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ABSTRACT. A tumor is kinetically characterized by the presence of multiple
spatio-temporal scales in which its cells interplay with, for instance, endothelial
cells or Immune system effectors, exchanging various chemical signals. By its
nature, tumor growth is an ideal object of hybrid modeling where discrete sto-
chastic processes model low-numbers entities, and mean-field equations model
abundant chemical signals. Thus, we follow this approach to model tumor
cells, effector cells and Interleukin-2, in order to capture the Immune surveil-
lance effect.

We here present a hybrid model with a generic delay kernel accounting
that, due to many complex phenomena such as chemical transportation and
cellular differentiation, the tumor-induced recruitment of effectors exhibits a
lag period. This model is a Stochastic Hybrid Automata and its semantics is
a Piecewise Deterministic Markov process where a two-dimensional stochastic
process is interlinked to a multi-dimensional mean-field system. We instantiate
the model with two well-known weak and strong delay kernels and perform
simulations by using an algorithm to generate trajectories of this process.

Via simulations and parametric sensitivity analysis techniques we (i) relate
tumor mass growth with the two kernels, we (i4) measure the strength of the
Immune surveillance in terms of probability distribution of the eradication
times, and (4i7) we prove, in the oscillatory regime, the existence of a stochastic
bifurcation resulting in delay-induced tumor eradication.

1. Introduction. Tumor cells are characterized by a wide number of both genetic
and epigenetic events, which induce the appearance of surface neo-antigens that
may trigger the intervention of both the innate and the specific Immune System
[64, 66]. So, in last two decades a number of evidences have accumulated [36] in
support of Ehrlich’s Immune surveillance hypothesis [37], i.e. that the Immune
System may control the tumor growth and in some case also eliminate neoplasms.

The tumor-Immune system interplay is a very complex dynamical system and
has, consequently, multiple outcomes. For example, tumors that are able to escape
from the Immune control may in soem cases grow up to a large carrying capacity,
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although usually the host organism dies well before that this large equilibrium is
reached. In other cases, they may establish a dynamic equilibrium with the Immune
system so that the tumor remains in a microscopic undetectable “dormant” steady-
state [24]. They may also set in a oscillatory regime, which may be of two kinds:
“short term-small amplitude” oscillations [53, 72, 43, 62] and patterns of remission-
recurrence [69, 7, 68].

However, the above picture is incomplete since it does not take into account the
fact that the Tumor-Immune system interaction is also evolutionary: the neoplasm
may develop strategies to circumvent the Immune system action, thus restarting to
grow [73, 64, 36, 70]. This phenomenon termed “immunoediting” [36], is remindful
of an ecological adaptation [29, 30], and typically requires to complete a significant
fraction of the average host life span [36]. Quite interestingly it might negatively
impact on the effectiveness of immunotherapies [29].

As far as the mathematical modeling of tumor-Immune system interplay is
concerned, many mean-field deterministic and stochastic models have appeared
[55, 59, 58, 34, 24, 4, 28, 29, 30], some of them including delays [12, 71, 31].

Since the interaction of tumor cells with other kinds of cells - in our case Immune
system effectors - also involves the exchange of a number of chemical signals, tumor-
Immune system interplay is an ideal object of hybrid modeling where tumor and
Immune system cells are represented by discrete stochastic processes, and chemical
signals are modeled by mean-field equations [14, 27]. Thus, considering the intrinsic
noise of the model may allow for more informative forecasts than in the case of a
men-field based model [14].

In [14, 27] we proposed a hybrid version of the well-known Panetta-Kirschner
[55] mean-field model of the interlinked dynamics of tumor cells, effector cells and
Interleukins-2. The original model reproduces various kinds of biological phenom-
ena, including tumor size oscillations [53, 72, 43, 62, 68, 69], as well as growth up
to a carrying capacity or tumor dormancy. However it is unable to capture tu-
mor elimination by the Immune system. On the contrary this phenomenon is fully
captured by the hybrid model of [14], which was extended in [27] to account for
both interleukin-based therapies and Adoptive Cellular Immunotherapies, i.e. the
transfusion of autologous or allogeneic T cells into tumor-bearing hosts [51], and
model outcomes have been investigated under various therapeutic settings.

However, the above hybrid model did not take into account that the influence
of tumor size on the dynamics of effectors is not instantaneous since it is the result
of both transport of intercellular signaling and the maturation and activation of
T-lymphocytes mediated by B-lymphocytes [41, 65]. These and other phenomena
[41, 65] induce a remarkable lag period that must be taken into the account when
modeling the immuno-oncological processes.

Having this in mind, here we couple the mean-field equation for Interleukins-2
with a bi-dimensional delayed stochastic process. For the sake of the precision the
stochastic process will have a component that is not directly affected by the lag,
namely the dynamics of tumor cells, and a component that is directly affected,
namely the dynamics of the population of Immune effectors. The introduction of
the delay heuristically approximates the missing dynamical components. As we
shall see, despite the adopted abstraction being a highly macroscopic and simplistic
representation of tumor-Immune system interplay, it can still provide useful in-
sights in its understanding. Also, this new hybrid system with delay is a Piecewise
Deterministic Markov stochastic process [32, 9, 10]. As a consequence, numerical
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realizations of the model are obtained by generalizing the Gillespie-like Stochastic
Simulation Algorithm defined for the delay-free hybrid system in [14].

As far as the delay is concerned, in the mean-field literature two approaches
have been followed [56, 39]. The first consisting in the representation of the delay
as a simple constant deviation in the argument of some state variables [56, 57].
This approach has a great historical and mathematical relevance. However, from a
physical point of view it may only deemed acceptable in the case of the delay being
a random variable very narrowly distributed around its mean value, i.e. when the
ratio between the standard deviation of the delay over its mean value is sufficiently
small. Note that in such a case the density of the delay can be fairly approximated
by a Dirac’s delta function centered at its mean value.

The second approach consists in considering distributed delays [56, 39], i.e. delays
whose density is a regular bounded positive function, with unitary L; norm, of
course. This approach, which allows to more closely mimic the reality, leads to
integro-differential systems, where the integral part derives form taking into account
the distributed nature of the delay. The density of the delay is called delay kernel.
The constant delay case, thus, may be considered a limit case of a distributed delay,
where the delay kernel is a Dirac’s delta function.

Both the above classes of delay-differential equations have an infinite-dimensional
state space [56, 39], as it may easily seen by considering their solution requires the
knowledge of the delayed state variables in a past interval [tg — Timaz, o], Where Timaq
is the maximum considered delay and ¢y an initial time. In other words, one has to
know these variables in a infinite number of points. Note that there are classes of
delay kernel that allow to reduce the integral part of the integro-differential system
to a finite number of supplementary ordinary differential equations (ODEs) [56, 39].

In our hybrid model we shall follow the second approach. After setting our
problem in general framework with a general delay kernel, we shall particularize
our study the Erlangian kernels that allows the above-mentioned reduction to finite
dimensions.

The structure of this paper is the following: in Section 2 some background and
the delayed model is presented, with complete details on its formulation in terms
of hybrid automata and the underlying stochastic processes; algorithms for the
realization of such processes are discussed in Section 3; the results of our numerical
simulations are discussed in Section 4. Concluding remarks conclude this work.

2. Model definition. We start by recalling the model introduced in [55]. Two cell
populations, i.e. tumor cells T" and Immune system effectors E, and the molecular
population of Interleukins-2 (IL-2) I are considered. The hybrid model consists of
two equations for cells

b prT pel
T=rT(1-=-T| - ——F E = E—pupE +cT 1
( v ) grV +T ge+1 M )
and one equation for ILs-2, that is
, _pr TE
=—=—— —pu;l. 2
Vagv+r M @

Cells equations are obtained converting into exact numbers the densities T, and E,
of the analogous mean-field model of the ref. [27], i.e. T, = T/V and E, = E/V
where V' is the volume. Here the tumor induces the recruitment of the effectors at a
linear rate ¢T'(t). Also, ¢ is a measure of the immunogenicity of the tumor, i.e. cis “a



40 GIULIO CARAVAGNA, ALEX GRAUDENZI AND ALBERTO D’ONOFRIO

measure of how different the tumor is from self” [55]. Biologically, ¢ corresponds to
the average number of antigens expressed by each tumor cell. Interleukins stimulate
effectors proliferation, whose average lifespan is u;jl, and the average degradation
time for IL-2 is ,ufl. The source of interleukin is modeled as linearly depending on
both E and the T. Michaelis-Menten kinetics rules IL-2 production by the tumor
Immune-system interplay, effectors recruitment by their interplay with IL-2 and
effectors-induced tumour death. Finally, tumor growth is modeled with a logistic
curve with a plateau 1/b. In [14] it is shown that this model predicts a desired
tumor eradication via Immune surveillance, whereas the mean-field analogous does
not [55]. Adoptive Cellular Immunotherapies and Interleukin-based therapies have
been added to the model in [27], and the effectiveness of impulsive and piece-wise
constant infusion delivery scheduling investigated.

The advantage of employ a hybrid model with respect to a deterministic one
is that the hybrid setting allows capturing events such as the tumor eradication,
which cannot be forecasted in the deterministic case. This allows us to compute
the probability of eradication, i.e. P[T(t) = 0] for some ¢, given various model
configurations. These quantities can be interpreted as a measure of the strength of
the Immune surveillance.

Here we consider the case where the effect of the tumor-driven stimulation of the
Immune system is neither instantaneous nor deterministically delayed, but instead
it is affected by a delay, whose distribution is given by a general probability density
K (x) where f0+oo K(z)dr = 1. Thus, in a general kernel equation (1) reads as

E/: pEI
g +1

where a further deterministic variable Z is introduced, whose dynamics is given by

E — upE +cZ(t), (3)

“+oo
Z(t) = /0 Tt — 2)K (2)dx . (1)

Differently from [14], where {(T'(t), E(t))} is a stochastic process interlinked to a
linear scalar ODE with randomly varying coefficients describing I(t), here we have
a further integral equation describing the dynamics of the delayed variable Z.

The general case is quite difficult do deal with. Thus, here we shall assume that the
delay kernel K (x) belongs to a family of probability distribution with a prominent
role in the theory of dynamical systems with delays, namely the Erlang family

a

EI‘]M (t) m

(at)M~1emat, (5)
The Erlang distribution generalizes the exponential distribution, i.e. for M = 1 it is
exponential, the average delay is § = M /a and its standard deviation is o = 0/ VM.
We also remark that for M — 400 the Erlang converges to a Dirac distribution.

The Erlang distribution has a noteworthy property: the integral equation for
Z(t) is equivalent to an additional linear ODE system. Indeed, defining the vector
of additive state variables W = (Wy(t), ..., Wa(¢)), and considering the following
M-dimensional linear differential system

Wi(t) = a(T(t) — Wi(t))
. (6)
Wi (t) = a(Wh—1(t) — War(t))
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FIGURE 1. SHA and state space of its underlying PDMP.
In top we draw mode ¢ = (¢r, gg) with its outgoing transition and
part of of the incoming ones. In bottom we plot the state space
N x N x RY*! for the PDMP [32] underlying the hybrid model
with M-dimensional Erlang kernel. Once the process enters state
(¢r,9E,qr-w) the only movement gradient is on the z-axis, i.e.
the horizontal component (gr, ¢g) is fixed and the process moves
according to the vertical vector field, denoted by the empty arrows,
determining I(t) and W (¢). The process persists moving according
to equation (9), and then moves on the N x N sub-space, i.e. the
horizontal discrete grid denoted by the full arrows, according to
equation (10).

one can show that
Z(t) = Wa(t). (7)

Note that by defining the matrix A C RMXM a9 A;; = —a, and, for ¢ > 1, as
A;i—1 = a, and 0 elsewhere, and by defining the transpose vector u = (1,0,...,0)
one may write system (6) in the compact notation W'(t) = AW (¢) + aT(¢t)u. It is
useful to define the row vector p = (0, ..., 1), so that Z(t) = pW (t). The additional
system (6) is again a linear differential equation, although vectorial, with random
coefficients, actually constant in the intervals between two consecutive stochastic
events.

This model is a Stochastic Hybrid Automaton (SHA, [9, 10]) with modes in Nx N
recording cellular concentrations. This SHA is an extension of the one for the delay-
free case [14]. The SHA consists of a mode for each possible value of E and T, i.e.
a mode ¢ = (¢g,qr) to count g, and gr effector and tumor cells, with inside the
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vector fields of equation (2) and equation (4), i.e. such a mode contains

18) = By + (I, = By)exp (= pu(t —1,)) @
W(t) = grh + e~ (w, — qrh),
where h = (1,...,1) is a row vector, I(t,) = I, and W(t,) = w, are initial
conditions at the mode entrance time ¢, and
B — < PIqT4E ) 1
! griV2+aqrV ) pr’

The automata execution switches probabilistically between modes, while continuous
paths of I(t), W(t) and, consequently, Z(t) = Wy(t) are determined. When the
automata jumps, at time ¢4, from mode ¢ to mode ¢’, at time t,/, the initial condition
of I (resp. W), i.e. I(ty) (vesp. W(ty)), is set equal to the last evaluation of I,
ie. I(ty) (resp. W(ty)). Jumps between modes are determined by the time-
inhomogenous stochastic events, i.e. the jump rates triggering changes in F and
T depend on I(t) and Z(t) [14, 15]. The exit times for mode ¢ are given by the
time-dependent cumulative distribution function [15]

-
Pqlr] = exp <Z/ ig(tq + t)dt> (9)
— Jo

3
and the probability of jumping to mode ¢’, given the exit time 7, is

Yico Baltg +7)

’ f = 1 Jp— !

Pold 7] =4 Siaiglta+7) Q={jlqa+vi=4d}
0 otherwise .

(10)

Stochastic events as 4 and a3 4 trigger jumps to the same new mode, i.e. jumps from
q = (qg,qr) to (gg —1, qr), so their probabilities are joined in Q. Here the Gillespie-
like [44] notation is used so v; is the j-th column of the system stoichiometry matric

/1 -1 =10 0 0
=lo 0o o0 1 -1 1

and the jump rates in ¢ = (g7, qg) are the time-dependet propensity functions [45]

a1,4(t) = raqr a2,q(t) = bV " 'qr(qr — 1)
a3,4(t) = (prarqe)/(9rV + qr) a1,4(t) = [peael(t)]/lge + 1(1)] (11)
as¢(t) = LEgE agq(t) =cZ(t).

Notice that all but a4, and ag 4 are time-homogenous jump rates depending only
on constants, rather than the deterministic flows. The overall underlying stochastic
process is not homogenous, as in [14, 15]. In top panel of Figure 1 we graphically
represent mode g = (¢r, gg) with its outgoing transition and part of of the incoming
ones.

Executions of this SHA are also trajectories of the underlying Piecewise De-
terministic Markov Process (PDMP) [32]. This very general stochastic jump pro-
cess flows deterministically over a vector field and generates left-continuous paths
triggered by (i) hitting user-defined boundaries of the state space and (i) time-
inhoumogenous jump distributions, which are actually linked to the vector field. For
this case, the underlying PDMP has no hitting boundaries but only time-dependent
jump rates linked to the vector field composed by the flows for I(¢) and W(t). The
state space for the PDMP is N x N x Rf“, as shown in lower panel of Figure 1.
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Algorithm 1 SSA [45] with time-dependent propensity functions to realize trajec-
tories of the PDMP [32] underlying the Stochastic Hybrid Automata.

Input: state (Ty, Eo, Ip, wo), start time g, stop time ts0p;

set initial mode q < (¢1,,qE,) and set I(to) = Iy, Z(to) = Wo;

while t < 4, do
let 1 ~ UJ0, 1] determine the mode exit time 7 as Py[r] = 1/r1 according to
equation (12), jointly solve I(t) and Z(t) according to equations (7-8);
determine the jump rates a;4(t + 7), set I(t +7) and Z(t + 7);

6:  jump to mode ¢’ with probability P,[¢" | 7];

7: end while

o

In there, once the process enters state (¢r, g, qr-w) the only movement gradient
is on the z-axis, i.e. the horizontal component (¢r,¢g) is fixed and the process
moves according to the vertical vector field. The process persists moving according
to equation (9), and then moves on the N x N sub-space, i.e. the horizontal discrete
grid, according to equation (10).

3. Model simulation. We present here an algorithm to realize trajectories of the
the underlying PDMP, an extension of the algorithm presented in [14]. Algorithm 1,
is based on the Gillespie Stochastic Simulation Algorithm (SSA) [44, 45] accounting
for time-dependent jump rates.

The algorithm works by determining, at each iteration, both the exit time from
the current mode and the next mode. So, when at time ¢, the automaton enters
a mode ¢, the exit time 7 (see step 4) is determined by the parallel solution of
I(t) and Z(t), t > t4, and P,[7] as triggered by the jump rates a;4(t). As in [14],
samples from P,[7] are obtained by a unit-rate Poisson transformation, i.e.

zi: /Or Qi q(tg +t)dt =1n (i) (12)

with r uniformly distributed.
Once the jump time is determined, the new mode is chosen by a weighted prob-
abilistic choice depending on a; (¢t + 7), i.e.

j—min{n’r2~a0(x,t+7)§zai(x,t+7)} (13)

i=1

with 79 uniformly distributed and ag(x,t+7) = Zf\il a; o(t+7). Algorithm 1 itera-
tively performs a realization of the PDMP by starting from an initial configuration
(To, Eo, I, wo). In Appendix A further comments on this algorithm are discussed.

3.1. Weak and strong kernels. Among the wide family of the Erlang kernels,
we focus on two well known ones: the weak and strong delay kernels [39]. These
kernels are successfully applied in many fields of theoretical biology: epidemiology
[8], behavioral epidemiology [25], ecology of prey predator systems [5, 75, 39], stem
cells proliferation [20], dynamics of neural networks [49, 50], theoretical population
biology [67, 48], immunology of infections [26] and systems biology [40].

The former is defined for M =1, i.e. it is an exponential distribution

Kweak(t) = ae—at 5
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whereas the latter is defined for M = 2 as
Kotrong (t) = a’te .

By considering that if M = 1 then a = 1/6, whereas if M = 2 then a = 2/6,
further simplifications of the PDMP jump equation (12) are possible, as discussed
in Appendix B.

3.2. Kinetic parameters. For the sake of comparing the effect of the above men-
tioned kernels on the interplay outcome, we use the same values of the model pa-
rameters used in the determinsitic works by D. Kirschener and coworkers [55, 54].
The baseline growth rate of the tumor is 7 = 0.18 days—! and the organism carry-
ing capacity is b = 1/10°ml~!. The baseline strength of the killing rate of tumor
cells by E, of the IL — 2-stimulated growth rate of E' and of the production rate
for I are, respectively, pr = 1ml/days, pg = 0.1245days~! and pr = 5pg/days.
The corresponding 50% reduction factors are gr = 10° mi~!, gg = 2107 pg/l and
gr = 103 ml~!, respectively. The degradation rates are pr = 0.03days' for the
inverse of the average lifespan of E and u; = 10days™! for the loss/degradation
rate of ILs. Finally, the reference volume is V = 3.2ml.

These values pertain to mice [54, 55], which utilized various works appeared in
experimental biophysics literature on tumor kinetics, for example [33, 59], where
some accurate fitting of real data concerning laboratory animals were performed.
Volume V, instead, has adopted in [14] by considering the average blood volume of
a chimeric mouse. The value of # and ¢ are varied in each configuration.

4. Results. With the purpose of investigating the effect of different delay kernels,
and of different values of the average dealy 6, on the tumor eradication time, if any,
and on the tumor growth size, we performed extensive simulations of various model
configurations. All the simulations have been performed by a JAVA implementation
of the model; simulation times decrease as T and F increase in size, spanning from
few minutes to some hours.

We always used the initial condition (Tp, Eg, In, wo) = (1,0,0,0) [14].

4.1. The eradication regime. For ¢ = 0.02, a value used in Figure 2 of [14],
we used 6 € {0,0.5,1,1.5,2,2.5,3} days since, for § > 3, it is shown in [31] that
the tumor mass grows up to the carrying capacity of the organism, i.e. 1/b. We
remark that 6 > 3 is biologically unrealistic [31]. We performed 10 simulations for
each delay configuration, and we plot the averages tumor and effectors growth, i.e.
(T'(t)) and (E(t)), in Figure 2. In there, we show both weak and strong kernels.
Looking at Figure 2 one can notice that the average number of tumor cells (T'(¢))
grows faster and up to larger maximum values in correspondence of higher magni-
tudes of the delay, for both the weak and the strong kernel, even if for each delay
value the model still predicts tumor eradication. Analogously, this relation is main-
tained also with respect to the average number of effector cells (E(t)). Furthermore,
for the same value of delay, both the maximum value and the overall number com-
puted on the whole simulation time of both the tumor and the effector cells are
larger in the strong kernel case than in the weak kernel one. The differences in
the magnitude of the variables are indeed remarkable, e.g. in the case of no delay
(6 = 0) the tumor cells reach an average maximum value of around 108, while for
the highest considered delay - i.e. 6 = 3 - this value is 4 times bigger in the case of
weak kernel and almost 5 times bigger in the case of strong kernel. We also remark
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FIGURE 2. Tumor and Effectors growth. We plot the average
growth (T'(t)) and (E(t)) as of 10® simulations with ¢ = 0.02, § €
{0,0.5,1,1.5,2,2.5,3} and (To, Eo, Iy) = (1,0,0). We compare the
delay-free model, the weak (M = 1) and the strong kernel (M = 2).
Days and number of cells are represented on the axis.

that the average peaks for both the tumor and the effector cells are reached slightly
later in time for larger values of delays.

In Figure 3 we can observe the probability densities of the tumor eradication time,
i.e. P[T(t) = 0]. Interestingly, the peaks of the curves concerning both the strong
and the weak kernel are observed in very similar moment in time -i.e. around 115
days - for all the considered values of delay and significantly sooner than the peak
regarding the model with no delay, i.e. around 125 days. We can hypothesize that,
even though larger values of delays imply a larger and faster growth of the tumor
mass, the Immune system reacts in a more efficient way and, as a consequence, the
tumor eradicates quicker. This not expected result clearly points at the important
role of delays in controlling tumor expansion.

4.2. Parametric sensitivity analysis. We used a parametric sensitivity analysis
(PSA,[22]) technique to quantitatively characterize the influence that a variation of
the delay value has on the number of tumor cells, within the eradication regime.
This PSA technique was firstly introduced to detect the influence of arbitrary large
variations of a key input parameter (6 in our case) on the overall probability dis-
tribution of an output variable (P[T'(¢)] in our case). Other approaches, instead,
consider aggregate model variables such as the distribution mean [18].
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FIGURE 3. Tumor eradication time probabilities. We plot
in the left panel the empirical probability density of the tumor
eradication time, i.e. P[T(t) = 0] with ¢ € N, for ¢ = 0.02,
(To, Eo, Io, wo) = (1,0,0,0) and four values of delay 6 € {0,1,2,3}.
We compare the delay-free model, the weak (M = 1) and the strong
kernel (M = 2).

In this PSA the model sensitivity to 6 is defined as a function of the 6 itself. In
detail, the sensitivity of P[T'(t)] as a function of time and 6 is defined as [47]

Sr(t,6) :/N IP[T(t) = 2]

00
where Pp[T'(t)] is the probability of the number of tumor cells, given a value of 6
and N is the domain of integration of x: we are indeed considering the discrete part
of the PDMP. Notice that Py[T'(t) = ] is the solution of the master equation of
the model for a given # and that we consider the normalized sensitivity values by
multiplying for Py[T(t) = x].

The sensitivity of the model with respect to any value of time and 6 is so given
by a Lagrange interpolation of the various St(t,6), by means a polynome of order
D —1, being D the number of distinct considered delays, see the left panel in Figure
4. We remark that this technique is particularly useful here because, by considering
distinct delay kernels, our goal is to understand whether the system may be more
or less sensitive to variations of the delay in some region of the parameter’s space.

Finally, we restrict the sensitivity measure to time by defining

PolT(t) = x]dx. (14)

Sr(t) = St(t,0)do (15)
Qo
where the finite domain 20 = {0.1k | 0 < k < 30,k € N} for 0 is used. The
resulting curve intuitively represents the area below the 3D curves in Figure 4, and
it is evaluated by performing 10? simulations for each value of 6.
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FIGURE 4. Parametric sensitivity analysis. In top panels the
3-D representation of the sensitivity curves Sr(t,#), plotted for
each delay # = 0.1k (0 < k <30, k € N), and ¢ € [0,200] as from
equation (14). These are obtained by 3 x 10° independent simula-
tions, for the weak (left plots) and the right kernel (right plots). In
bottom panels we plot the corresponding sensitivity curves St (t)
as from equation (15).

Looking at Figure 4, one can immediately notice that, despite a significant dif-
ference in the magnitude, both kernels display a profoundly similar behaviour. In
particular, the system appears to be highly sensitive to variations of the delay only
in two circumscribed regions, i.e. in the intervals [10,25] and [115,165], while in
the other regions it seems to be almost insensitive. Besides, the height of the sec-
ond peak doubles the first peak in the weak kernel and is 50% larger in the strong
kernel. This outcome firstly points at the importance of defining the sensitivity as
a function of time, as we deal with a complex dynamical system whose behaviour
can deeply variate in course of time.

One possible explanation of this result is related to the dynamical properties of
system: the variation of the speed of the Immune response, which clearly depends
on the magnitude of the delay, strongly influences tumor expansion, either favoring
or contrasting it. This only if the tumor is still in its preliminary phase, i.e. the first
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FIGURE 5. Dumped oscillations in the delay-free case. We
plot the variation in time of T'(¢) (first row) and E(t) (second row)
for a single run with ¢ = 0.035 and # = 0. The initial configuration
is (To, Eg, In) = (1,0,0). On the z-axis days are represented, on
the y-axis number of cells. In third row we plot the phase space of
the system restricted to T (y-axis) and E (z-axis).

peak, or has reached its maximum size, i.e. the second peak, while in the Immune
suppression phase it is substantially not influential.

Furthermore, by examining St (¢, 6) (3D plots) it turns out that in both cases the
sensitivity curves in correspondence of the second peak is bell shaped. This means
that an identical variation of 6 starting from distinct baseline values can indeed
provoke distinct repercussions on the output of the model.

Finally, we highlight the considerable difference in magnitude with regard to the
two distinct kernels, being the strong kernel model highly more sensitive than the
weak kernel one, at least with respect to the relevant intervals. This phenomenon
could be due to intrinsic nature of the considered delays. Given that the effect of
the strong kernel-related delays on the dynamics of the system is, on average, more
intense that that induced by weak kernel ones, so is the sensitivity of the system to
their variations.

4.3. The oscillatory regime. In order to investigate the role of delays for the
system in the oscillatory regime, we performed simulations with 0.03 < ¢ < 0.035,
a region for which both the deterministic system [55] and the therapy-free hybrid
model [14] predict tumor sustained or dumped oscillations. We compare the effect
of the delay kernels in the oscillatory regime for ¢ = 0.035, # = 1.5 and initial
configuration (Ty, Eo, Iy, wo) = (1,0,0,0) (Fig. 6) against the delay-free case, as
sown in Fig. 5. Here we simulate the model for around 27 years, i.e. 10° time units,
a value far beyond the life expectancy of a mouse — on which parameters are fitted
— but which serves mainly to prove the stability of the attractor, if any.

One can note that, while in the delay-free case the tumor mass tends to a unique
asymptotic value, for 6 = 1.5 and for both the kernels, the dynamics apparently
ends up in stochastic sustained oscillations. In particular, while in the delay-free



HYBRID IMMUNO-ONCOLOGICAL MODEL WITH DISTRIBUTED DELAY 49

T (Weak kernel)

“\\r\\u!‘H(\\r\\\J\\“\H"H\‘“\\H(\\\!WH\\Hyummwwm

Days

S T (Strong kernel) §x10°

4

T —

2!
|

]

Days

i E (Strong kernel) E (Weak kernel)

2% 25210

2' 2
‘f:“‘\“‘HMU“HW”HHW\‘WWWW”‘\HWWW“ ‘f”"WH“"“WH”W“H““H\”“HHHW“‘W””WW”‘

FicURE 6. Effect of weak and strong delay kernels on stable
oscillatory attractors. We plot the variation in time of T'(¢)
(first row) and E(t) (second row) for a single run with ¢ = 0.035
and 6 = 1.5, with regard to the strong (left) and the weak kernel
(right). The initial configuration is (To, Eo, Iy) = (1,0,0). On the
zr-axis days are represented, on the y-axis number of cells. In third
row we plot the phase space of the system restricted to T' (y-axis)
and F (z-axis), for the strong (left) and the weak kernel (right).

case the oscillations are dumped up to an equilibrium value of around 10° cells, for
both the kernels and 6 = 1.5, the values of T" periodically range from around 0 and
around 3 x 10°, the peak being around 4.5 x 10°. In the bottom plot in Fig. 5
we display the phase space of the system only considering T and E. We remark
that in [63, 61, 60] it is shown that amplified oscillations may indeed appear as a
consequence of the introduction of delays. It is also important to notice that no
significant differences are detectable between the weak and the strong kernel case,
with regard to the properties of the oscillations.

An interesting correlated phenomenon is then observed, that is the eradication
of the tumor in a relevant number of cases. While in the delay-free case none of
1000 simulations led to the eradication of the tumor, in 140 and 204 simulations
out of 1000 for, respectively, the weak and the strong kernel case with § = 1.5
the eradication was actually observed, usually just after the first oscillation. This
outcome points at the existence of a stochastic bifurcation close to § = 1.5, in
which a switch from the limit cycle to the null attractor 7' — 0 is indeed possible.
In Figure 7 one can observe the empirical probability density of the eradication
time, i.e. P[T(t) = 0] with ¢t € N, for both the weak and the strong kernel case.
Also in this case, we do not detect remarkable differences between the two cases
and this hints at a rather similar influence of the two distinct delay kernels on the
overall dynamics.

In order to quantify the strength of the null attractor we also plot in Figure 7
the probability of switching to the attractor against the delay value. In there we
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FIGURE 7. Stochastic bifurcation for 6 = 1.5. In top panel
we plot the empirical probability density of the eradication time,
ie. P[T(t) = 0] with ¢t € N, for ¢ = 0.035, § = 1.5 and
(Ty, Eo, 1o, wo) = (1,0,0,0), for both kernels. This probability is
evaluated by the 140 (weak kernel) and 204 (strong kernel) cases,
out of 1000, in which the system jumps to the null attractor. In
bottom panel we quantify the probability of switching to the at-
tractor P[T'(t) = 0]6] against the delay value, for both kernels.

use 6 € [1,2] and we show both kernels; this plot is obtained by discretizing 6 every
0.1 units, and performing 1000 simulations for each kernel and for each delay.

The above illustrated outcome of our hybrid model is deeply different from that
of the original mean-field model, for both types of kernels. Namely, in Figure 8
we show deterministic simulations of model with weak delay kernel, shown in left
panels, and also with strong delay kernel, shown in right panels. In both cases we
considered 6 € {0,0.5,1,1.5,2,2.5,3}, and the system was simuated up to day 400.
The initial condition was

0 t<0
Tt: s E:IZO,
®) {1 t=0 0=

thus leading to W1(0) = 0 in the linear system (6) for the weak kernel, and to
W1(0) = W2(0) = 0 for the strong kernel. It is of interest to notice that, although
the structure of the two kernels are quite different, the plots are very similar.
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FIGURE 8. Mean-field model. We plot deterministic simulations
of model (1-2) for ¢ = 0.035, § € {0,0.5,1,1.5,2,2.5,3} (higher
peaks for higher values of 0) and (Tp, Eo, Iy) = (1,0,0), T'(t) =0
for t < 0. Notice the tumor resting period in ¢ € [120,160] (right
zoom for 6 € {1,1.5,2}), the length of which depends on 6, is the
one in witch the hybrid system probabilistically switches to the null
attractor for 7. On the z-axis days are represented, on the y-axis
number of cells.

In both cases one may observe a ‘tumor resting’ interval ¢ € [120, 160], where
the tumor size is very small, and whose length depends on 6. OF course, also the
minimal value of T' depends on 6. For example, for § = 2 the predicted minimum
tumor size is smaller than one cell, ad remains very small for many days, and for
6 = 1.5 this minumum vaue is 10 cells about.

In this resting period, instead, the hybrid system stochastically switches to T = 0,
which is an adsorbing state. As in [14], this behavior confirms the importance of
adopting the hybrid modeling of the tumor-immune system interplay.

5. Conclusions. In this paper we study the effect of Erlang-distributed time delay
in effectors recruitment in a tumor—Immune system interplay hybrid model. Namely,
in our simulations we considered the exponential and the strong kernel. The model,
suitably extending a well-known mean-field model [55], was proved to be more
informative to forecast onco-suppression by the Immune system [14] as a conjunction
of strong intrinsic tendency of the tumor-Immune system to oscillate, which was also
evidenced by the deterministic models [55, 23], with the intrinsic stochastic nature
of the studied phenomena, fundamental when the tumor cells and/or the Immune
system effectors reach low numbers.
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Of course, modeling tumors, and in particular tumor-Immune system interplay,
requires considering manifold cellular types and chemical entities at multiple tem-
poral and spatial scales. As a consequence, tumor growth and antitumor therapies
are ideal objects of hybrid modeling, as we have shown in [14, 27]. We stress here
that hybrid models may have various degrees of detail, and that in [14, 27] we
focused on a relatively simple, but effective, approach where spatial scale is not
directly represented. However, note that a direct and fine inclusion of the spatial
scale and of some complex phenomena such as differentiation and activation of T-
lymphocytes is currently unfeasible, also for a lack of systematic data [12]. A way
to indirectly consider spatial chemical transportation of intercellular signals, as well
as of composite phenomena, e.g. cellular differentiation and division, is represented
by the inclusion of delays in the hybrid model of [14]. The lags, indeed, heuristically
allow to represent the influence of the above phenomena, and in particular to model
the fact that the influence of tumor on effectors recruitment and proliferation is not
instantaneous. The modeling of the delays is by no means simple, and here we
adopted the approach of representing them with suitable probability densities, i.e.
the Erlang functions successfully adopted in many fields of theoretical biology.

By the use of supplementary variables we contextualized this model within the
framework of Stochastic Hybrid Automata, so to give it a semantics in terms of
Piecewise Deterministic Markov Processes [32]. This is a similar approach to that
followed in [14], but for a bigger system extended with Erlang-distributed delays.
We present a novel algorithm to simulate this extended hybrid model and we analyze
it under various configurations. Since an analytical study was not feasible, we
performed intensive numerical simulations by adopting the realistic constellation of
parameters also employed in [14], for both considered kernels.

First, for both kernels and values of the antigenicity parameter ¢ that does not
induce stochastic oscillations in absence of delay, we quantified the effects of various
average delays on tumor mass growth. Also, we determined probability distributions
of the tumor self-extinction time, when possible. Then, under these configurations
we also performed a parametric sensitivity analysis technique, in order to link the
tumor growth to the delay amplitude 6.

Finally, for values of ¢ inducing an oscillatory regime in absence of delay, our
simulations showed that the presence of delays may induce an unexpected self-
suppression of the tumor. In other and more mathematical words, our simulations
proved the existence of an oscillation/suppression transition, which was not present
in the non-delayed hybrid model. Note that, in line with the general definition
of Zeeman for random continuous dynamical systems [74], the phenomenon here
observed is a stochastic bifurcation since here a changes in the characteristics of
the density for varying delays. In other words, 6 can be considered as the ‘tunable’
bifurcation parameter.

Summarizing, despite our model is to some extent a toy-representation of the
real tumor-Immune system interplay, nevertheless it can provide useful and novel
insights on the manifold possible outcomes of this fundamental and complex inter-
action.

We are currently investigating also the case of the presence of a constant delay,
i.e. a Dirac kernel, in effectors recruitment [15]. Note that the SHA here proposed
is deeply different from the one describing the system with Dirac kernel [15]. In
fact, although the constant lag structure may appear simpler than the one here
considered, in reality the Dirac delay kernel is a generalized function, i.e. a more
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complex mathematical entity. It follows that in order to account for equation (1)
in [15] a clock structure of a Generalized Semi-Markov Process (GSMP) [46] has to
be superimposed to the SHA for the delay-free case '

As far as future works are concerned, the inclusion of active and passive im-
munotherapies, as those modeled in [27], and of immuno-editing mechanisms, as
those modeled in [29, 30], would be a first important step. Moreover, the basic
model [55] itself needs some improvements. For example, instead of a linear anti-
genic effect ¢T'(t) it might be more appropriate to consider a saturating antigenic
effect triggering the Immune system. Concerning instead the type of delays consid-
ered, more complex integro-differential delay kernels could be used, e.g. power-law
fading kernels. Finally, the mathematical characterization of hybrid automata with
delays seems to be missing, thus suggesting possible extensions to the hybrid au-
tomata theory, along with their analysis techniques.
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Appendix A. Model simulation. Algorithm 1, works by determining, at each
iteration, both the exit time from the current mode and the next mode. So, when
at time ¢, the automaton enters a mode ¢, the exit time 7 (step 4) is determined
by the parallel solution of I(t) and Z(t), t > t,, and P,[7] as triggered by the jump
rates ajq(t). As explained in Section 3, samples from Pg4[7| are obtained by the
unit-rate Poisson transformation (step 4) in equation (12). It is worth nothing that
for a time-constant propensity functions it holds the simplified equation

/ gty + 1)t = a1 g(t,)
0
so formula (12) rewrites as
T 1
> rwalt)+ Y[ttt 0d = () _
i€{1,2,3,5} ic{4,6} 70 1

Further simplifications are indeed possible, in fact

’ P1gE ge + 1,
tq +t)dt = 1 16
/0 a4qlts +1) « {T'MOH_QE n(—Bq—l—eTwa—i-Iq)} (16)

/ ag,q(tq +t)dt = cphgrt + cpAfleAT(wq — qrh)
0

with o = By + gg. The top equation is first given in [14]. Note that if the average
delay 6 is very small it is fOT ag,q(tq +t)dt = cphgrT, as expected.

The algorithm performs a realization of the process starting from an initial con-
figuration (Tp, Eo, Iy, wo) but, if the history of T'(t) is known for tpien < t < 0,
where tpitn < 0 is the birth date of the host organism, an extended initial condition
for W could be defined as

W(0) = / ’ T (x)dx .

thirth

Appendix B. Weak and strong kernels. The “weak” and “strong” delay ker-
nels [39] defined in Section 3.1 correspond to M =1 and M = 2, respectively. Since
if M =1 then a = 1/0, whereas if M = 2 then a = 2/6, we have that when M = 1,
i.e. Z(t) = W(t), the generic equation (16) rewrites as

/ a6,q(tg +t)dt = ¢ {qTT + awq;QT]
0


http://www.ams.org/mathscinet-getitem?mr=MR2024382&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0928950&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2572545&return=pdf

HYBRID IMMUNO-ONCOLOGICAL MODEL WITH DISTRIBUTED DELAY 57

with W(ty) =wg and a =1—€e 7.
Differently, if M =2, i.e. W(t) = (Wy(t), Wa(t)) and Z(t) = Wa(¢), then

T W2,q q1 —aTt «a
agq(tqy +1)dt = c |qrT + a—"—+ (w1, — qr) (*Te + g)
0

with W(ty) = (w1,4,w2,4) and a =1 —e™%7.
Finally, note that for M = 2, when the SHA jumps from W (t;) = (w14, wa,4) to
W(tq/) = (wl’q/,’wgfq/) it holds
Wi,y =4qr + e o (w1, — aqr)
W, = qr + ¢~ [(wa,q — qr) + aly(wig — qr)]

with Ay = tg — t4. These last simplified equations can be used while evaluating
steps 4 and 5 of Algorithm 1.
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