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Abstract. In this work an optimization problem for a leukemia treatment
model based on the Gompertzian law of cell growth is considered. The quan-

tities of the leukemic and of the healthy cells at the end of the therapy are

chosen as the criterion of the treatment quality. In the case where the num-
ber of healthy cells at the end of the therapy is higher than a chosen desired

number, an analytical solution of the optimization problem for a wide class

of therapy processes is given. If this is not the case, a control strategy called
alternative is suggested.

1. Introduction. The nature of the interaction between the size of the tumor and
the prescribed treatment is still unclear.

At the beginning of the 1960s, Skipper et al. examined the L1210 murine leu-
kemia model and formulated some principles of tumor cell kill [26], namely, that a
given dose of a drug kills a constant fraction of cells and not a constant number,
and that there is a relationship between the dosage of a drug and the percentage of
the leukemic cells killed.

Norton and Simon ([22], [23]) hypothesized in the 1970s that the cell-kill is pro-
portional to the growth law of tumor cells.

In the 1980s Holford and Sheiner ([17], [27]) proposed that cell-kill is described in
terms of a saturable function of Michaelis-Menten form with the supremum Emax,
and that is why this hypothesis is also called the Emax model.

It is a natural approach to consider the cancer treatment models from the point
of view of the optimization theory (see, for instance, [28], [19], [20], [13], [12], [6]).

In [12] an optimal control problem for optimal treatment strategies for three
different cell-kill models is considered: Skipper’s percentage-kill hypothesis, Nor-
ton-Simon hypothesis, and, Holford and Sheiner Emax hypothesis. In [12] Fister
and Panetta analyzed the existence and uniqueness of the solutions for two optimal
control problems in each of the three cases mentioned above. In the first problem
the objective is for the tumor density to be as close as possible to the desired tumor
density and the toxicity to be minimized. The objective of the second problem
implies that the tumor density and the toxicity at the end of the treatment are to
be minimized.
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The leukemia treatment model considered in this paper was suggested in [7], [29]
and is based on the Afenya’s model [4], which is a further development of earlier
models by Clarkson [8], Rubinow and Lebowitz [25] and Djulbegovic and Svetina
[9]. It is assumed that the chemotherapeutic agent kills leukemic cells as well as
normal ones. In [20] Ledzewicz and Schättler suggest and analyze an alternative
mathematical model for the bone marrow proliferation under chemotherapy treat-
ment, taking into account the side-effects of the drugs. This model is based on the
two-compartment growth model (differentiating between the proliferating and qui-
escent cell mass) for tissue suggested by Panetta in [24] and analyzed in [13] from
the point of view of the optimal control theory. The therapy then affects only the
proliferating cell mass. This model does not contain a description of the dynamics
of the healthy cells during the therapy. The side-effects of the drugs were taken into
account using the definition of the objective function. In the model considered in
this work the number of leukemic cells can be understood as the sum of the numbers
of the proliferating and quiescent cells. The dynamics of the healthy cells and of
the amount of the chemotherapeutic agent are parts of the model.

Any optimization problem becomes more complicated since the chemotherapy
destroys not only the leukemic cells but the normal cells too. Thus we have si-
multaneously two opposite objectives: to destroy leukemic cells and not to let the
number of normal cells fall below some minimal acceptable value.

In [7] a classical optimization problem for the model studied in the present article
with one objective function for strictly increasing cell-kill strategies and cell-kill
strategies with a threshold effect is considered. In the present work we consider a
different objective function. The reasons for this change are explained in Section
1. In [29] a multi-objective approach was applied to the same model in order to
minimize the number of leukemic and at the same time to maximize the number
of healthy cells. The results of this article generalize the results of both articles [7]
and [29].

In Section 2 will be shown that the optimal control function is a bang-bang
control function with the number of switching points depending on the number
of zeroes of the derivatives of the treatment processes if the cell-kill velocities for
leukemic and healthy cells are proportional.

If the number of the healthy cells at the end of the therapy process is higher
than a prescribed value, the optimal control function can be determined in a purely
analytical way for a wide class of therapy functions as is shown in Section 2. The
optimal control strategy involves giving the patient the maximal admissible quantity
of the chemotherapeutic agent up to the moment when the maximal therapy effect is
reached. Then the maximal effect should be maintained until one of the admissible
boundary values of the constraints is achieved. After this the therapy needs to stop.
The moment of the maximal effect of the therapy can be calculated on the basis
of the model parameters. If the side-effects of the therapy cannot be disregarded,
that is, if the number of the healthy cells falls at the end of the therapy below a
prescribed value, a suboptimal control function called alternative control function
is suggested in Section 3.

In Section 4 we consider some examples and present numerical results for the
optimal and alternative treatment therapy. The comparison of these two kinds
of strategies shows a relatively small difference in treatment quality. Thus, the
alternative strategy should be viewed as an effective one too.
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2. Model formulation and the optimization problem. Let N(t) be the num-
ber of healthy cells, L(t) the number of leukemic cells and h(t) the amount of the
chemotherapeutic agent at the moment t. In [7] the following mathematical model
for leukemia therapy based on the Gompertzian cell growth law was proposed:

dL(t)

dt
= rlL(t) ln

La
L(t)

− γlL(t)− fl(h(t))L(t)

dN(t)

dt
= rnN(t) ln

Na
N(t)

− γnN(t)− cN(t) · L(t)− fn(h(t))N(t)

dh(t)

dt
= −γhh(t) + u(t), 0 < t ≤ T ;

(1.1)

L(0) = L0, N(0) = N0, h(0) = 0 . (1.2)

Here La, Na, rl, rn, γl, γn, γh, c ∈ R>0 are some constants. La and Na denote
in (1.1) the limit numbers of the leukemic and normal cells, respectively, rl, rn and
γl, γn present the growth and mortality rates of both cell types, respectively, fl(h)
and fn(h) describe the influence of the chemotherapy on the cells (called therapy
functions). We assume that fl(h) > fn(h) for all h > 0, since although drugs affect
all cells in an organism, a lot of useful treatment is most effective against rapidly
growing cells.

The parameter c is the interaction rate while γh is the dissipation rate. The
quantity of the chemotherapeutic agent applied to a patient at the moment t is the
control function u(t) ∈ L∞[0, T ].

Let u(t) satisfy the constraint

0 ≤ u(t) ≤ R (1.3)

with a parameter R ∈ R+.
We obtain the following solution of the third differential equation of (1.1)

h(t) = e−γht
∫ t

0

eγhsu(s)ds.

Thus we have the following condition for the amount of the drug at any point of
time t ∈ [0, T ] :

h(t) <
R

γh
.

In some cases for the optimal treatment strategy h(t) is automatically bounded by
the value hM at which the maximum value of the therapy function is reached (see
Section 2).

It is reasonable to require the following constraint for the cumulative quantity of
the chemotherapeutic agent during the overall therapy process:∫ T

0

h(t)dt ≤ Q, where, obviously, 0 < Q ≤ TR

γh
. (1.4)

We consider the following optimal control problem. We need to find the time
T ∈ (0,∞) and the control function u(t) ∈ L∞[0, T ] satisfying (1.3)-(1.4) and
providing the lower boundary to the cost function:

Φ(L(T ), N(T )) =

{
L2(T ), N(T ) ≥ Nd

L2(T ) + α(N(T )−Nd)2, N(T ) < Nd
(1.5)



154 ELENA FIMMEL, YURY S. SEMENOV AND ALEXANDER S. BRATUS

Here Nd > 0 and α > 0 are two parameters, Nd is the desired number of the
normal cells at the end of the therapy process, α is a preference indicator. For α > 1
the preference is to make the number of normal cells close to Nd; for α < 1 it is
to minimize the number of leukemic cells. We consider the quadratic terms for the
following reasons: the differenceN(T )−Nd can become negative and thus violate the
lower bound of the cost function. Further, it is mathematically easier to work with
quadratical terms than, for instance, with the absolute value of N(T ) −Nd which
would deliver the same biological effect. L(T ) is minimized if L2(T ) is minimized.
The term L2(T ) is chosen for the case N(T ) ≥ Nd for the reason of the compatibility
with the second part of the objective function.

In [7] a slightly different objective function was considered, namely,

Φ(L(T ), N(T )) = L2(T ) + α(N(T )−Nd)2 .

The reason for changing the objective function is the following: if the number of
healthy cells at the end of the therapy process is high enough (that is N(T ) ≥ Nd),
it is not necessary and may even be harmful1 to make it as close as possible to Nd.
In the other case we want to get N(T ) as close as possible to Nd and L(T ) as close
as possible to zero in both cases.

3. An extension of a class of therapy possibilities. In this section we will ex-
tend the class of therapy functions considered and generalize the analytical results
of [7] and [29]. Let us consider first the situation when the derivatives of both ther-
apy functions are proportional. It is a quite natural assumption and it means that
the leukemic and healthy cells are being destroyed by the drug with proportional
velocities. For instance, it takes place for both pairs of therapy functions considered
in [7]:

fi(h) = λihe
−bh or fi(h) =

λih

1 + h
, i ∈ {l, n} , λi, b ∈ R.

Our aim is now to show that for the relevant values of model parameters in this case
the optimal control function is a bang-bang function with the maximum number of
switching points depending on the number of zeroes of the functions f ′l (h(t)) and
f ′n(h(t)) (see Theorem 2.1 below).

It was proved in [7] using the Pontryagin’s maximum principle that for the opti-
mal control function u∗ the following conditions hold:

u∗(t) =

 R , ψ3(t) > 0
0 , ψ3(t) < 0

unknown , ψ3(t) = 0 .
(2.1)

where

ψ3(t) = ψ30e
γht−

∫ t

0

eγh(t−s)
(
ψ1(s) · dfl(h(s))

dh(s)
+ ψ2(s) · dfn(h(s))

dh(s)

)
ds

ψ1(t) = ψ10e
rlt + ca

∫ t

0

erl(t−s)−l(s) · ψ2(s)ds

ψ2(t) = ψ20e
rnt.

(2.2)

with ψ30, ψ10, ψ20 ∈ R , ca := cLa, l0 := ln
La
L0
, n(T ) := ln

Na
N(T )

, e−nd :=
Nd
Na

1 In this case N(T ) can become smaller and L(T ) bigger at the end of the therapy.
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and

l(t) = l0e
−rlt +

γl
rl

(1− e−rlt) +

∫ t

0

e−rl(t−s)fl(h(s))ds ,

n(t) = n0e
−rnt +

γn
rn

(1− e−rnt) +

∫ t

0

e−rn(t−s)fn(h(s))ds+ ca

∫ t

0

e−rn(t−s)−l(s)ds ,

h(t) = e−γht
∫ t

0

eγhsu(s)ds .

Additionally, we have the following terminal conditions

ψ1(T ) = 2L2(T ), ψ2(T ) =

{
0, N(T ) ≥ Nd

2αN(T )(N(T )−Nd), N(T ) < Nd
, ψ3(T ) = 0.

Note that the terminal condition for ψ2 here differs from the corresponding terminal
condition in [7] due to the change of the objective function.

Theorem 3.1. Let fl(h), fn(h) be therapy functions with

dfl(h(t))

dh(t)
= β

dfn(h(t))

dh(t)
for all t ∈ [0, T ), β > 0,

and f ′n(h(t)) has k ∈ N0 zeroes on the interval [0;T ). Then the optimal control
function u∗(t) is a bang-bang control with

- at most k switching points provided N(T ) ≥ Nd and
- at most k+1 switching points ti ∈ [0, T ), i ∈ {1, . . . , k+1} , in which the value
of u∗(t) switches between R and 0 provided N(T ) < Nd and the following
inequality

−caβe−lmin ≤ rn − rl ≤ −caβe−lmax

does not hold. Here lmax = max
t∈[0,T ]

ln
La
L(t)

, lmin = min
t∈[0,T ]

ln
La
L(t)

, ca = cLa.

Proof. Let ψ̃1(t) = ψ1(t)e−rlt , ψ̃3(t) = ψ3(t)e−γht. Evidently, ψ̃3(t) has the same
zeroes as ψ3(t).

It follows from (2.2) that the zeroes of
dψ̃3(t)

dt
are exactly the solutions of the

equation

ψ̃1(t) · dfl(h(t))

dh(t)
= −ψ20e

(rn−rl)t · dfn(h(t))

dh(t)

or, equivalently, they are k zero points of f ′n(h(t)) and the solutions of the equation

δ(t) = 0 , (2.3)

where δ(t) ≡ βψ̃1(t) + ψ20e
(rn−rl)t. The derivative of δ(t) is (see again (2.2))

δ′(t) = βψ̃′1(t) + ψ20(rn − rl)e(rn−rl)t = ψ20e
(rn−rl)t(βcae

−l(t) + (rn − rl)) .

If ψ20 = 0 (that is N(T ) ≥ Nd) the condition ψ̃1(t) ≡ ψ10 = 2L2(T ) > 0 holds,

the equation (2.3) has no solution and, hence, the equation
dψ̃3(t)

dt
= 0 has k roots.

For ψ20 6= 0 (that is N(T ) < Nd) and

either rn − rl > −caβe−lmax or rn − rl < −caβe−lmin

with

lmax = max
t∈[0,T ]

l(t), lmin = min
t∈[0,T ]

l(t)
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(both exist since l is continuous on the segment [0, T ]) δ is either a strictly increasing
or a strictly decreasing function.

In both cases there is at most one root of the equation (2.3) on [0, T ) and,

consequently, at most k + 1 roots of the equation
dψ̃3(t)

dt
= 0.

It is well known that between two zeroes of a differentiable function there is a
zero of its derivative. Hence, ψ̃3(t) and, consequently, ψ3(t) has at most k zeroes
provided N(T ) ≥ Nd, and k + 1 zeroes on [0, T ) provided N(T ) < Nd and

either rn − rl > −caβe−lmax or rn − rl < −caβe−lmin ,

since ψ3(T ) = ψ̃3(T ) = 0.

Remark 1. The case β ≤ 0 is practically unrealistic. For β < 0 we can derive that
the therapy at the same time either destroys the leukemic cells and increases the
number of healthy cells, or vice versa. If β = 0 holds, it means that fl ≡ const and,
consequently, the effect of the therapy does not depend on the dosage of the drug.

Remark 2. It follows immediately from Theorem 2.1 that in the case of strictly
increasing therapy functions with proportional derivatives the optimal control func-
tion has no switching points, that is the entire therapy process takes place with the
maximum amount of chemotherapeutic agents as long as none of the constraints is
violated, if the number of the healthy cells at the end of the therapy is high enough2

and has at most one switching point if the number of the healthy cells at the end
of the therapy is smaller than Nd.

Of course, it is important to know how big the range rn − rl is where we do not
know anything about the behaviour of the optimal control function. The following
lemma will be very useful in understanding this:

Lemma 3.2. In previous notation the following inequality holds for all t ∈ [0, T ]:

0 ≤ lmin ≤ l(t) ≤ lmax ≤ max

(
l0,

γl
rl

)
+

1

rl
max
s∈[0,T ]

fl(h(s)) .

Proof. Recall that

l(t) = l0e
−rlt +

γl
rl

(1− e−rlt) +

∫ t

0

e−rl(t−s)fl(h(s))ds

for all t ∈ [0, T ]. Since l(t) ≥ 0 then lmin = min
t∈[0,T ]

l(t) ≥ 0. An upper boundary for

lmax = max
t∈[0,T ]

l(t) can be obtained as follows. For all t ∈ [0, T ] we have

l(t) ≤ γl
rl

+

(
l0 −

γl
rl

)
e−rlt + max

s∈[0,T ]
fl(h(s))

t∫
0

erl(s−t)ds ≤

≤ max

(
l0,

γl
rl

)
+

max
s∈[0,T ]

fl(h(s))

rl
(1− e−rlt) ≤ max

(
l0,

γl
rl

)
+

1

rl
max
s∈[0,T ]

fl(h(s)) .

Thus, lmax ≤ max

(
l0,

γl
rl

)
+

1

rl
max
s∈[0,T ]

fl(h(s)).

2The results of Theorem 2.3 show that the influence of the chemotherapeutic agent applied on
the healthy cells can be completely disregarded in this case.
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Example 1. Let us consider a numerical example to show that the difference be-
tween growth rates rl and rn for which the Theorem 2.1 is not valid is very small.

Let us consider for λi, b ∈ R+, i ∈ {l, n}, two pairs of therapy functions:

fi(h) =
λih

1 + h
(monotonic therapy functions)

and

fi(h) = λihe
−bh (non-monotonic therapy functions)

with the following values of parameters

λl = 3, λn = 1.8, ca = 3.7 · 10−5, l0 = 4, γl = 0.01, rl = 0.25, b = 0.01

(chosen as in the numerical examples in [7]). In this case

β =
λl
λn

=
5

3
, max

(
l0,

γl
rl

)
= l0 = 4.

It is still unknown in the monotonic case whether the optimal control function u∗

has at most one switching point only for the range

rn − rl ∈
[
−6.1(6) · 10−5,−6.1(6) · 10−5 · e−16

]
and in the non-monotonic case only for the range

rn − rl ∈
[
−6.1(6) · 10−5,−6.1(6) · 10−5 · e−4−1200/e

]
.

The length of the interval in both cases is less than 6.1(6) · 10−5. In simulations
we did not encounter problems when rl was close or equal to rn. The condition on
the interval above seems to be technical.

However, f ′(h(t)) can have an infinite number of zeroes in the interval [0;T )

even if f ′(h) has only one zero in

[
0,
R

γh

]
. Such a situation occurs in the case

N(T ) ≥ Nd, that is when we minimize the number of leukemic cells.

Theorem 3.3. Let N(T ) ≥ Nd, fl(h) ∈ C(1)

[
0,
R

γh

]
, f ′l(h) ≥ 0 for h ∈ [0;hM ]

with

hM := min
0≤h≤ R

γh

{h | fl(h) = M}, where M = max
0≤h≤ R

γh

fl(h) ,

and

t0 :=


− 1

γh
ln(1− γhhM

R
), hM <

R

γh
,

T, hM =
R

γh
.

Then the optimal control function is given by

u∗(t) =

{
R, 0 ≤ t < t0,

γhhM , t0 ≤ t ≤ T.

Proof. It is easy to see that the given control function u∗(t) yields

h∗(t) =


R

γh
(1− e−γht), 0 ≤ t < t0,

hM , t0 ≤ t ≤ T.
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If N ≥ Nd we minimize L(T ) or, equivalently, maximize l(T ) = ln
La
L(T )

. We

will show now that for every admissible control function u(t) for all t ∈ [0, T ] the
inequality

l(t) ≤ l∗(t) := l0e
−rlt +

γ l
rl

(1− e−rlt) +

∫ t

0

e−rl(t−s)fl(h
∗(s))ds

holds. Thus u∗(t) is the optimal treatment strategy at each moment t and not only
at the end T of the therapy process. Consider

l∗(t)− l(t) =

∫ t

0

e−rl(t−s)(fl(h
∗(s))− fl(h(s))ds.

Since u(s) ≤ R for 0 ≤ s ≤ t0, then h(s) ≤ h∗(s) ≤ hM for 0 ≤ s ≤ t0. It follows
from the definition that the function fl(h) is not decreasing in the segment [0, hM ].
Hence, fl(h

∗(s)) − fl(h(s)) ≥ 0 when s ∈ [0, t0]. If s > t0 then fl(h
∗(s)) ≡ M and

fl(h
∗(s))− fl(h(s)) = M − fl(h(s)) ≥ 0.

Hence fl(h
∗(s)) ≥ fl(h(s)) for all s ∈ [0, T ]. Consequently, l∗(t) ≥ l(t) for all

t ∈ [0, T ], and, in particular, for t = T .

Remark 3. Thus, the following assertion in the notations of Theorem 2.3 is valid:

we have f ′l (h
∗(t)) ≡ 0 for all t ∈ [t0, T ] even if f ′(h) has only one zero in

[
0,
R

γh

]
.

4. Alternative control strategy. For the case N(T ) < Nd we cannot present
a concrete optimal control function u∗(t) for the considered optimization problem.
We can only say for most values of the model parameters how many switching points
at most it has but we cannot calculate them exactly. Calculations show that the
value of the cost function is sensitive to the position of the switching points.

Our aim is now to construct an admissible control function u(t), termed ‘an
alternative strategy’ such that the difference between the corresponding values of
the cost function on the optimal control function obtained with the help of the
Pontryagin Maximum Principle and on the alternative control function is sufficiently
small.

The dynamic analysis of (1.1) yields a unique critical point:

L = Lae
− γl+fl(h)rl , N = Nae

− γn+cL+fn(h)
rn , h =

u

γh
.

It is not hard to prove that the all eigenvalues of the Jacobian matrix of the system
at the critical point are negative. Therefore, the steady-state of the system is stable.
The position of this unique stable critical point depends on u.

Consider L, N and, consequently,

Φ̃(u) = L(u)2 + α(N(u)−Nd)2

as functions depending on u ∈ [0, R].

Let u = Ra, 0 ≤ Ra ≤ R be the value of u that minimizes the function Φ̃

Φ̃(Ra) = min
0≤u≤R

{Φ̃(u)}.

According to the Weierstrass’s theorem a solution always exists.
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We define the alternative control as follows:

ũ(t) =

R, 0 ≤ t ≤ t0,

Ra, t0 < t ≤ T, where t0 = − 1

γh
ln

(
1− Ra

R

)
.

In the case when h does not reach the value
Ra
γh

, that is, when t0 > T or Ra = R,

we consider

ũ(t) = R for all t ∈ [0, T ].

It means that for the amount of the drug h we have:

h(t) =


R

γh
(1− e−γht), 0 ≤ t ≤ t0,

Ra
γh
, t0 < t ≤ T,

Thus, the alternative control ũ = R increases the amount of drug up to the level
at which Φ̃(u) reaches the minimum. Then the required level of drug should be
maintained with ũ = Ra.

5. Numerical results. In this section we present some results obtained with the
help of the computer system MAPLE.

Let the therapy functions be

fi(h) = λihe
1−h , i ∈ {l, n} .

According to [7] the following values of mostly non-dimensional parameters were
chosen:

λl = 3, λn = 1.8, ca = 3.7 · 10−5, γ l = γn = 0.01 day−1,

rl = 0.25 day−1, rn = 0.38 day−1, L(0) = 5 · 107cells, N(0) = 108cells,

La = Na = 1010cells, R = 1, γh = 0.5, α = 1 . (4.1)

First of all, let us consider the value Nd = 0.9 ·N(0) = 9 · 107 (that is N(T) < Nd).
We have obtained the optimal therapy time T = 47.0 and the following optimal

control function (having two switch points):

u(t) =


1, 0 ≤ t ≤ t0 = 1.38629,

0.5, t0 < t ≤ t1 = 46.0382,

0, t1 < t ≤ T = 47.0 .
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2010

u

0.75

0

0.25

t

40
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0.0

Figure 1. Optimal control function.

At the end of the therapy process we have got the following values:

L(T ) = 64625 , N(T ) = 8.999995 · 107 < Nd , Φ(T ) = 4.1763 · 109 .

46.979999999891

75

46.99999999989

Phi

109

t

100

50

25

Figure 2. Cost function Φ(t) for the optimal control near T = 47.0.
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Let us compare the optimal control with the alternative control. The following
alternative control function was considered (in fact, we had two possibilities to
choose from, Ra = 0.428936 and Ra = 0.57851, see Note below):

ũ(t) =

{
1, 0 ≤ t ≤ t0 = 1.120508,

Ra = 0.428936, t0 < t ≤ T = 47.0 .

u

0.75

20

0.25

t

40

1.0

30

0.5

0.0

100

Figure 3. Alternative control function.

At the end of the alternative therapy process the following values were obtained:

L̃(T ) = 67452 , Ñ(T ) = 9.000000096 · 107 > Nd , Φ̃(T ) = 4.5498 · 109.

The ratio Φ̃(T )/Φ(T ) = 1.0894 . Compare the numbers L(T ) = 64625 and

L̃(T ) = 67452 of leukemic cells at the end of the optimal and the alternative therapy
process, respectively, with the asymptotic value Lmin = 59033 when α = 0 and
T → ∞. Recall that the initial value L0 = 50 000 000. Thus, the optimal and the
alternative control are quite effective in this case.

Remark 4. The control function

u(t) =


1, 0 ≤ t ≤ t0 = 1.38629,

0.5, t0 < t ≤ t1 = 43.83421,

1, t1 < t ≤ T = 45.0
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is “almost optimal”. The therapy time is a little bit shorter but the number
of the remaining leukemic cells is greater than for the optimal control: L(T ) =
64677 , N(T ) = 8.99999 · 107 < Nd , Φ(T ) = 4.1831 · 109 .

Let the therapy functions be the same as above as well as the parameters and
the therapy time be T = 47.0.

Let us consider now the value Nd = 0.8 ·N(0) = 8 · 107 (that is N(T) > Nd).
In accordance with Theorem 2.3 the optimal control function u(t) coincides with

the alternative control function. We have Ra = 0.5 and

u(t) =

1, 0 ≤ t ≤ t0,

0.5, t0 < t ≤ T, where t0 = − 1

γh
ln

(
1− Ra

R

)
= 1.38629 .

u

0.75

20

0.25

t

40

1.0

30

0.5

0.0

100

Figure 4. Optimal control function coinciding with the alterna-
tive control function

At the end of the therapy process we have obtained the following values:

L(T ) = 59037 , N(T ) = 8.53860 · 107 > Nd , Φ(T ) = 3.485 · 109 .

It should be mentioned that L(T )→ Lmin = 59033, N(T )→ Nmin = 8.53860 · 107

and Φ(T )→ 3.485 · 109 as T →∞. The corresponding cost function is decreasing,
that is, the best result of the therapy will be obtained for T = ∞. Of course, the
therapy time is restricted in reality.
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Figure 5. Cost function Φ(t) tends to its infimum as T →∞.

6. Conclusion. In the paper we investigate a classical optimization problem. The
relevant objective function acquires two different forms, depending on either the
number of the healthy cells at the end of the treatment process exceeds a given
threshold value or this number is below of that value.

When the number of healthy cells is sufficiently high at the end of the therapy,
we present an optimal treatment strategy for a wide class of therapy processes. In
this case the side-effects of the therapy can be disregarded. The amount of the drug
administered should start with the maximal dosage and should be maintained at
this level until the maximal therapy effect is reached. Then the level of drug should
be kept up to the end of the therapy process. The switching point can be calculated
if we know three numbers: the maximum admissible dose, the dissipation rate and
the amount of the applied chemotherapeutic agent creating the maximal therapy
effect. The suggested treatment strategy provides the best possible therapy effect
not only at the end of the therapy process but at each moment of that process.

When the side-effects of the therapy cannot be disregarded, a control strategy
called alternative is suggested. This strategy consists of increasing the amount of
the chemotherapeutic agent up to a certain value within the shortest possible period
of time, and maintaining this level till the end of the treatment. The comparison of
the quality of optimal treatment strategy (simulated numerically) with the quality
of the alternative treatment strategy shows that the difference between both of the
treatment results is sufficiently small. From the mathematical point of view it is
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much easier to obtain the alternative strategy than the optimal one. Consequently,
the alternative strategy seems to be quite effective.

In addition we obtained another result which is complementary to the result
discussed above. It concerns the treatment processes with proportional cell-kill
velocities for leukemic and healthy cells. We prove for such treatment processes
that the optimal therapy strategy is divided into stages. Namely, the chemothe-
rapeutic agent is either alternately applied with maximal admissible intensity or
discontinued. The number of such stages does not exceed the number of the zeroes
of the derivatives of the treatment processes on the whole therapy interval provided
the number of the healthy cells at the end of the therapy is high enough. When
at the end of the therapy the number of healthy cells falls below some prescribed
value, the optimal strategy could have one additional stage.
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