series (3.14) of (D(0), V (0)). Overall, an excellent agreement is found. After t = 1,
the asymptotic and numerical curves are indistinguishable at the graphical scale of
Figure 5. This result not only verifies the derivation of our asymptotic solution,
but also validates a posteriori the choice of ε as the perturbation parameter in
our asymptotic calculations, and hence it validates the choice of the scaling regime
defined by (3.4).

We also note from Figure 5 that the amplitude of both D and V keeps increasing
with time, which is consistent with the fact that the first Fourier coefficient W0 in
the asymptotic solution tends to grow linearly with t as t→ +∞ (see Theorem 3.2).
In contrast, the higher Fourier coefficients Wj (j > 0) decay exponentially in time
because the corresponding eigenvalues λ±j are all negative (see Eq. (6.10) in the

Appendix). The characteristic parabolic curve for both D and V is reminiscent of
the term r2/(2rn) in the asymptotic solution, which accommodates the Neumann
boundary conditions (3.13) at r = 0 and r = rn.

The growth of D and V in the nucleus is further revealed in Figure 6 which shows
numerical values of E(t) as a function of time. The trapezoidal rule was used to
evaluate the integral in r. According to Theorem 3.1, E(t) grows linearly with t at
rate 1 + α for g(t) = h(t) = 1. This behavior is well reproduced by the numerical
solution, as indicated by the excellent agreement observed in Figure 6.

Finally, the convergence of the Fourier series (3.14) in (D(0), V (0)) is examined
in Figure 7 which plots the relative L2 error between the asymptotic and numerical
solutions in the nucleus at t = 0.01 and t = 10, as a function of the number of
terms in the series. Overall, the errors for D and V are both found to be very
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small. At t = 0.01 (early time), they rapidly decrease as the number of terms in the
series increases, to plateau around 10−2. At t = 10 (later time), these errors remain
pretty much constant around 10−4. This result is not surprising since, as mentioned
above, the first term W0 tends to prevail as t increases. The higher terms (j > 0)
decay exponentially with t and thus, very quickly, do not contribute further to the
convergence of the Fourier series.

5. Conclusions. In this paper, we have provided a simplified mathematical model
of the pre-osteoblastic cell. We have indicated where this model deviates from the
biological system. To our knowledge, this is the first time the entire process of
entry of D3 through the membrane and across the cytoplasm into the nucleus,
and the transcription of the gene encoding receptor activator of RANKL, has been
mathematically modeled. The graphs indicate the arrival times of D3 and the exit
times of RANKL through the membrane. Arrival time in the nucleus is usually too
quick compared with the only known experimental data presented in [3]. This can
be fixed using an idea discussed in [18] where an effective diffusivity is introduced.
This uses the method of homogenization with which we are well aware of ([6, 7]
and the references therein). Another important finding in [19] was the approximate
formula for the effective diffusion coefficient

DH = D0

(
1− φ

φc

)αφc

, (5.1)

where D0 is the diffusion coefficient of the solvent, φ is the volume fraction of
obstacles, φc is the critical volume fraction that is the minimal volume fraction of
obstacles at which a tracer particle is trapped, and α is the empirical constant. This
is one possible way in which to correct the arrival time. Another is to distribute the
transport from a purely diffusional process to one in which D3 diffuses until meeting
a microtubule and then is transported to the nuclear pore. This would require
a more complicated geometry than used here. Numerical experiments conducted
in [19] show that, for all relevant volume fractions, (5.1) agrees very well with
the effective diffusion obtained by the classical homogenization procedure (see e.g.
[8]). Our tying of the boundary conditions for D3 at the membrane surface to the
production of calcium waves was rather simplistic. We could rather choose to have
the entry of a calcium spike instigating a probabilistic procedure for the passing of
a quantity of D3 across the membrane. This is envisioned for future work.
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6. Appendix.

6.1. Proof of Theorem 3.2. In this section, we give details on the proof of The-
orem 3.2.
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We examine the problem (3.10)–(3.13) with g(t) = h(t) = 1. The non-
homogeneous boundary conditions (3.13) suggest the change of variables

D(0)(r, t) = u(r, t) +
r2

2rn
,

V (0)(r, t) = v(r, t) +
r2

2rn
,

so Eqs. (3.10)–(3.13) become

∂u

∂t
=

∂2u

∂r2
− au+ bv − (a− b) r

2

2rn
+

1

rn
, (6.1)

∂v

∂t
= α

∂2v

∂r2
+ au− bv + (a− b) r

2

2rn
+
α

rn
, (6.2)

with initial conditions

u(r, 0) = v(r, 0) = − r2

2rn
, (6.3)

and homogeneous boundary conditions

∂u

∂r
(0, t) =

∂v

∂r
(0, t) = 0,

∂u

∂r
(rn, t) =

∂v

∂r
(rn, t) = 0. (6.4)

By the superposition principle and separation of variables, we look for a solution of
(6.1)–(6.4) in terms of Fourier cosine series

u(r, t) =

∞∑
j=0

uj(t) cos

(
jπr

rn

)
,

v(r, t) =

∞∑
j=0

vj(t) cos

(
jπr

rn

)
,

which satisfy (6.4). Plugging these expressions in (6.1)–(6.2), we obtain

u′0 = −au0 + bv0 +
1

rn
− (a− b)rn

6
, (6.5)

v′0 = au0 − bv0 +
α

rn
+ (a− b)rn

6
, (6.6)

for j = 0, and

u′j = −
(
a+

j2π2

r2n

)
uj + bvj −

2(−1)j(a− b)rn
j2π2

, (6.7)

v′j = auj −
(
b+ α

j2π2

r2n

)
vj +

2(−1)j(a− b)rn
j2π2

, (6.8)

for j ≥ 1, where we have used

r2

2rn
=
rn
6

+

∞∑
j=1

2(−1)jrn
j2π2

cos

(
jπr

rn

)
, (6.9)

and the primes stand for differentiation. Let

Wj(t) =

(
uj(t)
vj(t)

)
, Aj =

(
−a− σj b

a −b− ασj

)
, σj =

j2π2

r2n
,
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for j ≥ 0, and

B0 =

(
1
rn
− (a−b)rn

6
α
rn

+ (a−b)rn
6

)
, Bj =

2(−1)j(a− b)rn
j2π2

(
−1
1

)
,

for j ≥ 1. The eigenvalues of Aj are

λ±j =
1

2

(
−pj ±

√
p2j − 4qj

)
,

with

pj = (1 + α)σj + a+ b, qj = (ασj + b+ αa)σj ,

and, in particular, they reduce to λ+0 = 0 and λ−0 = −(a + b) for j = 0. For
j > 0, both λ±j < 0 because the parameters a, b, α and σj are all positive. These
evanescent modes are representative of the underlying diffusion process.

Equations (6.5)–(6.6) can be rewritten as

W ′0 = A0W0 +B0,

whose solution is given by

W0(t) = etA0

(∫ t

0

e−τA0B0dτ + C0

)
,

using the integrating factor technique. By diagonalization,

e±tA0 =
1

a+ b

(
b+ a e∓(a+b)t b− b e∓(a+b)t
a− a e∓(a+b)t a+ b e∓(a+b)t

)
,

and thus

W0(t) =
1

6rn(a+ b)2

(
−β0e−(a+b)t + bγ0t+ β0
β0e
−(a+b)t + aγ0t− β0

)
+ etA0C0,

where

β0 = (b2 − a2)r2n + 6a− 6ab, γ0 = 6(a+ b)(1 + α).

The constant of integration

C0 = W0(0) = −rn
6

(
1
1

)
,

is determined from the initial condition (6.3) together with the first term of the
Fourier series (6.9). Collecting all the contributions, we find

W0(t) =

 − [ β0

6rn(a+b)2
+ (a−b)rn

6(a+b)

]
e−(a+b)t + bγ0t

6rn(a+b)2
+ β0

6rn(a+b)2
− brn

3(a+b)[
β0

6rn(a+b)2
+ (a−b)rn

6(a+b)

]
e−(a+b)t + aγ0t

6rn(a+b)2
− β0

6rn(a+b)2
− arn

3(a+b)

 .

Similarly, Eqs. (6.7)–(6.8) for j ≥ 1 can be expressed as

W ′j = AjWj +Bj ,

whose solution is given by

Wj(t) = etAj

(∫ t

0

e−τAjBjdτ + Cj

)
,

where

Cj = Wj(0) =
2(−1)j+1rn

j2π2

(
1
1

)
,
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as derived from the Fourier coefficients of (6.9), and

e±tAj =
1

λ+j − λ
−
j

(
−m−j e

±λ+
j t +m+

j e
±λ−

j t b(e±λ
+
j t − e±λ

−
j t)

−m
+
j m

−
j

b (e±λ
+
j t − e±λ

−
j t) m+

j e
±λ+

j t −m−j e
±λ−

j t

)
, (6.10)

with

m±j = λ±j + σj + a.

This leads to

Ij =

∫ t

0

e−τAjBjdτ,

=
2(−1)j(a− b)rn
(λ+j − λ

−
j )j2π2

×

 −m
−
j +b

λ+
j

e−λ
+
j t +

m+
j +b

λ−
j

e−λ
−
j t +

m−
j +b

λ+
j

− m+
j +b

λ−
j

−m
+
j m

−
j +bm+

j

bλ+
j

e−λ
+
j t +

m+
j m

−
j +bm−

j

bλ−
j

e−λ
−
j t +

m+
j m

−
j +bm+

j

bλ+
j

− m+
j m

−
j +bm−

j

bλ−
j

 ,

so that

Wj(t) = etAjIj + etAjWj(0).

Therefore (
D(0)(r, t)
V (0)(r, t)

)
=

∞∑
j=0

Wj(t) cos

(
jπr

rn

)
+

r2

2rn

(
1
1

)
,

which completes the proof of the theorem. �
We remark that the next-order terms in the power-series solution (3.8)–(3.9) can

be determined in a similar way, however this procedure becomes increasingly more
tedious.

6.2. Proof of Corollary 1. Here we present the proof of Corollary 1 which deals
with the more general case of time-dependent fluxes through the surface of the
nucleus.

The main steps are similar to those for the proof of Theorem 3.2. The non-
homogeneity of (3.13) is taken care of by decomposing

D(0)(r, t) = u(r, t) +
r2

2rn
g(t),

V (0)(r, t) = v(r, t) +
r2

2rn
h(t).

The auxiliary functions u and v satisfy

∂u

∂t
=

∂2u

∂r2
− au+ bv + s(r, t),

∂v

∂t
= α

∂2v

∂r2
+ au− bv + z(r, t),

u(r, 0) = − r2

2rn
g(0), v(r, 0) = − r2

2rn
h(0),

∂u

∂r
(0, t) =

∂v

∂r
(0, t) = 0,

∂u

∂r
(rn, t) =

∂v

∂r
(rn, t) = 0, (6.11)
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where

s(r, t) =

(
1

rn
− ar2

2rn

)
g(t)− r2

2rn
g′(t) +

br2

2rn
h(t),

z(r, t) =

(
α

rn
− br2

2rn

)
h(t)− r2

2rn
h′(t) +

ar2

2rn
g(t).

Given the homogeneous boundary conditions (6.11), we assume the possibility of
writing u and v as Fourier cosine series

u(r, t) =

∞∑
j=0

uj(t) cos

(
jπr

rn

)
,

v(r, t) =

∞∑
j=0

vj(t) cos

(
jπr

rn

)
,

and, similarly,

s(r, t) =

∞∑
j=0

sj(t) cos

(
jπr

rn

)
,

z(r, t) =

∞∑
j=0

zj(t) cos

(
jπr

rn

)
,

where

sj(t) =
2

rn

∫ rn

0

s(r, t) cos

(
jπr

rn

)
dr,

zj(t) =
2

rn

∫ rn

0

z(r, t) cos

(
jπr

rn

)
dr, j ≥ 0,

while the uj and vj ’s obey

u′j = −(a+ σj)uj + bvj + sj , (6.12)

v′j = auj − (b+ ασj)vj + zj , (6.13)

given

σj =
j2π2

r2n
.

Let

Wj(t) =

(
uj(t)
vj(t)

)
, Aj =

(
−a− σj b

a −b− ασj

)
, Yj(t) =

(
sj(t)
zj(t)

)
,

for j ≥ 0. Equations (6.12)–(6.13) then read

W ′j = AjWj + Yj ,

which can be solved by the integrating factor technique, yielding

Wj(t) = etAj

∫ t

0

e−τAjYj(τ)dτ + etAjWj(0),



338 ROBERT P. GILBERT, PHILIPPE GUYENNE AND YING LIU

 

 

Figure X, Effect of 1,25 Hydroxy Vitamin D3 on osteogenesis and osteoclastogenesis. 

Bone formation is tightly regulated by the cells present inside the bone. Especially two 
key players osteoclasts (bone resorbing cells) and osteoclasts (bone forming cells) 
tightly regulate the amount of bone matrix. The balance between active osteoblasts and 
osteoclasts is crucial for proper bone formation and maintenance. 1,25 Hydroxy vitamin 
D3, the active form of Vitamin D3, plays a critical role during bone formation. As 
illustrated in Figure X it regulates the differentiation of hematopoietic stem cells and 
preosteoblasts into osteoclast progenitor cells and mature osteoblasts. It also induces 
osteoclast differentiation from the osteoclast progenitor cell to the prosteoclast by 
affecting the RANKL/RANK/OPG axis, by upregulation of RANKL. This enables the 
binding of RANKL to RANK leading to the differentiation of the osteoclast progenitor.   
1,25 Hydroxy vitamin D3 also stimulaties the secretion of Collagenase, Osteopontin, 
C3, MGP and plasminogen, which in turn affect osteoclast differentiation..  

Figure 1. Dynamics of vitamin D3 on a preosteoblast (courtesy
of Dr. Anja Nohe).

where the exponentials e±tAj are defined by (6.10) and Wj(0) = (uj(0), vj(0))> is
determined from the initial conditions

u(r, 0) = − r2

2rn
g(0) =

∞∑
j=0

uj(0) cos

(
jπr

rn

)
,

v(r, 0) = − r2

2rn
h(0) =

∞∑
j=0

vj(0) cos

(
jπr

rn

)
.

Hence

uj(0) =
2

rn

∫ rn

0

(
− r2

2rn
g(0)

)
cos

(
jπr

rn

)
dr,

vj(0) =
2

rn

∫ rn

0

(
− r2

2rn
h(0)

)
cos

(
jπr

rn

)
dr.

This concludes the proof of the corollary. �
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Figure 7. Relative L2 error between the asymptotic and numeri-
cal solutions in the nucleus at t = 0.01 (top) and t = 10 (bottom),
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for 1 up to 160 terms are plotted.
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