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Abstract. The basement membrane (BM) and extracellular matrix (ECM)

play critical roles in developmental and cancer biology, and are of great interest
in biomathematics. We introduce a model of mechanical cell-BM-ECM inter-

actions that extends current (visco)elastic models (e.g. [8, 16]), and connects

to recent agent-based cell models (e.g. [2, 3, 20, 26]). We model the BM as a
linked series of Hookean springs, each with time-varying length, thickness, and

spring constant. Each BM spring node exchanges adhesive and repulsive forces
with the cell agents using potential functions. We model elastic BM-ECM in-

teractions with analogous ECM springs. We introduce a new model of plastic

BM and ECM reorganization in response to prolonged strains, and new con-
stitutive relations that incorporate molecular-scale effects of plasticity into the

spring constants. We find that varying the balance of BM and ECM elasticity

alters the node spacing along cell boundaries, yielding a nonuniform BM thick-
ness. Uneven node spacing generates stresses that are relieved by plasticity

over long times. We find that elasto-viscoplastic cell shape response is critical

to relieving uneven stresses in the BM. Our modeling advances and results
highlight the importance of rigorously modeling of cell-BM-ECM interactions

in clinically important conditions with significant membrane deformations and

time-varying membrane properties, such as aneurysms and progression from in
situ to invasive carcinoma.

1. Introduction. In this paper, we extend a recent lattice-free agent-based model
[19, 20, 21] to simulate the interactions between cells and the basement membrane
(BM). Each cell is an agent, and it is modeled as a physical object whose motion
is due to a balance of adhesive and repulsive forces. The basement membrane is
discretized and modeled as a finite set of points subject to elasto-plastic forces and
to interactions with neighboring cells and with extracellular matrix (ECM). Cell-cell
and cell-BM interactions are described through potential functions that can account
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for finite interaction distances, while BM-ECM interactions and elasto-plastic forces
are modeled by introducing a set of springs and using Hooke’s law, a separate model
of plastic BM and ECM responses, and a constitutive relation between the Hooke
constant and the plastic response.

The deformation of the BM has been studied by others. For example, Norton et
al. [23] had a discrete approach: they explicitly modeled both epithelial and BM
elements in ductal carcinoma in situ (DCIS) of the breast, describing the interac-
tions through linear springs. BM acts as a barrier to invasion of the epithelial cells
by resisting intra-ductal pressure, i.e. pushing back epithelial cells under pressure.
Since each cell adheres to its neighbors, a BM element being pushed outwards by
an epithelial cell will feel an adhesive force from its two neighbors, pulling it back
towards its neighbors. Franks et al. [9, 10] also studied DCIS progression, assuming
that the duct is an incompressible cylindrical membrane. They neglected details on
the duct structure, and described the finite deformation of the duct wall through
nonlinear membrane theory. The deformation is caused by the internal stresses due
to the growth of the tumor and the surrounding tissue, which is modeled as a con-
tinuum of nonlinear elastic springs resisting the duct’s deformation. Other authors
do not explicitly describe the basement membrane. Ribba et al. [27] considered BM
as a continuous interface separating cancer cells and healthy tissue. They focused
on chemical degradation due to the matrix-metalloproteinases (MMPs), and the
density of the membrane changes according to a function written as a Michaelis-
Menten model. Dunn et al. [8] proposed an agent-based model for both epithelial
and stromal cells, in which the interactions are described through linear springs;
the basement membrane is not explicitly modeled, but is defined to pass through
the midpoints of the springs connecting adjacent epithelial and stromal cells. Kim
et al. [16] described the tumor growth in a breast duct, and used a continuous
description for the mechanical response of the stroma; BM is the sharp interface
given by the boundary between the stroma and the duct. Commonly lacking in
these models is a description of the varying basement membrane thickness (with bi-
ologically reasonable values)–a critical component when investigating problems like
cancer invasion, where an in situ cancer can stretch and degrade the BM to invade
the stroma. This also makes it difficult for existing work to study the relationship
between changes in BM thickness and its (visco)elastic properties. These are among
the issues that we address in our work. In particular, we include a description of
the BM thickness and a constitutive relationship between the BM thickness, strain,
and plasticity that accounts for molecular-scale biology.

The paper is organized as follows: After introducing the background biology
(Section 1.1) and making a few simplifications (Section 1.2) that help focus the study
on the impact of elasticity and plasticity on BM morphology and cell arrangement,
we introduce the model in Section 2. We present our numerical methods in Section
3 and our parameter estimates in Section 4. We present numerous simulation results
in Section 5, with a focus on investigating the impact of BM and ECM elasticity
(Section 5.1) and plasticity (5.2) on the evolving basement membrane morphology
and cell arrangement. We also demonstrate the model for varying cell sizes when
we simulate near proliferating and apoptosing cells (Section 5.3), and we briefly
showcase the potential impact of cell-BM-ECM biomechanical interactions on cancer
cell invasion by simulating cell protrusion into the stroma near a weakened section
of BM (e.g., after degradation by matrix metalloproteinases) (Section 5.4). We close
with a discussion of our results, biological insights, and future work in Section 6.
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1.1. Biological background. The system we are going to describe is a tissue
made of cells, basement membrane and extracellular matrix.

Epithelium is composed of sheets of cells that cover organ surfaces and often per-
form specialized functions. Each cell consists of a nucleus and cytoplasm: a gel-like
substance containing organelles and the supporting cytoskeleton. The nucleus and
cytoplasm are enveloped in a very thin phospholipid bilayer membrane (6− 10 nm).
This membrane maintains the integrity of the cell and performs cellular functions,
such as the selective passage of substrates and attachment of the cell to the BM,
ECM, and other cells. Due to their (plasto-visco)elasticity, cells can deform to cre-
ate and maintain bonds to adhesive ligands (a receptor’s target molecules). Normal
epithelial cells are polarized: integrins on a basal side adhere to the basement mem-
brane; the opposite apical side has relatively few adhesion molecules and is often
used to release secretory products; E-cadherin molecules on the lateral sides tightly
adhere to E-cadherin on neighboring cells along their lateral sides [18, 33].

Epithelium is supported by the stroma: a loose connective tissue mainly com-
posed of extracellular matrix, a scaffolding of fibers (collagen, elastin, fibronectin,
etc.) embedded in a mixture of water and glycoproteins. The stroma is interlaced
by blood vessels that supply vital substrates to the tissue [18].

Epithelium and stroma are separated by a semi-permeable basement membrane:
a thin (< 100 nm) sheet of specialized ECM. All BMs have four major constituents:
type IV collagen, laminin, perlecan and nidogen, which form a complex network
of fibers. Collagen IV is a triple helix, like a molecular-scale spring. Laminin is a
ligand for integrin, and nidogen forms the cross-links between laminin and collagen,
to make a strong membrane with ligands for adhesion. BM acts as a mechanical
support and as a barrier and filter for cells and molecules, and it regulates cell
growth, differentiation and migration. Normal epithelial cells must be anchored to
the BM to survive; if contact is lost, they experience programmed death (anoikis).
Further, intact basement membrane also prevents tumor cells from invading the
surrounding tissue [1, 10, 17, 18]. Figure 1 shows an example of tissue.

Nuclei

E-cadherin

Integrins

Basement membrane

Stroma

Apex

Lateral

side

Base

Figure 1. Example of tissue: integrins on the basal side adhere
to ligands in the BM, and E-cadherin on the lateral sides adheres
to E-cadherin on adjacent cells.

1.2. Simplifications. In this paper, we focus upon the impact of cell-BM-ECM
biomechanical interactions on the morphology of the BM and cell arrangement. To
make this impact clearer, we generally make the following simplifications:
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• As in [2, 3, 20, 26], the model can simulate interactions between cells of varying
sizes and the BM. In Sections 5.1-5.2, we focus on the impact of BM and ECM
elasticity and plasticity on the overall cell and BM arrangement. To facilitate
this, we simulate identical cells with fixed nuclear radius RN, equivalent radius
R, and maximum adhesion interaction distance RA. We demonstrate the
generalized model in Section 5.3, where we simulate the BM morphological
response to two smaller cells (daughter cells following a mitosis event) and a
void left after an apoptosis event.

• We assume an isotropic distribution of cell surface receptors: the entire cell
surface can equally bind to ligands on neighboring cells and the BM. However,
we still effectively model cell polarity by simulating a single layer of cells,
similarly to polarity in the recent work by Norton et al. [23].

• We do not explicitly model cell morphology, but rather track the nuclear and
total cell volumes. We approximate the cells as spherical as necessary.

• We simulate a fixed cell population (no proliferation, apoptosis, or necrosis)
to eliminate the confounding impact of cell proliferation-induced stress and
death-associated relaxation [20, 22]. However, it is trivial to integrate the
fuller model from [20]. See Section 6.

2. Model formulation. We simulate a 2-D rectangle where a basement membrane
separates a single layer of epithelium from a 50 µm-thick region of ECM. Each side
of the ECM is treated as a rigid wall. See Figure 2 for a schematic of the domain.

Figure 2. The domain is a single layer of 10 cells (pale blue with
dark blue nuclei) in contact with the BM (red line), separated from
the ECM (orange region).

We assume that the ECM is a continuous medium, while the basement membrane
is discretized in a finite set of Np points: each of these interacts with the cells and the
ECM, and is subject to membrane elasto-plastic forces. Any two successive points
identify an edge (whose length is `k) of a rectangular BM segment, which is fully
defined by the thickness Tk of the membrane; the BM consists of the union of these
rectangular segments (see Figure 3). Each BM point has its own coordinate system
made of normal and tangential vectors, defined by the following relationships:

tk =
xk+1 − xk−1

‖xk+1 − xk−1‖
nk = (tk,2,−tk,1) k = 1, . . . , Np.

(1)

An example of this coordinate system is shown in Figure 3. Further, each segment
is assumed to have a constant area over time (because of the conservation of the
material); thus, thickness is inversely proportional to the length.
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Figure 3. Left : A sample discretization of the BM. xk and xk+1

identify the k-th rectangle, with length `k and thickness Tk. Right :
Normal and tangential vectors for point xk; see Equations 1.

2.1. Forces acting upon the BM. The points of the membrane are subject to
competing forces which determine their motion: they interact with the cells and the
ECM through adhesion and repulsion forces, they experience elasto-plastic forces
due to the membrane itself, and they undergo a drag force. See Figure 4. In order to
describe the cell-BM interactions, we extend the approach introduced in [20]. The
interactions with ECM and elastic forces are modeled using a mass-spring model;
a similar approach was used in [11] to describe cell-cell interactions. The plastic
response is described in Section 2.3.

Figure 4. Balance of forces for the point k of the BM.

2.1.1. BM-Cell adhesion. Integrin molecules on the cell surface form heterophilic
bonds with specific ligands (laminin) on the basement membrane. If Mk denotes
the amount of matrix material in segment joining membrane point xk to xk+1, then
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we approximate the number of ligands Bk:

Bk =
1

2

(
Mk−1 +Mk

)
. (2)

Thus, the strength of the cell-BM adhesive force is proportional to its non dimen-
sional integrin surface receptor expression Ik,i and to Bk. As the cell approaches
the BM, there are more adhesion receptors in contact with their ligands on the BM,
and the strength of the force increases. Hence, the adhesive force between the ith

cell and the kth point of the BM is modeled by:

Fik
cba = −ccba Ik,iBk∇ϕ

(
d (xi,xk) ;Ri

A;ncba
)
, (3)

where ccba is a constant, d (xi,xk) is the displacement between the cell i (with
position xi) and the membrane point xk, and Ri

A is the cell’s maximum adhesion
interaction distance; ncba and the potential function ϕ are described in Section 2.5.

2.1.2. BM-Cell repulsion. The basement membrane resists deformation and pene-
tration by the cells. We model this BM-Cell repulsion by:

Fik
cbr = −ccbrBk∇ψ

(
d (xi,xk) ;Ri

N;Ri;M ;ncbr
)
, (4)

where ccbr is a constant, d(xi,xk) is the cell-point displacement, Ri
N and Ri are,

respectively, the nuclear and the equivalent radii (as described earlier); M , ncbr and
the potential function ψ are detailed in Section 2.5.

In Equations (3) and (4), the displacement d is given by

d (xi,xk) = xi − xk. (5)

Thus Fik
cba and Fik

cbr both act along the line joining the cell i to the membrane point
k. We assume that the points of the BM move in the directions given by Equation
(1); thus, the interaction forces must be projected upon these vectors. Furthermore,
the tangential component is neglected, since it primarily rotates the cell but does
not alter the cell’s position.

2.1.3. BM-ECM interaction. To describe BM-ECM interactions, we introduce a
system of springs of elastic constant KECM, which is tied to ECM density and
Young’s modulus. The interaction force is directed along the direction nk, and is
given by the following Hooke’s law:

Fk
ECM = −KECM,k (`k − `k,0) nk, (6)

where `k is the length of the spring associated to the kth point, and `k,0 is its
equilibrium length; KECM,k is proportional to the amount of ECM, and is given by

KECM,k = KECM,unit `k,0. (7)

where KECM,unit is the elastic constant of the spring per unit of length.

2.1.4. BM elastic force. The points of the membrane are subject to an elastic force
modeled by tying each point to the neighboring ones through two springs of elastic
constants KBM. This force is given by:

Fk
BM = −KBM,k+1

`k+1 − `k+1,0

`k+1
(xk − xk+1)−KBM,k

`k − `k,0
`k

(xk − xk−1) , (8)

where `k+1 is the length of the spring which ties points k and k + 1, and `k+1,0

is its equilibrium length; the variables `k and `k,0 have analogous definitions. The
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stiffness constant is proportional to the Young’s modulus of the BM and to its
density, i.e., to the area of the segments:

KBM,k = KBM,unit `k Tk, (9)

where Tk is the thickness of the kth segment. However, since the area of the segments
is assumed to be constant over time, KBM,k is constant, too.

2.1.5. Drag force. Because of the viscosity ν of luminal and interstitial fluid, each
moving point of the BM also experiences a drag force which is proportional to the
velocity of the membrane:

Fk
drag = −νẋk. (10)

We express the balance of forces acting on the kth point of the membrane by
Newton’s second law:

mkv̇k =

Nc∑
i=1

(
Fik

cba + Fik
cbr

)
+ Fk

ECM + Fk
BM + Fk

drag. (11)

2.2. Constitutive equations. As we stated in Section 1.1, the basement mem-
brane is composed of many fibers of different materials. Thus, we can imagine each
segment as a set of springs, each one representing a fiber; since, at each time step,
the segment may be stretched or compressed, the arrangement of the fibers is not
fixed. For example, when the segment is stretched, the number of fibers arranged
along its length increases, while the thickness is proportionally reduced because the
area of each segment is assumed to be constant. Further, the links between fibers are
also rearranged (see Figure 5). We will not model each fiber, but we are interested
in a relationship between the size of the segment and an equivalent stiffness.

Figure 5. A BM segment is comprised of elastic fibers (blue
springs), which are cross-linked (green boxes). When stretched,
the strain can cause random cross-links to break (denoted as bro-
ken red boxes). The associated elastic fibers relax and form new
cross-links, leading to a new relaxed BM configuration (and hence
a different elastic constant, equilibrium length, and thickness).

When n springs of elastic constants K1,K2, . . . ,Kn are arranged in series, their
equivalent spring constant is

K =
1

1

K1
+

1

K2
+ . . .

1

Kn

=
K

n
, (12)
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if K1 = K2 = . . . = Kn = K. Therefore, if the length ` of the segment increases
(i.e., we add springs), K decreases; vice versa, K increases when the segment is
compressed. Hence, we can state

K ∝ 1

`
(13)

On the other hand, the springs arranged along the thickness of the segments can
be considered as parallel springs, and their equivalent constant is

K = K1 +K2 + . . .+Kn = nK, (14)

if K1 = K2 = . . . = Kn = K. Thus, the equivalent stiffness is directly proportional
to the thickness T of the segment:

K ∝ T. (15)

The simplest relationship which takes into account these two properties is:

K = c
T

`
, (16)

where c is a constant. If K0, `0, T0 are, respectively, the initial stiffness, length and
thickness of the segment,

c = K0
`0
T0

= K0
`20
A0

, (17)

where A0 = T0`0 is the initial area of the segment. Summarizing the last two
equations, the stiffness of a BM segment is given by

KBM = K0,BM
`20
A0

T

`
. (18)

The ECM also has a fibrous composition, and so we can use a similar approach.
The only difference is the lack of thickness; thus, the stiffness of the ECM only
depends on the length ` of the springs:

KECM = K0,ECM
`0
`
. (19)

2.3. Elasto-plastic model. In the previous sections, for simplicity we assumed
that the basement membrane and the extracellular matrix experience elastic defor-
mations. This hypothesis allows us to focus our attention on the role of the stiffness,
but neglects key mechanobiology: when a tissue is stretched, the energy may be
not elastically stored, but spent in breaking the molecular bonds between its com-
ponents. Hence there is an internal reorganization which results–at a macroscopic
level–in a material rearrangement, that is, a plastic deformation. If the imposed
stress is released after some time from the beginning of the experiment, the tissue
will not return to its original configuration, because in the meantime the natural
configuration has changed.

To describe situations like this, in [25] the deformation gradient F is decomposed
in a part that can be elastically recovered Fn and a plastic part due to the reorga-
nization of bonds between the elements of the material. The former is related to
the constitutive equations for the stress T, in this case in the basement membrane.
The latter requires a constitutive equation to describe how the natural configuration
evolves. In [25] the following constitutive equation is suggested

Ḟp F−1p =
1

2η

[
1− τ

f(T)

]
+

sym
(
FT

n T F−Tn

)
, (20)
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where [ · ]+ stands for the positive part of the argument, f is an invariant measure
of the stress, and τ is the value of stress above which unbinding events between
single fibers occur at the microscopic scale.

In our discrete description of the membrane elements, the above equation can
be adapted by saying that the rest length of the spring evolves if the force in the
spring is above a threshold value,

˙̀
eq =

`eq
η

[
1− τ

k(`− `eq)

]
+

k(`− `eq) . (21)

In order to take into account the fact that fiber reorganization only occurs under
tension, we use

˙̀
eq = r `eq (`− `eq − τ)+ , (22)

where r = k/η gives an indication of the characteristic time needed to relax the
internal stress. In our simulations, we assume τ = 0.

2.4. Forces acting upon the cells. The cells interact with the membrane through
adhesive and repulsive forces, according to Equations (3) and (4). They are also
subject to interactions with other cells and to a drag force, which are modeled as
in [20].

2.4.1. Cell-cell adhesion. Cell adhesion is essential for many physiological functions
(survival, proliferation, differentiation, migration) and pathological conditions (in-
flammation, metastasis, atherosclerosis) [33]. Adhesion molecules on a cell’s sur-
face bond with ligands on neighboring cells. These junctions are responsible for
maintaining the structural integrity of tissues. Similarly to cell-BM adhesion, the
strength of the interaction increases as the cells are closer, because more surface
area (and the receptor-ligand pairs) is in direct contact. The force imparted by cell
j on cell i is modeled by

Fij
cca = −ccca fij ∇ϕ

(
xj − xi;R

i
A +Rj

A;ncca

)
, (23)

where ccca is a constant, fij describes the specific molecular biology of the adhesion;
ncca and the potential function ∇ϕ are described in Section 2.5. We use fij = εiεj ,
where εi is cell i’s nondimensionalised ε receptor expression.

2.4.2. Cell-cell repulsion. Cells mechanically resist compression because of the struc-
ture of their cytoskeletons, the incompressibility of cytoplasm and the surface ten-
sion of their membranes. Hence, we introduce a repulsive strength which is zero
when the cells are just touching, and increases rapidly as they are pressed together,
particularly when nuclei are in close proximity:

Fij
ccr = −cccr∇ψ

(
xj − xi;R

i
N +Rj

N;Ri +Rj ;M ;nccr

)
, (24)

where cccr is a constant, Ri
N and Ri are, respectively, the nuclear and the equivalent

radii (as described earlier); M , nccr and the potential function ∇ψ are detailed in
Section 2.5.
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2.4.3. Drag force. Similarly to the BM, the cells experience a drag force during
their motion in the interstitial fluid:

Fi
drag = −νẋi. (25)

Summarizing these interactions, we can express the balance of forces acting on
the cell i:

miv̇i =

Np∑
k=1

(
Fik

cba + Fik
cbr

)
+

Nc∑
j=1
j 6=i

(
Fij

cca + Fij
ccr

)
+ Fi

drag. (26)

Fcba
i,k

Fcca
i,j

Fccr
i,j

Fcba
i,k-1

Fcbr
i,k

Fcbr
i,k-1

Fdrag
i

Fcbr
i,wall

K

K-1

j

i

Figure 6. Balance of forces for cell i.

2.5. Potential functions. In our agent-based model, we model mechanical inter-
actions between the cells and the basement membrane using potential functions. In
this Section, we introduce the functions ∇ϕ and ∇ψ which describe, respectively,
mechanical adhesion and repulsion.

For the adhesion potential, let RA be the cell’s maximum adhesive interaction
distance. For any n ∈ N, define ϕ first by its gradient:

∇ϕ(r;RA, n) =


(

1− |r|
RA

)n+1
r

|r|
, 0 ≤ |r| ≤ RA,

0 else

(27)

where n is said exponent of the potential. Similarly, we define the repulsion potential
through its gradient. If RN is the nuclear radius, R is the cell’s radius, M ≥ 1 is
the cell’s maximum repulsive force (i.e. the maximum value of |∇ψ|) and m is a
fixed nonnegative integer, define

∇ψ(r;RN, R,M,m) =



(
c
|r|
RN

+M

)
r

|r|
0 ≤ |r| ≤ RN,

−
(

1− |r|
R

)m+1
r

|r|
RN ≤ |r| ≤ R,

0 else

(28)

where

c =

(
1− RN

R

)m+1

−M. (29)
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The potentials ϕ and ψ can be obtained by integrating with respect to |r|, but it
is not necessary for our model. Note that ϕ, ψ and their derivatives have compact
support, in order to model the finite interaction distance; their modulus is maximum
when |r| = 0, but their signs are different because they are opposite forces.

The left panel in Figure 7 shows the balance of adhesive and repulsive forces
acting on two identical cells as a function of |r|, the distance between the centers of
their nuclei. We can see that there is no interaction if |r| > RA, while the balance
is negative (i.e. there is repulsion) for small values of |r|: this prevents overlapping
of cell nuclei. When |r| = r0, adhesion and repulsion forces balance each other: this
is the equilibrium distance between the two cell centers when they do not interact
with other cells or with the basement membrane.

Similarly, the right panel in Figure 7 shows the balance of adhesive and repulsive
forces acting on a cell interacting with the BM: in this case, |r| is the distance be-
tween the center of the nucleus and the membrane. When this is the only interaction
force acting on the cell, the equilibrium cell-BM distance is r0.

|r|

c
cca
∇φ + c

ccr
∇ψ

0 2RN
r0 2R 2RA

−9

−6

−3

0

|r|

c
cba
∇φ + c

cbr
∇ψ

0 RN
r0 R RA

−250

−200

−150

−100

−50

0

Figure 7. Balance of adhesive and repulsive force in cell-cell in-
teraction (left panel) and in in cell-BM interaction (right panel).

2.6. Inertialess assumption and model summary. We introduce the inertia-
less assumption: we suppose that the forces equilibrate quickly, hence |miv̇i| ' 0.
This assumption is made both for cells and BM segments; thus, Equations (11) and
(26) can be approximated

∑
F = 0 and solved for the velocity. In detail, defining

vBM,k =
1

ν

[
Nc∑
i=1

(
Fik

cba + Fik
cbr

)
+ Fk

ECM + Fk
BM

]
, k = 1, . . . , Np. (30)

The model we use for the points of the BM is
dxk

dt
= vBM,k

xk(t = 0) = xk,0, k = 1, . . . , Np,
(31)

where xk,0 describes the initial discretized positions of the BM. We assume that
initially the basement membrane is in an equilibrium configuration, hence the equi-
librium lengths of the springs can be evaluated through xk,0.

Similarly, in order to describe cells’ motion, we define

vcell,i =
1

ν

 Np∑
k=1

(
Fik

cba + Fik
cbr

)
+

Nc∑
j=1
j 6=i

(
Fij

cca + Fij
ccr

) , (32)
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and use the following model:
dxi

dt
= vcell,i

xi(t = 0) = xi,0, i = 1, . . . , Nc

(33)

where xi,0 describes the initial positions of cells’ centers.

3. Numerical methods. In this Section, we describe the algorithm implemented
in MATLAB.

1. Initialization Routines
(a) Global Variables: Define the time grid by choosing a time step ∆t and

a final time tmax, and fix the coefficients c used to express the interaction
forces. Coefficients and parameters are initialized according to the values
listed in Appendix A.

(b) Initialize cells: Set the position of the centers of the Nc cells, and create
the variables which describe their geometrical features.

(c) Initialize BM: Choosing a number of points Np, the basement mem-
brane is discretized and placed at the required position. The nodes of
discretization are equally spaced (the script determines automatically the

distance hp), while the first and the last nodes are placed
hp

2 from the
computational boundary walls: this is an attempt to reduce the influence
of boundaries.

(d) Initialize springs: Evaluate the initial length of the springs used to
model BM-ECM interactions and the BM elastic forces. The stiffness
coefficients for BM and ECM are also set.

2. Main program loop: While t < tmax

(a) Distances: Evaluate distances between each pair (i, j) of cells, and each
cell-BM point pairing (i, k). Euclidean distances are used to evaluate
the strength of the interaction, but distances over x and y axes are also
necessary, in order to evaluate the two components of the forces.

(b) Interactions: Evaluate the interaction forces using the relationships in-
troduced in Sections 2.1 and 2.4.

(c) Update BM and cell positions: Solve Equations (31) and (33) using
a finite difference scheme with a fixed time step:

xk(t) = xk(t−∆t) + vk∆t, k = 1, . . . , Np (34)

xi(t) = xi(t−∆t) + vi∆t, i = 1, . . . , Nc (35)

(d) Update springs: Given the new BM position, evaluate the new springs’
length; the elastic constants of the BM and the ECM are updated accord-
ing to Equations (18) and (19).

(e) Update simulation time: Increment t by ∆t.

In our simulations, we chose a 2-D rectangular domain whose length is 194 µm.
The ECM region is 50 µm thick, which is approximately half the distance between
two breast ducts. Assuming Np = 100, the BM is discretized in Np + 1 segments,
which are 1.9404 µm long and, according to Section 1.1, 100 nm thick. The model
can readily be extended to 3-D by describing the motion of vertices of an irregular
triangular mesh. For what concerns the time grid, the time step is ∆t = 0.02
minutes and the total time is tmax = 60 minutes.
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As a boundary condition, we suppose that there is no adhesion between the cells
and the computational boundary, while repulsion force is necessary to maintain cells
in the computational domain.

4. Coefficients and parameters. The coefficients used in our model are princi-
pally taken from [20]; we only modified the cell-BM interactions, and introduced
the elastic constants of the springs.

Before investigating the coefficients, let us introduce the initial configuration of
the system. Assuming a density ρ = 0.0031 cells/ µm2, the equilibrium distance
between two adjacent cells’ centers is [20]:

s =

√
2√
3ρ

= 19.4045 µm. (36)

Since our aim is to focus on cell-BM mechanics, we arrange the cells to satisfy
Equation (36), as shown in Figure 8.

Similarly to [20], we want to calibrate cell-BM interactions so that the equilibrium
distance between the cell’s center and the membrane is d = s

2 = 9.7023 µm by
balancing the adhesion and repulsion forces at the equilibrium distance d:

− ccba∇ϕ (d;RA;ncba) = −ccbr∇ψ (d;RN;R;M ;ncbr) . (37)

As RN < d < R, we can replace the potential functions and evaluate the ratio
ccba/ccbr:

ccba
ccbr

=
∇ψ
∇ϕ

=

(
1− d

R

)2
(

1− d
RA

)2 = 0.0164 = β. (38)

In this way, we obtain the constraint ccba = β ccbr, but we still have a degree of
freedom. Assuming ccba = 10ccca as in [20], the coefficients of cell-BM interactions
are fully defined. An exhaustive list of all the parameters used in our model in given
in Appendix A.

For what concerns the stiffness of the springs, in our simulations we compared
the behaviour of the membrane for different values of the elastic constants of the
BM and the ECM. Since the basement membrane has a density bigger than the
extracellular matrix, we assume KECM,unit < KBM,unit.

5. Simulation results. The initial configuration used in all our simulations is
shown in Figure 8; the black circles represent the Np = 100 points which discretize
the basement membrane. We simulate 60 minutes in each case.

Figure 8. The initial configuration used in our simulations.
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5.1. Impact of BM and ECM elasticity (without plasticity). In order to
focus our attention on the elastic cell-BM interactions and on the role of KECM

and KBM, we first neglect plasticity and set r = 0; in the following sections, elasto-
plastic deformations will be considered. Further, simulations are run for 60 minutes,
which is a time scale much smaller than the typical one for mitosis and apoptosis,
allowing us to neglect macroscopic growth. For simplicity, in this Section we will
denote KECM,unit with KECM, and KBM,unit with KBM.

The first result we introduce shows the final configurations when KECM = 10−3

is fixed and the stiffness of the membrane varies (see Figure 9). Because of the
smallness of the ECM elastic constant, the membrane is quite deformed. The BM
segments near the boundary of the cells are compressed, while the farther ones
are stretched (Figure 9a); as KBM increases the segments of the BM are slightly
less dense on the boundary of the cells, resulting in a lower stretch far from the
cells (Figure 9b): as example, when KBM = 2KECM the maximum length of the
BM segments is 4.8191 µm, and when KBM = 20KECM it is 4.5992 µm; the initial
length was 1.9404 µm. The strain of the BM must be monitored since, if excessive,
it may lacerate the membrane.

(a) KECM = 10−3, KBM = 2KECM = 0.002

(b) KECM = 10−3, KBM = 20KECM = 0.02

Figure 9. Configuration at time = 60 minutes for KECM = 10−3

and different values of KBM.

In the second set of simulations we chose KECM = 10−2. In Figure 10a the
ECM constant is dominant, and the final deformation of the membrane is very
slight. Conversely, in Figure 10b, BM stiffness dominates, and the membrane is
more deformed near the boundary of the cells. Similarly to the previous case, as
KBM increases the segments of the BM are distributed more evenly around the
cells. Because of the larger deformations, the segments farther from the cells are
more stretched than the previous case: the maximum length of BM segments ranges
between 5.7839 µm and 6.3279 µm, and increases as KBM decreases.

Figure 11 shows the final configuration when KECM = 10−1. Once again, for
small values of BM stiffness, ECM is dominant; in this case, because of the high
value of the ECM constant, the final shape of the membrane is very similar to
the initial one (compare Figure 11a to 10a). As KBM increases, the segments of
BM are more evenly distributed on the cells’ surface (Figure 11b). In Table 1 we
summarize the maximum and mean length typical ranges of the ECM springs at
the final configuration.

Finally, to fully understand the role of ECM stiffness, we ran a simulation setting
KECM = 0 andKBM = 1. The configuration at time = 60 minutes is shown in Figure
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(a) KECM = 10−2, KBM = 2KECM = 0.02

(b) KECM = 10−2, KBM = 20KECM = 0.2

Figure 10. Configuration at time = 60 minutes for KECM = 10−2

and different values of KBM.

(a) KECM = 10−1, KBM = 2KECM = 0.2

(b) KECM = 10−1, KBM = 20KECM = 2

Figure 11. Configuration at time = 60 minutes for KECM = 10−1

and different values of KBM.

KECM ECM springs’ length ( µm)
max mean

Initial 50

10−3 51.0298 - 51.1447 50.2961 - 50.3139
10−2 50.3008 - 51.0752 50.0052 - 50.0282
10−1 50.3053 - 50.4316 50.0042 - 49.9961

Table 1. Maximum and mean length of the ECM springs at the
final configuration: for each entry, first value uses KBM = 2KECM,
second value uses KBM = 20KECM.

12. The membrane is very deformed: it is wrapping around the boundaries of the
cells and all its segments are evenly distributed. Thus, we can state that the final
shape of the membrane is due to the dominating parameter between KECM and
KBM, and high values of KECM prevent the deformation; KBM also determines the
distribution of the BM segments on the surface of the cells.

Figure 13 shows the mean and the maximum length of BM and ECM springs.
When KECM = 10−3 (red curve), BM stiffness is dominant: the segments of mem-
brane are quite evenly distributed on the boundary of the cells for all the values of
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Figure 12. Configuration at time = 60 minutes for KECM = 0
and KBM = 1.

KBM, and the maximum and mean BM strain are almost constant. ECM strains
are slightly increasing because, as KBM increases, the membrane segments farther
from the cells are pulled by the adjacent segments with an increasing strength.
When KECM = 10−2 (blue curve) there is a discontinuity for KBM/KECM ≈ 7: it
is the transition between the ECM and the BM dominance. For smaller values of
the ratio, KECM is dominant and the membrane is slightly deformed: this results in
small values of the maximum ECM strain. Conversely, when KBM is dominant the
deformations of the membrane are larger, and the ECM strain is higher. The mean
ECM strain behaves in the same way. Further, in both the cases, the maximum
BM strain is decreasing because the increase of KBM results in a different final dis-
position of the BM segments: they are less compressed around the cells, and this
results in a lower stretch for the segments farther from the cells. Finally, a similar
transition also occurs for KECM = 10−1 (black curve). The maximum ECM strain
is slightly increasing as KBM increases, but the mean strain is almost flat because
of the small deformations in the BM shape (see Figure 11). Also, as the membrane
stiffness increases, the segments are more evenly distributed on the boundary of the
cells, thus the maximum strain of the BM is smaller.

Figure 14 shows the strains for different values of the ECM constant, with a
fixed ratio KBM/KECM. The black and green curves represent simulations in which
BM stiffness is dominant: as the ECM constant increases the membrane is affected
by smaller deformations, thus both the BM and the ECM strains decrease. The
red curve represents a simulation in which ECM stiffness is dominant: as KECM

increases, the BM segments farther from the cells are more stretched, hence the
strain of these springs is increasing.

Finally, Figure 15 shows the strains for different values of KBM. For small values
of KECM the membrane stiffness is dominating, but the influence of ECM is getting
stronger, thus the mean BM strain and the maximum ECM decrease; when KECM

dominates, there are no significant differences in the shape of the membrane, and
the strains are almost flat.

5.2. Impact of BM and ECM plasticity. In this Section we now simulate the
full elasto-plastic model. The numerical method is conveniently modified: in the
main loop, when the BM and ECM springs are updated (step 2d), their new equi-
librium lengths are evaluated through Equation (22) and a finite difference scheme:

`eq(t) = `eq(t−∆t) + r∆t `eq(t−∆t) [`(t)− `eq(t−∆t)]+ . (39)

We use the same initial configuration of the previous simulations (it is shown in
Figure 8); for each simulation, we use the same value of r, both for BM and ECM.
We simulate the case KECM = 10−3. In Figure 16 the maximum and mean strain
of the BM and the ECM are shown: each line represents a different value of r.
For r ≤ 10−3 there are no substantial differences between elastic and elasto-plastic
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Figure 13. Relative strain at time = 60 minutes for different val-
ues of KBM; each curve represents a different value of KECM. The
legend is the same for all the pictures.

deformations, both in the membrane and ECM strains: hence, when r ≤ 10−3 plas-
ticity is negligible. We note that as the plastic response increases, the maximum
BM strain decreases, while the mean BM strain slightly increases: because of plas-
ticity, BM segments are distributed more evenly on the boundary of the cells, and
the farther ones are less stretched (as shown in Figure 17). Further, since the mem-
brane is more deformed as r increases, ECM strains are increasing. Figures 16c and
16d show that for a fixed value of the ratio KBM/KECM, the logarithm of the strain
is a linear function of the plastic response, thus the strains vary exponentially.

In Figure 18 we show the results of a set of simulations in which the constitutive
equations introduced in Section 2.2 are switched off. While there are no significant
differences in the maximum strain, both for BM and ECM (the curves are almost
overlapped), for high values of KBM the constitutive equations increase the mean
strain: Equations (18) and (19) show that the stiffness is inversely proportional
to the length of the springs, hence as the length increases, the stiffness decreases,
resulting in a larger deformation. Because of this, since the strain is larger as
the BM constant increases, the displacement between the red and the blue curve
increases too. Finally, this displacement is larger in the mean BM strain, because
it is influenced by the thickness of the BM segments: as the strain increases, the
thickness decreases because the area of each segment is constant over time. From
Equation 18, the stiffness decreases as the thickness decreases. Hence, when BM
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Figure 14. Relative strain at time = 60 minutes for different val-
ues of KECM; each curve represents a different value of the ratio
KECM

KBM
. The legend is the same for all the pictures.

is stretched, it becomes thinner, its stiffness decreases and it experiences larger
deformations.

5.3. Model test near proliferating and apoptosing cells. We now briefly
demonstrate the model when simulating cells with nonuniform size, as would be
expected in growing tissues in vivo. We replace one cell with two daughter cells
with half volume to simulate two cells in G1 phase immediately after a recent
mitosis event. We also remove one of the cells to simulate the gap left in the
epithelium after an apoptosis event. All other parameters are the same as before,
with KECM = 10−3, KBM = 2KECM, and r = 10−2. In Figure 19, we see that the
simulation behaves as expected: the basement membrane conforms to the smaller
post-mitotic cells, and the membrane is relativley flat in the cell-free fregion. In
ongoing work, we are integrating the full agent model [20] with the BM/ECM
biomechanics model presented here, which will allow an investigation of the impact
of tumor biomechanics on the evolving BM morphology. See further discussion
below (Section 6).

5.4. Locally-weakened BM causes passive cell protrusion into the stroma.
We close by simulating the impact of a locally-weakened BM, as would be expected
in cancer cell invasion [4]. To do this, we reduce the BM thickness to 10 nm near
the 5th cell, and leave the remainder of the BM 100 nm thick as before. This is a
simplified model of localized BM degradation by diffusing matrix metalloproteinases
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Figure 15. Relative strain at time = 60 minutes for different val-
ues of KECM; each curve represents a different value of KBM. The
legend is the same for all the pictures.

(MMPs, such as MMP9) or cell membrane-bound MMPs (e.g., MT2-MMP), as is
observed during cancer cell invasion [34]. The reduced BM thickness reduces its
stiffness (according to Equation 18), resulting in a smaller elastic force. Conse-
quently, the BM-ECM elastic interaction is stronger relative to the BM elastic force
along the weakened section, resulting in a greater membrane deformation towards
the stroma. Because the cell-BM adhesive force is still intact, the cell is pulled
along with the membrane into the stroma, with a final displacement of 5.12 µm
from its starting position after 60 minutes of simulation. See the plot at t = 60
minutes in Figure 20. It is striking that protrusion of tumor cells into the stroma
can be facilitated by passive adhesive, repulsive, and elastic force responses to the
weakened BM alone, without need for additional motile forces. Including active
motile forces would only increase this effect, potentially including a rupture of the
membrane and full invasion of the stroma.

6. Discussion and future work. In this work, we developed an agent-based
model to describe elasto-plastic mechanical interactions between cells and a base-
ment membrane. Our BM/ECM model is broadly applicable to current lattice-free
agent-based cell models, such as [20]. We also note that our mechanics model should
be compatible with other models that simulate cell morphology, such as the sub-
cellular element model [28, 29] and cellular Potts models [12, 13, 24, 30, 31, 32].
In this last case, since cellular Potts models are based on an energetic formulation,
one should use a similar framework to handle cell-ECM interactions and basement
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Figure 16. Relative strain at time = 60 minutes forKECM = 10−3

and different values of KBM; each curve represents a different value
of r. The legend is the same for pictures (a), (b), (c), (d).

membrane deformation and remodeling. The former aspect is already included in
standard cellular Potts models. For the latter, one should introduce an elastic
energy for the basement membrane possibly in a discretized form, and take into
account suitable plastic phenomena related to network remodeling, similar to those
presented here in Figure 5.

To eliminate confounding influences such as strains arising from rapidly and
heterogeneously-proliferating tissues (e.g., cancer), we simulated a constant number
of cells over time, neglecting proliferation and death. This allowed us to more
clearly examine the relative impact of elastic and plastic effects in the BM and
ECM. While our results apply most directly to slowly-growing tissues, or to short
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Figure 17. Comparison between two final configurations for
KECM = 10−3 and KBM = 2KECM. Picture (a) is the result of
elastic deformations; in pictures (b) and (c) elasto-plastic deforma-
tions are introduced, respectively with r = 10−3 and r = 10−2.

2 4 6 8 10 12 14 16 18 20
2.25

2.3

2.35

2.4

2.45

KBM/KECM

Maximum relative strain of the BM springs

 

 

const. rel. off
const. rel. on

(a)

2 4 6 8 10 12 14 16 18 20
1.030

1.031

1.032

1.033

1.034

1.035

KBM/KECM

Mean relative strain of the BM springs

(b)

2 4 6 8 10 12 14 16 18 20
1.0235

1.024

1.0245

1.025

1.0255

1.026

KBM/KECM

Maximum relative strain of the ECM springs

(c)

2 4 6 8 10 12 14 16 18 20
1.0075

1.0076

1.0077

1.0078

1.0079

1.008

1.0081

1.0082

KBM/KECM

Mean relative strain of the ECM springs

(d)

Figure 18. Relative strain at time = 60 minutes forKECM = 10−3

and different values of KBM. The legend is the same for all the
pictures.



96 GIANLUCA D’ANTONIO, PAUL MACKLIN AND LUIGI PREZIOSI

Figure 19. Simulation of the basement membrane following apop-
tosis (the gap) and a recent mitosis event (the two smaller cells).
The BM conforms to the varied cell sizes, as expected.

Figure 20. Passive protrusion of cells into the stroma near weak-
ened BM segments: The 100 nm BM (red segments) is weakened to
10 nm thick (blue segments) near the 5th cell. The altered BM me-
chanical properties lead to increased membrane deformation. After
60 minutes, the cell is displaced 5.12 µm into the stroma (plotted
above). Inclusion of an active motile force would amplify this re-
sult, potentially including membrane rupture and full invasion into
the stroma.

times for quickly-growing tissues, the BM/ECM model is capable of simulating
interactions with large and small cells. See Section 5.3. Adding the volume change
dynamics of proliferation, apoptosis, and necrosis, as well as cell number changes
from proliferation and cell death, will be straightforward, allowing investigation of
the dynamics of tumor-basement membrane-ECM biomechanical interactions. We
are currently integrating the BM/ECM mechanics model presented here with the
full agent-based model of Macklin et al. [20] to investigate the impact of basement
membrane mechanics on in situ and invasive carcinoma progression. Indeed, recent
work by Kim et al. has demonstrated a significant impact of basement membrane
mechanics on DCIS progression [16]. Conversely, we are also interested in the impact
of stresses generated by proliferating cells and mechanical relaxations generated by
cell death [20, 22] on the evolving basement membrane morphology; these can also
be studied by integrating the BM/ECM biomechanics model introduced in this
paper with the full agent model in [20].

We ran simulations to test the key parameters–the elastic constants of the BM
and ECM–across several orders of magnitude (Section 5.1). We found that the
final shape of the membrane is determined by the relative balance of KBM and
KECM. When KBM dominates, we observe large deformations of the BM into the
lumen between cells, in an attempt to conform to the cell morphology. When KECM

is dominant, deformations are much more constrained. KBM also determines the
distribution of the BM segments on the surface of the cells. For small KBM, the
BM elastic force cannot overcome cell-BM adhesion and BM-ECM elastic force
to evenly redistribute BM nodes along the cell-BM contact area; larger values of
KBM facilitate this redistribution of BM nodes. In the elasto-plastic model, the
rate of relaxation r plays an important role, too: increasing the plastic relaxation
permits greater BM deformation. Because there are no external applied forces in
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this model, the center of mass of the cells and BM nodes is preserved. Hence, as BM
nodes are pulled towards the lumen, the cells are pulled slightly into the stroma.
As a result, BM-ECM springs are elongated (positive strain) between cells, and
slightly compressed (negative strain) nearest to the cells. This has implications for
the distribution of BM nodes along its length, particularly when considering the
impact of the cell morphology.

The cell morphology plays a critical role in the distribution of BM nodes. For
purely elastic deformations (or for shorter time scales relative to the plastic relax-
ation rate), the combination of cell-BM adhesion and BM elasticity drives the BM
to conform to the cell morphology, particularly for weaker values of BM-ECM elas-
ticity. For a circular (or spherical) cell morphology, the cell-BM forces equilibrate
at a fixed distance from the cell center, and the BM elastic force redistributes the
BM nodes along this distance, with fixed spacing when KECM = 0 (see Figure 12).
For KECM 6= 0, a nonuniform force BM-ECM force is introduced across the cell-BM
contact area: BM nodes near the edge (where there is net positive ECM strain) are
pulled towards the stroma, which tends to “sweep” them back towards the center
of the contact area. Nodes near the center of the contact area (where there is net
negative ECM strain) are pushed out from the stroma, which tends to sweep them
out towards the edge of the contact area. The net result is the clustering of BM
nodes between the center and edge of the contact area (see Figures 9-11).

Hence, we see that the cell shape strongly influences the distribution of BM
nodes. However, cells can also experience plasto-viscoelastic responses to strains.
The restorative force of the ECM springs should impart a lumen-directed force near
the center of the cell-BM contact area where ECM springs are compressed, and a
stroma-directed force near the edges (where ECM springs are elongated), causing
the cell to flatten. This, in turn, should facilitate a more even redistribution of the
BM nodes along the cell-BM contact area. This can be addressed in our modeling
framework by increasing the cell adhesive interaction distance (approximates cell
deformation [20]) and decreasing the relative strength of the cell-BM interactive
forces. Other approaches might include ellipsoidal cell morphology approximations
[6, 16], or applying our elasto-plastic model to the cell morphology. In this case,
the “BM” springs represent the cell membrane, and the “ECM” springs connect
the membrane to the center of mass or nuclear envelope. An alternative approach
would be to model each cell with multiple adhering agents, similarly to Newman’s
subcellular element model [28, 29]; in this case, we would use the same potential
functions for adhesion and repulsion between subcell agents, and only allow bound-
ary elements to adhere to neighboring cells and the basement membrane. We note
that such an approach would trivially model cell polarization by only allowing a
subset of the boundary subcell agents to adhere. We are currently investigating
these approaches.

The non-uniform membrane node distribution also highlights the potential im-
portance of nonlinear, non-Hookean spring effects in the basement membrane. For
a dense, tightly cross-linked matrix like a membrane, compression may be energet-
ically unfavorable compared to elongation, and may promote (neglected) bending
forces instead. If bending forces are not permitted (e.g. due to the elastic inter-
actions with the ECM), the BM springs would require KBM to increase quickly
with `eq − `. This should result in less clustering of BM nodes along the cell-BM
interface, and would also be more consistent with our current plastic reorganization
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model (plastic response is disallowed during compression). We will consider these
nonlinear spring effects in future work.

Now that we have identified the range of behaviors predicted by the model, we
must work to further constrain and calibrate the parameter values. Experiments
should be performed to understand the elastic forces of the membrane and ECM,
and their rate of plastic reorganization. Finally, in order to have more accurate pre-
dictions, we should introduce proteolytic degradation of the membrane and ECM:
In response to various microenvironmental signals, some cell may secrete matrix-
metalloproteinases (MMPs), a group of enzymes that promote degradation of colla-
gens and other matrix components during normal and pathologic tissue remodeling.
[5, 14, 15]. In case of tumor growth, MMPs may be overexpressed and unresponsive
to signals in tumor cells, tumor-associated fibroblasts (TAFs), and tumor-associated
macrophages (TAMs), resulting in extensive degradation and modification of the
basement membrane [15]. As we saw in Section 5.4, this creates a significant link be-
tween ECM and BM deformations,stresses generated by rapidly proliferating tumor
cells, and MMP-regulating signaling between tumor, stroma, and immune cells. We
are currently investigating a multiscale model of MMP transport and proteolytic
degradation of the BM and ECM capable of resolving the typical 100 nm BM thick-
ness and ∼10 µm MMP transport length scale [7]. The combination of membrane
deformation, increasing strains, and proteolytic membrane and matrix degradation
can create tears in the BM, allowing tumor cells to invade the stroma. This allows
progression from in situ to invasive carcinoma, ultimately resulting in metastatic
disease.
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Appendix A. Parameter values. In Table 2 we summarize the values of all the
parameters used in the model.
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