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Abstract. The vascular endothelial growth factor (VEGF) is known as one
of the main promoter of angiogenesis - the process of blood vessel formation.

Angiogenesis has been recognized as a key stage for cancer development and

metastasis. In this paper, we propose a structural model of the main molecu-
lar pathways involved in the endothelial cells response to VEGF stimuli. The

model, built on qualitative information from knowledge databases, is com-
posed of 38 ordinary differential equations with 78 parameters and focuses on

the signalling driving endothelial cell proliferation, migration and resistance

to apoptosis. Following a VEGF stimulus, the model predicts an increase
of proliferation and migration capability, and a decrease in the apoptosis ac-

tivity. Model simulations and sensitivity analysis highlight the emergence of

robustness and redundancy properties of the pathway. If further calibrated
and validated, this model could serve as tool to analyse and formulate new

hypothesis on th e VEGF signalling cascade and its role in cancer development

and treatment.

1. Introduction. Cancer angiogenesis is a crucial process by which endothelial
cells from pre-existing blood vessels are recruited through secretion and signalling
of growth factors mainly produced by tumour and stroma cells. The process leads
to the formation of new blood vessels improving oxygen and nutrient supply to the
tumour [21, 12]. The vascular Growth Factor (VEGF) and its receptors (VEG-
FRs) are often referred as key molecules of this process. The VEGF family com-
prises VEGF-A, VEGF-B, VEGF-C, VEGF-E, PlGF (placenta growth factor) and
svVEGF(snake venom VEGF). Each of these genes can undergo alternative splic-
ing and generate several isoforms [60]. VEGF165 is the predominant isoform of
VEGF-A and is involved in the recruitment of endothelial cells and change in vessel
permeability during the process of angiogenesis [60, 19].

VEGF165 can bind several specific tyrosine kinase receptors such as VEGFR-1
and VEGFR-2 [19]. VEGFR-2 appears to be the main receptor involved in patho-
logical angiogenesis, and stands thus as the target of several antiangiogenic drug
compounds [47]. VEGF165 binding to the VEGFR-2 leads to the phosphorylation
of the intracellular kinase domain of the receptor, which can then activate the three
main molecular pathways of the endothelial cells, namely, proliferation, migration
and survival [18, 13].
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Several drugs have been developed with the aim of inhibiting the process of angio-
genesis. These therapeutic compounds target the binding of VEGF to its receptors
either by “capturing” the ligand before its binding or by inhibiting the phosphoryla-
tion of the receptor kinase domains which normally results from the binding [20, 17].
VEGF can be trapped by large molecules such as monoclonal antibodies (MAbs).
For example, Bevacizumab is one of the famous MAbs developed to inhibit the
process of angiogenesis. Receptor tyrosine kinase inhibitors (RTKis) are in general
small molecules. Sunitinib and Sorafenib are two recently developed RTKis. In ad-
dition to these two classes of drugs, innovative compounds also attempt to inhibit
the molecules within the signalling cascade. For instance, Enzastaurin inhibits the
activation of the proteine kinase C (PKC) activation [45].

Modelling of signalling pathway is a quite recent and growing field of research also
referred as “Systems Biology”. Models generally consists of discrete or continuous
mathematical formalisms describing the time-evolution of (part of) the molecules
composing the signalling cascade. In particular, continuous models generally involve
several coupled ordinary differential equations (ODEs) based on mass action kinetics
and Michaelis-Menten functions.

The studies of such complex models have driven the identification of some re-
current properties. Among them, robustness, as the capacity to resist to severe
perturbations, and redundancy, as alternative ways to generate an output in the
face of perturbations, seem to be common emerging properties of these complex
living systems [14, 7]. These two traits were also highlighted in the context of
cancer development [34] and in particular for the epidermal growth factor receptor
(EGFR) pathway [54, 37].

The VEGF receptor has received less attention even if the corresponding sig-
nalling cascade is partially described in the literature [47, 58, 15].

An adjacent field of research, namely “Biomathematics”, is also taking advantage
of systems biology models to develop multiscale models of cancer. In this approach,
molecular models describing intracellular signalling pathways are coupled to cel-
lular and/or tissue description of tumour growth and treatment. Recently, Wang
and co-workers developed a multiscale model of non-small cell lung cancer growth
integrating a model of the the EGFR pathway which “pilots” the behaviour of cells
in a 2 dimensional lattice ( [64]). Scianna and co-workers also proposed a multiscale
model of vasculogenesis by coupling a cellular potts model (CPM) describing en-
dothelial cells with a simplified partial differential equation model of VEGF-induced
molecular reactions [55]. Finally, we have also proposed a multiscale model of avas-
cular tumor growth by integrating a discrete boolean-like gene regulatory network
regulating tumour cell prolifer ation, quiescence and apoptosis [52].

The objective of the present work was to develop a structural model of the
signalling pathways downstream VEGFR-2 based on qualitative knowledge found
in the literature and dedicated databases. The model was used as a simulation tool
to explore the system and its complexity.

2. Methods.

2.1. Model building. The model was built based on available literature knowledge
and dedicated databases on gene regulatory networks. Two sources of information
were mainly used to design the structure of the model. The first is Pubmed1 from

1http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed
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which systematic research through the Mesh ontology was performed. The second
was the Kyoto Encyclopedia for Genes and Genomes2 (KEGG) which presents a
structural map of the VEGF signalling pathway. Based on these information, our
model contains three main pathways downstream the receptor VEGFR-2, namely
proliferation, migration and survival. It is schematically represented in Figure 1
and relies on the following assumptions:

• VEGF165, further simply denoted VEGF, binds to VEGFR-2 located at the
surface of endothelial cells which leads to the formation of homodimers and
to the auto-phosphorylation of the intracellular kinase domains [47]. This will
results in an activation of the molecules at the top of three signalling cascades:

• Proliferation [15]: the phospholipase Cγ ( PLCγ) is recruited and phosphory-
lated by the tyrosine 1175 of VEGFR-2 [13, 57]. It leads to the activation of
Protein Kinase C (PKC) [49], and then the activation of the mitogen activated
protein kinase (MAPK) signaling pathway through Raf, Ras, MEK (a MAPK
kinase) and ERK (extracellular-signal-regulated kinase);

• Migration [39, 30]: Actin reorganization and consequent cellular migration is
activated through the phosphorylation of p38 that triggers the phosphoryla-
tion of MAKPAPK (MAPK activating protein kinase) and then the phospho-
rylation of the heat-shock protein (Hsp27).

• Survival [25, 63]: Phosphatidylinositol-3-kinase (PI3K) is a lipid kinase whose
phosphorylation through the binding to VEGFR-2 allows for the transfor-
mation of PIP2 into PIP3. PIP3 can then bind to Akt which is in turn
bi-phosphorylated by the phosphoinositide-dependent Kinases (PDK). The
resulting product, AktPIPP, can then phosphorylate the caspase 9 (Casp9).
The phosphorylated form of Casp9P is known to prevent from apoptosis.

2.2. Model equations. We modelled the dynamics of reactions using mass action
kinetics and described the reaction rates as proportional to the reacting molecules
concentrations. For instance, in the reaction A+ B 
 AB, the compounds A and
B bind each other to form a stable complex AB at rate k1. Reversely, the product
AB dissociates into A and B at rate k−1. The speed of the reaction is then given
by:

v = k1[A][B]− k−1[AB]. (1)

For some complex multistep reactions, such as phosphorylations, we used the
Michaelis-Menten approximation. This allows for reducing the complexity of the
system description still maintaining the main dynamical property of the reaction:
For instance, A∗ + B 
 A∗B → A∗ + B∗ where A∗ is the so-called reaction cat-
alyzer of the activation of B into B∗ can be simplified to A∗ + B → B∗ given the
corresponding rate equation :

v =
V · [A∗][B]

K + [B]
, (2)

which is the Michaelis-Menten equation. When several reactions are triggered by the
same catalyzer, the rate equations can become complex as the molecules compete
for the same catalyzer. In this case, the corresponding reaction rates will depend
on the concentrations and kinetic properties of all the “rivals” (we invite the reader
to refer to the Appendix B in [27] and Figure 3 in [3] for further technical details).

All the rate equations encompassed in the model are described in Table 1.

2http://www.genome.jp/kegg/pathway.html
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Figure 1. Molecular pathways of VEGFR-2 downtream signalling
in endothelial cells.

In consequence, assuming the molecular concentrations continuous, and the re-
actions happening - on a deterministic fashion - in a homogeneous medium of a
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volume large enough, we can describe the time-dynamic of each molecule of the
model with an ODE:

dci
dt

=
∑

vprod,ci −
∑

vcons,ci , (3)

where vprod,ci and vcons,ci are respectively the velocities of the reactions producing
and consuming the molecule ci.

The complete set of model equations is presented in Table 2.
The model is composed by a system of 38 ordinary differential equations including

78 parameters. Solving this system provides the dynamic of all the model variables
(molecules) over time. The model was implemented in Scilab3 and function ode,
based on the Runge-Kutta method on order 4, was used to solve our system.

2.3. Model calibration and sensitivity analysis. Model calibration is the pro-
cess by which parameter values are identified and estimated. Experimentally, it is
highly challenging to collect enough high quality data to effectively estimate param-
eter values. In consequence, since we did not have time series experiments of VEGF
signallization to which compare our simulations, our model is calibrated on the ba-
sis of knowledge on different molecular systems, as most biological pathway models.
Indeed we relied on previous published works to provide quantitative information
to our model parameters. In particular, the parameters relative to the proliferation
and survival pathways were taken from [27] whereas the parameters relative to the
migration pathway were estimated to fit the molecules dynamics presented in [28].
All our model parameter values are presented in table 3.

To integrate these external values into our system, we fixed arbitrarily two model
parameters. These parameters regulate the degradation of the phosphorylated
dimer VEGF-VEGFR2 (see reaction 21 in Table 1). Obviously, these parameters
are, a-priori, highly important in our model since all the three downstream path-
ways rely on the phosphorylated dimer. To study the influence of this parameters
values on the dynamics of our system, we simulated the response of the model to
a one-fold increase of VEGF stimuli for a set of twenty different values of the two
parameters. We picked up these 20 values in uniformly distributed interval with
length two log10-fold around the baseline arbitrary fixed values.

3. Results. Practically, to analyze the behaviour of our system, it is not feasible to
represent the time-evolution of the 38 model variables. In consequence, we selected
a set of three molecules to represent at best the behaviour of the three pathways.
In this respect, the bi-phosphorylated extracellular-signal-regulated kinase (ERK-
PP), the phosphorylated heat-shock protein 27 (Hsp27-P) and the phosphorylated
Caspase 9 (Casp9-P) will always be represented in the figure results.

3.1. Complexity of MEK/ERK loop in response to the ligand stimuli. We
first analyzed the dynamic of the modelled system in response to several intensity
of VEGF stimuli. For this, the model was simulated with 5, 10 and 50 nM of
VEGF stimuli (Figure 2) as the 50 nM concentration was found to correspond to
the saturation concentration.

Most of the model molecules, including those of the migration and survival path-
way, show a rather expected dynamic similar to the time-course profile of the VEGF
signal, i.e. a quick increase to a maximum, followed by a decrease to the molecule

3http://www.scilab.org

http://www.scilab.org
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Figure 2. Dynamic of the main molecules in the VEGFR sig-
nalling pathway in response to different VEGF stimuli: Dashed : 5
nM, Thin : 10nM, Thick : 50nM. Included is the phosphorylated
VEGFR dimer at the top left of the figure.

baseline value. However, the molecules of the proliferation pathway behave quite dif-
ferently, in particular the MEK and ERK forms. First of all, MEK, ERK, MEK-PP
and ERK-PP react with an important delay. Then, for MEK-P and ERK-P a local
maximum appears for the highest VEGF concentration. However, this seems to
have no consequence on the downstream molecules MEK-PP and ERK-PP. These
results highlight the complex dynamic of the MEK/ERK loop characterized by
highly different values of reaction rates so that reactions can be slowed down at a
certain stage of the pathway and be further accelerated at a successive stage.

To analyze in more detail the effect of the increase of VEGF, we represented in
Figure 3 the variation of maximum value reached for each molecule and the variation
of the time at which this maximum is reached when the concentration of VEGF
increases by one fold, from 5 to 10 nM (note: for molecules whose amount is reduced
by the normal activation of the pathway, by consumption or phosphorylation, we
consider the minimum value reached and the time at which it is reached). For most
of the network molecules, such a ligand concentration increase leads to a faster
reaction (on average -10% of time needed to reach the maximum value) and an
higher maximum value (increase between 50 and 100%), as it is expected. But
for the MEK/ERK, activation seems to be delayed; in particular for ERK-P, whose
maximum appears significantly delayed when the VEGF stimuli increases. ERK-PP
signal is also increased by 146% while slightly delayed in time.

3.2. System robustness and emergence of redundancy. When analyzing the
sensitivity of our system to a change in the two constant rates of the phosphorylated
dimer VEGF-VEGFR2 degradation, by considering the impact of these parameters
changes on the response of the system to a two fold increase of VEGF stimula-
tion. The dynamics observed for each molecule remain comparable to the dynamics
presented in fig 2. We observed that only the ERK forms (at the bottom of the
pathway) were sensitive to the changes of the constant rates values (see Figure 4
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Figure 3. Variation of the value of the maximum (resp. the mini-
mum for consumed molecules) versus the variation of time to reach
the maximum (resp. the minimum), in %, with respect to a stimu-
lus of 5nM of VEGF, when VEGF stimulus increases by one-fold,
from 5 to 10 nM. The molecules are represented depending on the
branch they belong to. Circles represent the molecules of the head
of the signalling pathway, meaning VEGF, VEGFR and all the
compounds formed by their association. Crosses are the molecules
of the proliferation branch, leading to the phosphorylation of MEK
and ERK. Xs are the molecules of the survival branch, that acti-
vates PI3K and Casp9. Triangles are the molecules of the migration
branch, whose main actors are Hsp27 and p38.

and Figure 5). Interestingly, the changes do not affect the qualitative effect of
VEGF stimuli increases which still leads to a delay in the response of ERK-P, a
lower maximum for ERK, and an increase of the maximal amount of ERK-PP. No
other molecules seem to be affected by these changes. In conclusion, the system is
globally robust to the change in the values of these two important constant rates.

Finally, we also simulated the blockade of particular molecules within the path-
way by reducing the speed of their corresponding activating reactions. As before,
we evaluated the variation of the amplitude of the maximum concentration reached
by the different molecules as well as the time at which this maximum is reached.
We decided to focus on the consequences of a blockade of PKC phosphorylation
(reaction number 7 on fig. 1, in the proliferation pathway) and Akt binding to
PIP3 (reaction number 28 on fig. 1, in the survival pathway). These blockade were
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Figure 4. Influence of a modification in the value of the constant
rate k21, involved in the phosphorylated dimer VEGF-VEGFR2
degradation, on the system measured as a change in the value of the
maximum (resp. the minimum for consumed molecules) reached
(y-axis) and in the time at which this maximum (resp. minimum)
is reached (x-axis). The bars represent the range of the variation
when the value of k21 is increased or decreased ten fold.

achieved by modifying the reaction parameters to values that leads to a reduction
by half of the maximal amount of molecules normally produced by these reactions
(respectively PKC-P and Akt-PIP3).

The blockade of PKC phosphorylation leads to a decrease of the maximum
amount of ERK-PP secreted (more than 25% decrease compared to the unblocked
situation), to which corresponds an accumulation of the non phosphorylated form
ERK (see Figure 6). An interesting point is the simultaneous slight increase of
Casp9 related to a decrease of its phosphorylation into Casp9-P. ERK-PP being
related to the cellular proliferation, and Casp9 to the survival pathway (Casp9-P
is the inactivated form, i.e. the phosphorylation of Casp9 triggers a resistance to
apoptosis and thus survival), this results means that inhibiting proliferation by tar-
geting PKC confer to the cell a higher sensitivity to apoptosis. This demonstrates
the redundancy of the system towards an inhibition of the proliferation pathway.

Reversely, we also observed a slight reduction of the proliferation activity, in
terms of time at which ERK and ERK-PP reach maximum, when inhibiting the
binding of Akt to PIP3. Even if this reduction is not significant, it highlights the
link between the proliferation and apoptotic pathways. The blockade Akt binding
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Figure 5. Influence of a modification in the value of the constant
rate km21, involved in the phosphorylated dimer VEGF-VEGFR2
degradation, on the system measured as a change in the value of the
maximum (resp. the minimum for consumed molecules) reached
(y-axis) and in the time at which this maximum (resp. minimum)
is reached (x-axis). The bars represent the range of the variation
when the value of k21 is increased or decreased ten fold.

mainly leads to an accumulation of Casp9 (see Figure 7) linked to a reduction of
the phosphorylated, apoptotic resistance related form Casp9.

4. Discussion. Based on literature information from Pubmed and from the Ky-
oto Encyclopedia for Genes and Genomes (KEGG), we developed a model of the
VEGFR-2 intracellular signalling pathway. This model mainly focuses on the pro-
liferation, migration and survival pathways of the endothelial cells composing blood
vessels. With parameter values taken from existing publications, the model was
used as a simulation tool to analyse the complexity of the underlying system.

Some remarks need to be formulated regarding the structure of our model. First,
we limited our analysis to the pathways triggering proliferation, migration and
survival of the endothelial cells, whereas VEGFR-2 is known to drive also variations
of the vascular permeability. We omitted this feature since we found contradictory
information on how permeability was driven by the VEGFR-2 signalling network.
It also appears that change in the vascular permeability may significantly depends
on the shape and adhesion properties of the cells composing the vessels [15, 47].

We also chose to not consider the genetic mechanisms triggered by the studied
signalling pathways. In particular, transition from ERK-PP, Hsp27-P or Casp9-P
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Figure 6. Influence of a blocking in PKC phosphorylation, on the
system measured as a change in the value of the maximum (resp.
the minimum for consumed molecules) reached (y-axis) and in the
time at which this maximum (resp. minimum) is reached (x-axis).

involve complex processes that go from DNA transcription to protein synthesis.
We decided to limit our description at the cytoplasmic level (in opposition to the
nucleic level). We also described the receptor dynamic with simple laws of action
mass kinetics in order to have a consistent level of description in the whole model
whereas complex models of VEGFR-2 dimerization have already been proposed (see
for instance [2]). Finally, we did not consider the variation of receptor density at
the surface of endothelial cells that can be observed during angiogenic processes, as
VEGFR-2 concentration is up-regulated by hypoxia [47] and by cell density [44].

It is also worthwhile to mention that special standards and methods [3, 46, 10]
as well as tools [35, 4], not used in the present work, have been proposed for ho-
mogenizing the development and encoding of this type of systems biology models.

Still, our model simulations revealed two important features of complex living
systems. We first highlighted the complexity and difference in the dynamics of
the proliferation, migration and survival pathways downstream the VEGF recep-
tor. The proliferation pathway appeared to be the most sensitive, with peculiar
response, to an increase of the VEGF input. However, its increase was delayed
in time with respect to the migration and survival pathways. In addition to that,
robustness emerged when perturbing the system with a change in the upstream pa-
rameters involved in the phosphorylated dimer VEGF-VEGFR2 degradation, and
redundancy occurred between the proliferation and the survival pathways. This



A MODEL OF THE VEGF SIGNALLING PATHWAY 177

Figure 7. Influence of inhibiting the binding of Akt to PIP3 which
leads to an accumulation of Casp9, on the system measured as
a change in the value of the maximum (resp. the minimum for
consumed molecules) reached (y-axis) and in the time at which
this maximum (resp. minimum) is reached (x-axis).

model, being a qualitative tool, appears to be potentially interesting to analyze and
formulate new hypothesis on the VEGF signalling cascade.

As most of biomathematicians, working in the field of cancer modelling, attempt
to build multiscale model with integrated molecular pathways, our model could serve
as the molecular piece of the puzzle to reach an holistic and integrative framework
of tumour growth and treatment.
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Reaction Rate equation

v1 k1 [VEGF ] [VEGFR] − km1 [VEGF.VEGFR]

v2 k2 [VEGF.VEGFR]2 − km2 [VEGF.VEGFR2]

v3 k3 [VEGF.VEGFR2] − km3 [VEGF.VEGFR2P ]
v4 k4 [VEGF.VEGFR2P ] [PLCγ] − km4 [VEGF.VEGFR2P.PLCγs]

v5 k5 [VEGF.VEGFR2P.PLCγ ] − km5[VEGF.VEGFR2P.PLCγP ]

v6 k6 [VEGF.VEGFR2P.PLCγP ] − km6 [PLCγP ] [VEGF.VEGFR2P ]
v7 k7 [PLCγP ][PKC] − km7 [PKC∗]

v8 V8 [PKC∗] [RasGDP ]/(K8 + [RasGDP ])

v9 V9 [RasGTP ]/(K9 + [RasGTP ])
v10 V10 [RasGTP ][Raf ]/(K10 + [Raf ])

v11 V11 (AktPIPP + Enz) [RafP ]/(K11 + [RafP ])

v12 V12 [RafP ][MEK]/(K12 (1 +
[MEKP ]
K14

) + [MEK])

v13 V13 [PP2A][MEKP ]/(K13 (1 +
[MEKPP ]
K15

+
[AktPIP ]
K30

+
[AktPIPP ]

K32
) + [MEKP ])

v14 V14 [RafP ][MEKP ]/(K14 (1 +
[MEK]
K12

) + [MEKP ])

v15 V15 [PP2A][MEKPP ]/(K15 (1 +
[MEKP ]
K13

+
[AktPIP ]
K30

+
[AktPIPP ]

K32
) + [MEKPP ])

v16 V16 [MEKPP ] [ERK]/(K16 (1 +
[ERKP ]
K18

) + [ERK])

v17 V17 [MKP3] [ERKP ]/(K17 (1 +
[ERKPP ]
K19

) + [ERKP ])

v18 V18 [MEKPP ] [ERKvP ]/(K18 (1 +
[ERK]
K16

) + [ERKP ])

v19 V19 [MKP3] [ERKPP ]/(K19 (1 +
[ERKP ]
K17

) + [ERKPP ])

v20 V20 [PLCγP ]/(K20 + [PLCγP ])
v21 V21 [VEGF.VEGFR2P ]/(K21 + [VEGF.VEGFR2P ])
v22 k22 [PI3K] [VEGF.VEGFR2P ] − km22 [VEGF.VEGFR2P.PI3K]

v23 k23 [VEGF.VEGFR2P.PI3K] − km23 [VEGF.VEGFR2P.PI3K∗]
v24 k24 [VEGF.VEGFR2P.PI3K∗] − km24 [VEGF.VEGFR2P ] [PI3K∗]
v25 V25 [PI3K∗]/(K25 + [PI3K∗])

v26 V26 [PI3K∗] [PIP2]/(K26 + [PIP2])
v27 V27 [PIP3]/(K27 + [PIP3])
v28 k28 [PIP3] [Akt] − km28[Akt.PIP3]

v29 V29 [PDK] [Akt.PIP3]/(K29 (1 +
[AktPIP ]
K31

) + [Akt.PIP3])

v30 V30 [PP2A] [AktPIP ]/(K30 (1 +
[MEKP ]
K13

+
[MEKPP ]
K15

+
[AktPIPP ]

K32
) + [AktPIP ])

v31 V31 [PDK] [AktPIP ]/(K31 (1 +
[Akt.PIP3]

K29
) + [AktPIP ])

v32 V32 [PP2A] [AktPIPP ]/(K32 (1 +
[MEKP ]
K13

+
[MEKPP ]
K15

+
[AktPIP ]
K30

) + [AktPIPP ])

v33 k33 [AktPIPP ] [Casp9] − km33 [Casp9P ]
v34 V34 [VEGF.VEGFR2P ][P38]/(K34 + [P38])

v35 V35 [P38P ]/(K35 + [P38P ])
v36 V36 [P38P ][MAPKAPK]/(K36 + [MAPKAPK])
v37 V37 [MAPKAPK.P ]/(K37 + [MAPKAPK.P ])

v38 V38 [MAPKAPK.P ][Hsp27]/(K38 + [Hsp27])

v39 V39 [Hsp27P ]/(K39 + [Hsp27P ])

Table 1. Reactions and rate equations of the model.
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Molecule Differential equation

VEGF −v1
VEGFR −v1
VEGF.VEGFR v1 − 2 ∗ v2
VEGF.VEGFR2 v2 − v3
VEGF.VEGFR2P v3 − v4 + v6 − v21 − v22 + v24
PLCγ −v4 + v20
VEGF.VEGFR2P.PLCγ v4 − v5
VEGF.VEGFR2P.PLCγP v5 − v6
PLCγP v6 − v7 − v20
PKC −v7
PKC∗ v7
RasGDP −v8 + v9
RasGTP v8 − v9
Raf −v10 + v11
RafP v10 − v11
MEK −v12 + v13
MEKP v12 − v13 − v14 + v15
MEKPP v14 − v15
ERK −v16 + v17
ERKP v16 − v17 − v18 + v19
ERKPP v18 − v19
PI3K −v22 + v25
VEGF.VEGFR2P.PI3K v22 − v23
VEGF.VEGFR2P.PI3K∗ v23 − v24
PI3K∗ v24 − v25
PIP2 −v26 + v27
PIP3 v26 − v27 − v28
Akt −v28
Akt.PIP3 v28 − v29 + v30
Akt.PI.P v29 − v30 − v31 + v32
Akt.PI.PP v31 − v32 − v33
Casp9 −v33
Casp9P v33
P38 −v34 + v35
P38P v34 − v35
MAPKAPK −v36 + v37
MAPKAPKP v36 − v37
Hsp27 −v38 + v39
HSP27P v38 − v39

Table 2. List of all molecules and corresponding equations
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Parameter Value Source Parameter Value Source

k1 0.0012 [27] km1 0.00076 [27]
k2 0.01 [27] km2 1 [27]
k3 1 [27] km3 0.01 [27]
k4 0.06 [64] km4 0.2 [64]
k5 1 [64] km5 0.05 [64]
k6 0.3 [64] km6 0.006 [64]
k7 0.214 [64] km7 5.35 [64]
V8 0.222 [27] K8 0.181 [27]
V9 0.289 [27] K9 0.0571 [27]
V10 1.53 [27] K10 11.7 [27]
V11 0.00673 [27] K11 8.07 [27]
V12 3.5 [27] K12 317 [27]
V13 0.058 [27] K13 2200 [27]
V14 2.9 [27] K14 317 [27]
V15 0.058 [27] K15 60 [27]
V16 9.5 [27] K16 146000 [27]
V17 0.3 [27] K17 160 [27]
V18 16 [27] K18 146000 [27]
V19 0.27 [27] K19 60 [27]
V20 1 [64] K20 100 [64]
V21 6 Est K21 50 Est.
k22 0.1 [27] km22 2 [27]
k23 9.85 [27] km23 0.0985 [27]
k24 45.8 [27] km24 0.047 [27]
V25 2620 [27] K25 3680 [27]
V26 16.9 [27] K26 39.1 [27]
V27 17000 [27] K27 9.02 [27]
k28 507 [27] km28 234 [27]
V29 20000 [27] K29 80000 [27]
V30 0.107 [27] K30 4.35 [27]
V31 20000 [27] K31 80000 [27]
V32 0.211 [27] K32 12 [27]
k33 1 Est. km33 0.1 Est.
V34 0.1 Est. K34 20 Est.
V35 1 Est. K35 50 Est.
V36 0.1 Est. K36 5 Est.
V37 1 Est. K37 0.01 Est.
V38 10 Est. K38 10 Est.
V39 1 Est. K39 10 Est.

PDK 1 [27] PP2A 11.4 [27]
MKP3 2.4 [27] Enz 7 [27]

Table 3. Molecular model parameters. Michaelis-Menten con-
stants (K8 → K21, K25, K26, K27, K29 → K32, K34 → K39) are
given in nM. V8 → V21, V25, V26, V27, V29 → V32, V34 → V39 are
expressed in nM.s−1. First- and second-order rate constants are
given in s−1 and nM−1.s−1 respectively. The bottom of the table
presents the constant concentrations of the enzymes, in nM.
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