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Abstract. Experimental evidence suggests that a tumor’s environment may

be critical to designing successful therapeutic protocols: Modeling interactions
between a tumor and its environment could improve our understanding of tu-

mor growth and inform approaches to treatment. This paper describes an

efficient, flexible, hybrid cellular automaton-based implementation of numer-
ical solutions to multiple time-scale reaction-diffusion equations, applied to a

model of tumor proliferation. The growth and maintenance of cells in our sim-

ulation depend on the rate of cellular energy (ATP) metabolized from nearby
nutrients such as glucose and oxygen. Nutrient consumption rates are func-

tions of local pH as well as local concentrations of oxygen and other fuels.

The diffusion of these nutrients is modeled using a novel variation of random-
walk techniques. Furthermore, we detail the effects of three boundary update

rules on simulations, describing their effects on computational efficiency and
biological realism. Qualitative and quantitative results from simulations pro-
vide insight on how tumor growth is affected by various environmental changes

such as micro-vessel density or lower pH, both of high interest in current cancer
research.

1. Introduction. Fast, biologically realistic hybrid cellular automaton-based tu-
mor simulations could benefit cancer treatment by allowing researchers to simulate
proposed treatment strategies in order to determine the most effective treatment.
In thin, effectively two-dimensional slices of tissue, tumor development can be ef-
ficiently, realistically simulated using a hybrid cellular automaton (HCA), a grid
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whose elements evolve based on a system of differential equations. This paper de-
scribes the development and implementation of an HCA-based mathematical model
of tumor development that includes blood flow, nutrient diffusion, and cellular con-
sumption of nutrients.

Time and space are both discretized in this HCA model; time passes in small,
fixed-length steps, and each grid element corresponds to a small region of space,
represented by local state data such as nutrient concentrations and cell populations.
All grid elements are concurrently updated based on their local state and those of
neighboring elements at the previous time step. That is,

Sx,y(t+ 1) = f(Sx,y(t), Sx−1,y(t), Sx+1,y(t), Sx,y−1(t), Sx,y+1(t)) (1)

where Sx,y(t) is the state of element (x, y) at time t.
Cellular automata (CAs), originally described in [74], have a grid with infinite

length in both dimensions; HCAs differ from CAs only in that some modeled quanti-
ties (e.g., nutrient concentrations) are continuously rather than discretely described,
but the spatial representations of HCAs are based on grids exactly as fully discrete
CAs are. In these CAs or CA-based models, all grid elements have the same num-
ber of neighbors, so they are all updated using the same set of rules. Practical
implementations of CAs have finite grid sizes, however, so edge and corner elements
have fewer neighbors than interior elements. Special boundary rules must therefore
be devised to govern the updating of these elements. In this paper we discuss the
implementation of a HCA model with three types of boundary rules.

2. Background. There is a long history of mathematical models of tumor growth
that leads to this work. Early models consisted of systems of differential equations,
such as [22], in which differential equations model effects of immune response to
tumor growth, and [54], in which delays are introduced into the model. Previous
models with differential equation-based representations of different cell populations,
however, have ignored spatial characteristics such as blood vessel location and tis-
sue heterogeneity. Furthermore, clinical insights can be gained from models that
incorporate and integrate factors from a variety of biological systems that influence
tumor development and treatment; models such as [3, 52], for example, incorpo-
rate elements ranging from angiogenic factors to cytotoxic immune cell dynamics
and pH gradients. In particular, evidence suggests that local conditions such as
nutrient availability, oxygen concentration, and local pH have key roles in carcino-
genesis and tumor behavior, affecting tumor growth, malignancy, and response to
treatment [72], and our model includes the effects of these factors on cell growth.

In this paper, we present a hybrid cellular automaton model of early solid tu-
mor growth from an energy budget perspective, where nutrient consumption and
ATP production are explicitly represented as dependent on oxygen concentration,
available fuel concentration, and pH. The approach models tumor development over
both time and space, and it incorporates the effects of variations in blood supply as
well as the diffusion of oxygen and other nutrients on the morphology and aggres-
siveness of the tumor. Simulations of the model are compared with experimental
data showing concentrations of hypoxic cells and tumor morphologies consistent
with those observed in both in vitro and in vivo studies ([58], [38]).

Several approaches to the spatial modeling of tumors in the micro-environment
have appeared in the literature. One approach uses partial differential equations
and/or level-set methods to describe the evolution of the tumor boundary [11, 16];
others describe mechanical models of individual cells linked together [55], and others
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bridge the gap between the continuum and discrete models, such as [59, 44, 57, 56]
and [75]. Pertinent to the model presented in this paper is [10], which describes
a mathematical model of the effect of cellular adhesion on tumor growth. Highly
adhesive tumor cells are likely to result in a compact, circular tumor, whereas less
adhesive cells may produce a more diffuse, branching tumor structure.

2.1. CA models of tumor growth. In [1], a cellular automaton-based model of
tumor growth, the effects of differential blood flow and vessel adaptation are mod-
eled. In this model, blood is treated as a non-Newtonian fluid which flows through
a network of blood vessels. For example, red blood cells are distributed unevenly
between the two daughter vessels in a network bifurcation; the daughter vessel with
higher flow velocity receives a greater number of red blood cells. Furthermore, the
blood vessel network adapts in order to best provide nutrients to the tissue. For
example, a decrease in red blood cell flow rate may trigger an increase in blood
vessel radius. Zero-flux boundary conditions are used in this simulation.

Another cellular automaton-based tumor simulation, described in [18, 45], in-
cludes the immune response. Two types of immune cells are modeled: natural killer
(NK) cells and cytotoxic T lymphocytes (CTLs). NK cells wander the tissue area
until encountering a tumor cell, which they then attack. When a tumor cell is lysed
in this manner, additional CTLs are recruited to the same site, where they will at-
tack other tumor cells in the immediate neighborhood. Immune cells in tumor-free
locations die or randomly move to neighboring locations.

IMMSIM [53] is a cellular automaton-based simulation of immune system re-
sponse. The IMMSIM model simulates discrete events such as the destruction of an
individual antigen by an immune cell, rather than taking a continuous, differential
equation-based approach. As in [1, 18, 45], biological components such as antigens
and antibodies diffuse among grid elements. If two components are present in the
same grid element, an interaction event such as antigen-antibody binding may oc-
cur. Each type of interaction has specific rules by which the probabilities of final
outcomes are determined; the end result is then decided stochastically.

ParImm [4], a further development of IMMSIM, is another cellular automaton-
based immune system simulator. Like IMMSIM, ParImm models cellular and molec-
ular components of the immune system. In ParImm, cells are implemented as
stochastic finite state machines, with states corresponding to possible cellular con-
ditions, such as normal, resting, infected, or dead. Cellular interactions may result
in a change in cellular state. For example, an interaction between an immune cell
and an infected cell might might change the infected cell’s state to “dead.”

Several recent automata models allow cellular behavior to depend on local chem-
ical concentrations. Dormann et al. reproduced the layered structure of avascular
V-79 tumors using cellular automata governed by chemical signaling [24], while
Patel incorporated H+ ion production rates and randomly placed blood vessels to
explore optimal micro-vessel densities and pH levels for tumor invasion [51]. In
addition, Alarcon employed vascular dynamics in a cellular automaton model to
explore the role of blood flow and oxygen distribution [1].

Smallbone et al. [63] use a hybrid cellular-automaton model to explore the inter-
actions between the tumor and its environment, and the effect that these have on
carcinogenesis and invasiveness. This model builds on these earlier models by in-
corporating the interdependency between tumor cell metabolism and local chemical
concentrations. In particular, it takes into consideration the delivery of oxygen and
other fuels via micro-vessels, the constriction of blood vessels due to pressure from
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the surrounding cells, cell-cell adhesion, the synthesis of nutrients for the production
of ATP, the budgeting of cellular energy towards growth and maintenance processes,
and the production of acidic byproducts during glycolysis. In this model, cell pro-
liferation and death is a deterministic function of available energy, in contrast to
CA models in the literature which use probabilistic rules [27, 45, 18, 63].

Several non-biological cellular automaton-based simulation methods [31, 43, 30]
also exist. While these simulations vary widely in their applications, all CA-based
simulation methods require boundary rules. It is likely that the boundary rules
discussed in this paper could be applied to other biological or non-biological grid-
based methods.

2.2. Tumor metabolism. While tumor cells consume a variety of fuels including
glutamine, palmitate, oleate and others, oxygen and glucose are the most signifi-
cant contributors to cellular energy [33]. The model discussed by Patel et al. in
[51] considers tumor metabolism as characteristically glycolytic, where cells rely on
anaerobic pathways for the majority of ATP production, regardless of local oxygen
availability. This concept of a glycolytic phenotype was first proposed in 1929 by
Warburg after he found that mouse ascites cancer cells produced high amounts of
lactate even with abundant oxygen available, evidence of aerobic glycolysis [76].
Currently, this concept underlies many approaches to basic cancer research as well
as cancer prognosis and treatment.

However, recent experimental evidence challenges the perception of a glycolytic
phenotype [76]. Guppy et al. [33] conclude that under aerobic conditions, the
metabolism of MCF-7 tumor cells is not different from that of many normal cells.
If tumor cells were characteristically glycolytic, they would rely on glucose for the
majority of their ATP production, even with normal oxygen availability. On the
other hand, because tumor cells often consume a markedly high rate of glucose, PET
(positron emission tomography) has become a very popular technique for detecting
and measuring a wide variety of tumors, supporting the concept of a glycolytic
phenotype [49]. Gatenby and Gillies [29] have proposed a plausible Darwinian
scenario in which the glycolytic phenotype evolves as a response to intermittent
hypoxia in pre-malignant populations.

Some argue that the oxygen and glucose consumption rates associated with tu-
mors are more likely due to a heightened “Pasteur effect,” where low oxygen
conditions force tumor cells to metabolize glucose less efficiently. In fact, the role
of tumor oxygenation has received attention recently for a variety of reasons, espe-
cially after some researchers have found correlations between low oxygenation and
metastatic progression [67], treatment resistance, and patient survival. Oxygen is
delivered to tissue via an efficient network of microvasculature, but with increas-
ing size, tumors often compromise blood flow which causes a decrease in oxygen
perfusion, leading to hypoxic regions distributed heterogeneously within the tumor,
[72],[46], [37], [23]. Our model extends previous work by simulating the progression
of hypoxia, its influence on local cell metabolism, and the consequences for solid tu-
mor growth. Our assumptions on the differences in cell metabolism between normal
cells and tumor cells differ somewhat from those made in the model of Smallbone et
al. [63], in that both tumor cells and normal cells can metabolize either aerobocially
or glycolytically. This situation corresponds to what is described as the “second
phase of growth” in the evolutionary scenario described in [63]. It supports the
hypothesis set forth in [29] by showing that the cell metabolism is sensitive to very
small changes in oxygen and hydrogen ion concentrations, and that a small number
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Figure 1. Diagram of the model flow during the implementation:
the cell movement loop and the cell reproduction loop contain the
inner diffusion loop.

of malignant cells can modify the micro-environment enough to allow the formation
of a significant tumor mass.

3. Model development. The simulation represents a thin, effectively two-
dimensional slice of tissue with a cellular automaton data structure. Automaton
grid elements represent small tissue areas and contain cell population and nutrient
concentration data for those areas. To simulate the passage of time, all grid ele-
ments are updated in a two-step process: First, nutrient concentrations are updated
by simulating diffusion and consumption by living cells. Second, cell populations
are updated by simulating reproduction and death based on local nutrient con-
centrations in each grid element. In this implementation, cell growth, death and
movement are determined by the amount of energy delivered via the blood vessels.
This connects the “health” of the host directly to the growth of the tumor cells, and
enables a connection between the macroscopic, holistic state of the larger organism
with the local micro-environment of the tumor cells.

The diagram in Figure 1 indicates the model flow showing the inner diffusion
loop inside the cell reproduction and movement loop. In this section we describe
each of the modeling sub-steps in detail.

3.1. Model components: Nutrients, tissue and blood vessels. The model
uses a multi-layered n×n grid to describe cell populations and chemical concentra-
tions throughout a two-dimensional simulation space. Each grid element represents
a physical volume of 175x175x40 µm, or 10−6 ml. Thus the simulation space repre-
sents a thin layer of tissue 40 micrometers thick, a reasonable setting for studying
the growth of some solid tumors, such as melanoma. Tumor cell and normal cell
populations within each grid element are stored in n × n matrices, the matrix Vn
represents normal cells; the tumor cell population is stored in two matrices, divided
into Vt for viable cells, Vnec for necrotic cells. Thus, Vn(i, j) gives the number of
normal cells in the grid element representing the ith row and the jth column of the
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discretized two-dimensional tissue. By modeling the way cell populations in each
grid element interact with the local environment and neighboring cells, we are able
to investigate early tumor growth in a qualitative and quantitative manner.

In vivo, blood vessels deliver nutrients (e.g., oxygen and other fuels) that cells
consume, while these same cells produce waste (e.g., lactate) that is removed by
the blood vessels. These two phenomena affect local extra-cellular chemical con-
centrations. Cell metabolism is dependent on the concentrations of nutrients and
waste. In favorable conditions, cells can produce enough energy (ATP) from nearby
nutrients to provide for cell maintenance and growth. In harsh conditions (e.g., in
hypoxic regions), consumption rates are lowered and there is a significant decrease
in doubling rate and an increase in cell death [14].

To simulate the micro-vascular network, a subset of grid elements are designated
to contain blood vessels. Depending on the simulation desired, the distribution of
blood vessels can be randomly generated, it can be prescribed according to some
pattern, or it can be made to mimic an actual layer of tissue. In the case of a random
distribution, the number of blood vessel elements is determined by experimental
micro-vessel density values found in relevant literature, and might be one parameter
of interest if the model is used to study the role of tumor angiogenesis, as was done
in [51]. The size of the blood vessels can also be modified to be a portion of a grid
element.

In a given simulation, all chemical concentrations generally begin at levels within
normal ranges found in vivo. Small molecules will diffuse from the blood vessels at a
rate dependent on the permeability of the vessel wall and on the gradient of chemical
concentration. To store the local chemical concentrations within each grid element,
three n× n matrices are used: the O matrix represents oxygen concentration [O2];
G represents the concentration of glucose, representing the fuels available to the
cells for maintenance and reproduction, and H represents the concentration of H+

ions, determining the pH of the environment.

3.2. Nutrient diffusion: “Dirty Diffusion”. The diffusion of oxygen, glucose
and H+ ions through the simulation space and the growth of cell populations are
on two different time-scales: cell growth is on the order of days, but diffusion is
on the order of seconds [51]. Thus, in our model, the diffusion process is modeled
separately from cell proliferation, death and migration, allowing the simulation of
processes on these two different time-scales. In this section, we describe the novel
approximation methods used to speed up the simulation of the diffusion process,
which occurs on the smaller time-scale and hence requires many more iterations
than the cell-proliferation sub-routine.

Because small molecules diffuse on a time scale that is much faster than cell
migration or proliferation, in many spatially dependent models of tumor growth
that include the effects of nutrient concentration, the diffusion process is assumed
to have reached its steady state so that the PDE can be replaced by an ODE.
Alternatively, in a discretized version, the change in concentrations of nutrients is
the solution of a large, sparse, system of linear equations (see Equation (5) ). This
system is then typically solved using an iterative method, such as the SOR method
[51] or an LU decomposition [45]. In other implementations (e.g., [15]), the diffusion
step is modeled explicitly using a finite element method or, as in [16], numerical
solutions are obtained using level set methods. In all of these cases, computational
costs are large: simulations on reasonably large grids can take hours unless some
simplifying assumptions are made, such as radial symmetry [11, 39, 15].
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Figure 2. A graphical representation of the local averaging pro-
cedure that we call “Dirty Diffusion,” used to simulate diffusion of
small molecules. Rather than compute all of the steps shown in the
figure, the algorithm immediately calculates the endpoint shown,
i.e. the average of the 5 neighboring cells. The local averaging is
done on 3 × 3 neighborhoods, where the 9 sets of neighborhoods
are updated in a random order at each iteration in order to avoid
the introduction of spurious drift.

In our method we exploit the difference in time scales without assuming a steady
state for the diffusing nutrients by using a local averaging technique. Briefly, this
technique involves averaging concentrations over 3 × 3 non-overlapping neighbor-
hoods, known as Margolus neighborhoods, [26], and is depicted graphically in Figure
2. The idea is to by-step the intermediate graphs in this figure, and jump immedi-
ately from the first one to the last one. One interpretation of this numerical method
is that in one step it gives the expected value of the concentrations of molecules
moving randomly in space.

The center grid elements of each neighborhood are updated at each sub-iteration;
therefore, 9 sub-iterations are required to update all grid elements. If the Margolus
Neighborhoods are chosen in a random order, spurious drift patterns are avoided,
and the numerical scheme converges very quickly to solutions of the continuous
diffusion equation, Equation (3), without giving up the explicit time dependency.
Experimentally measured diffusion coefficients (see Table A), are used to estimate
the amount of time represented by the local averaging step, which will vary for each
molecule.

We call our method “Dirty Diffusion,” denoting a coarse approximation to the
continuous representation of diffusion. A comparison of the Dirty Diffusion method
and the SOR method is shown in Figure 3. This figure depicts solutions to an
equation of the form given in Equation (3), where concentrations are constant at
certain grid elements representing blood vessels (darkest grid elements), and the
consumption function, k, is zero. On the sides of the grid, the algorithm is modified
depending on which boundary condition is chosen. See Section 3.7 for details on
these boundary rules.

Details of the Dirty Diffusion method. We explain the Dirty Diffusion method in
more detail by describing its implementation for the solution of one diffusion equa-
tion. Consider a concentration of small molecules such as oxygen, denoted by
C(t, r), where t represents time and r represents the location in space. Suppose
the molecules diffuse with constant diffusion coefficient, D, and are consumed by
cells, represented by T (r), at a rate k(t, r, T (r)). Then the partial differential equa-
tion describing the evolution of the concentration is:

∂C(t, r)

∂t
= D4C(t, r)− k(t, r, T (t, r)) (2)
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Figure 3. A comparison of the Dirty Diffusion method with the
more traditional method of Successive Over-Relaxation (SOR). On
a 30×30 grid with random blood vessels, the two methods produce
results that agree closesly. The SOR method (left) takes 21.453
seconds, while the Dirty Diffusion method (right) takes 6.672 sec-
onds.

which in two dimensions becomes (we omit the independent variables where the
dependence is clear):

∂C

∂t
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
− k(t, x, y, T (x, y)) . (3)

Discretizing space into an n × n grid, and discretizing time at intervals of size ∆t
gives the following discretized evolution rule for the concentration Ci,j in the (i, j)th
grid element:

Ci,j(t+ ∆t) ≈ Ci,j(t) + ∆t
∂Ci,j
∂t

(4)

where the discretization of the partial derivative is:

∂Ci,j
∂t

= D
Ci−1,j(t) + Ci+1,j(t) + Ci,j+1(t) + Ci,j−1(t)− 4C(i, j)(t)

(∆x)2
−ki,j(t, Ti,j(t))

and ∆t is small relative to the diffusion rate, D. Note that the evolution rule
depends on concentrations at the (i, j)th grid element and at the four neighboring
elements. If the diffusion occurs at a much higher rate than consumption, then we
might approximate the solution to Equation (3) by assuming that the nutrients first
reach a steady state, and then are consumed. This is the approach taken by many
modelers (e.g., in [51]). For the discretized equation, the steady state is a solution
of n2 equations of the form:

D
Ci−1,j + Ci+1,j + Ci,j+1 + Ci,j−1 − 4C(i, j)

(∆x)2
= 0 (5)

∴ C(i, j) =
Ci−1,j + Ci+1,j + Ci,j+1 + Ci,j−1

4
, AV G4(i, j)

where 1 ≤ i, j ≤ n. Thus, at the steady state of the diffusion portion of the equation,
the concentration of nutrient in a given grid element is equal to the average of the
concentrations in the four neighboring grid elements. We can therefore approach
this steady state by successively replacing each grid element and its four neighbors
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by their average value:

Ci,j 7→
Ci−1,j + Ci+1,j + Ci,j+1 + Ci,j−1 + Ci,j

5
. (6)

The execution of one averaging step, Equation (6), simulates the diffusion of the
molecules in and out of the neighboring cells over a time interval ∆t̂ which we can
estimate as the expected time it takes for a molecule to diffuse across one grid
element:

∆t̂ =
(∆x)2

4D
. (7)

If the rate of change of the cell population T is small relative to the rate of diffusion,
then T (x, y, t) can be approximated by a constant in the consumption term of
Equation (3). Thus, after one time step of length ∆t̂, where the time step is short
compared to the cell proliferation rate, we have the following update rule:

Ci,j(t+ ∆t̂) =
Ci−1,j + Ci+1,j + Ci,j+1 + Ci,j−1 + Ci,j

5
− ki,j(t, Ti,j(t))∆t̂. (8)

If ∆t is the length of the proliferation time step, then in between each update of the
cell matrices, Equation (8) is applied ∆t/∆t̂ times, or until an approximate steady
state is reached, whichever comes first. See Figure 1 for a graphical representation
of the program flow.

3.3. Nutrient diffusion: Boundary values at blood vessels, modeling vas-
cular constriction and collapse. In our model, nutrients enter the tissue from
simulated blood vessels and diffuse to locations with lower concentrations. Blood
vessels are simulated by computing the effective nutrient concentration Cx at grid
elements x that contain blood vessels, based on the bloodstream nutrient concen-
tration b and blood vessel permeability q. The nutrient flux from a blood vessel
to a neighboring grid element y is defined as q(b − Cy), where Cy is the nutrient
concentration in element y. This expression is then combined with Equation (6) to
produce the following formula for Cx:

Cx = AVG4(x) + 5q(b−AVG4(x)) (9)

For every element x that contains a blood vessel, the nutrient concentration in x
is set to Cx. The rule given by Equation (8) is then applied, causing nutrients to
diffuse away from blood vessels into the tissue, or causing metabolic by-products to
diffuse from the tissue into the vessel. Modifications can be made if the grid element
is not entirely filled with blood vessel, the details of which are omitted here.

We have developed Equation (8) which we use in the model to describe the dif-
fusion and consumption/products of two nutrients and metabolic by-products. An
important consideration in tumor growth is the collapse of vasculature inside the
tumor due to constriction from the pressure of surrounding cells. This vascular col-
lapse leads to two phenomena: angiogenesis [68, 35] and metastasis due to hypoxic
stress [12, 8, 42].

Constriction is modeled by setting the blood vessel permeability q as a function
of t, the total number of tumor cells in the five-element neighborhood surrounding
the vessel. The formula and a graph is given in Figure 4

Figure 5 shows the constriction of blood vessels in the region occupied by tumor
cells.
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Figure 4. Blood vessel permeability, q(t), as a function of tT , the
cell population at which vessel constriction begins, and tmax, the
population at which the vessel collapses and blood flow is com-
pletely cut off.

3.4. Nutrient consumption model. Two types of nutrient molecules are explic-
itly modeled: oxygen and glucose. Metabolic waste is also modeled as free hydrogen
ions created in the production of lactic acid. In the literature, cell metabolism and
growth rates for EMT6/Ro tumor cells have been determined to be functions of
local environmental factors such as glucose concentrations, oxygen availability, and
pH [14]. Based on this experimental evidence, our nutrient consumption model has
the following properties:

• Glucose consumption increases with glucose concentration.
• Oxygen consumption increases with oxygen concentration.
• Up to a saturation threshold, glucose consumption increases as oxygen con-

centration decreases.
• Oxygen consumption decreases as proton concentration increases.

This model is biologically motivated by two chemical processes used by cells to
obtain energy: aerobic respiration and anaerobic respiration. Biological evidence
for the model is presented in [14].

Recall that O denotes the current oxygen concentration (mM), G the current
glucose concentration (mM), and H is the current ion concentration (mM), so that
pH =-log10(H/1000). Casciari et al. [14] derived the following empirical equations
for the rate of consumption of oxygen and glucose per cell (units are mol cell−1 s−1).
We have discretized and modified slightly the original equations from Casciari’s
paper to give the following equations describing the oxygen and glucose consumed
by one cell in a time ∆t.

∆O =

(
aO +

bO
GHn

)(
O

O + kO

)
∆t (11)

∆G =

(
aG +

cνbG
O + γ

)(
G

G+ kG

)(
1

Hm

)
∆t (12)

where

γ =
cνbG

qνHm − aG
. (13)

The lower case letters are empirically determined constants whose values are listed
in Table A. Based on experimental evidence [61, 41], our model assumes that normal
cells consume less glucose than tumor cells as oxygen levels decrease. Therefore,
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Figure 5. Simulations representing 100 days (leftmost panels) and
550 days (rightmost panels). Blood vessels are depicted in the top
row: white dots represent unoccluded blood vessels, while colored
dots are vessels that are restricted due to pressure from surrounding
cells. The bottom row shows the cell levels at the same time points:
viable tumor cells are shown in white, necrotic cells in black and
normal cells in gray.

we introduce a parameter cν into the first term of Equation (12) to model the cell-
specific sensitivity of dG/dt to O2, where the subscript, ν, indicates the type of
cell: normal cell, proliferating tumor cell, or necrotic tumor cell. The model also
allows the maximum consumption rate, q, in Equation (13) to depend on cell type,
again indicated by the subscript, ν. We have also modified the glucose consump-
tion equation given in [14] under the assumption that the rate saturates as oxygen
concentrations go to zero i.e. −dG/dt can never exceed a fixed constant, qν . As-
suming that the initial value of G is non-zero, the inclusion of a saturation term
in Equation (12) insures that glucose levels will never reach zero. Therefore, we
accept the empirically derived Equation (11) as it is given in [13] , without adding
a saturation term.
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Metabolic Byproducts and pH: Derivation of Equation (14). Low extra-cellular pH
is a trademark of solid tumor growth. When glucose is metabolized, cells produce
lactic acid as a byproduct, which lowers the pH within the tumor (although other
contributing factors have been suggested as well [36]). The blood vessels regulate
pH by removing acidic byproducts, but in solid tumors this phenomena is inhibited
by a chaotic vasculature [60]. Other buffers also aid in maintaining a pH suitable for
normal tissue. Guppy et al. [33] estimate that the ratio of lactate to glucose produc-
tion is 1.56 1. Accounting for buffering mechanisms, we estimate that only a small
portion (10−5) of the lactate molecules contribute to making the local environment
more acidic. This estimate is the result of calibration of the model simulations to
realistic values of tissue pH. Thus the change in [H+] (mM) for a particular grid
element is given by

∆H = (10−5)(1.56)∆G (14)

We note here that other approaches to the mathematical modeling of ATP pro-
duction have been taken that involve the modeling of the metabolic reactions them-
selves, rather than starting with the empirically derived rates of consumption as we
do here. See [73, 6, 7] for examples of this approach in models of tumor spheroids.
We feel that our simpler approach is suitable in this context, since we are inter-
ested ultimately in the long-term macroscopic features of tumor growth, vascular
constriction and invasion, and one of our goals is computational efficiency.

The empirical constants, represented by lower case letters in Equations (11), (12)
and (13), were determined experimentally by Casciari et al. [14]. Specific values
are given in appendix A.

3.5. Model of cell division and death. The cell’s ability to withstand a harsh
environment plays a large role in tumor progression and resistance to treatment.
However, experimental evidence shows that different cell lines, when exposed to
hypoxic conditions, vary in their ability to withstand energy deprivation rather
than vary in anaerobic consumption rates [62]. Thus, it is important to incorporate
energy concepts into our model where cells experience energy deprivation in regions
of low O2 and low pH while cells are able to undergo mitosis in more favorable
conditions.

We use a generalized framework for cellular energy budgeting formulated by
Kooijman [40] that has been applied to tumor-host energy interactions [71]. This
approach uses three key assumptions:

1. Each cell requires a certain rate of energy uptake in order to maintain itself,
prioritizing energy use for common cell functions. Let M denote this per-cell
maintenance cost.

2. There is also a fixed energy cost for mitosis, implying that the growth rate
of a cell population is proportional to the energy available for growth. Let g
denote the per-cell cost of mitosis.

3. The maintenance and mitosis parameters, M and g, respectively, depend on
cell type.

1While the value of lactate production per glucose consumed, taken from [33], was obtained
from experiments using a specific cell line (MCF-7 breast cancer cells), we use it here in the absence
of other specific data. We point out that the lactate production could also be estimated from the

amount of glucose and oxygen consumed: ∆H ≈ 2(∆G − 1/6∆O)10−5, by counting how many
glucose molecules are metabolized anaerobically, as long as this value is positive.
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Thus, if A(t) is the rate of energy intake (mol. (grid element)−1 cycle−1), the growth
rate for a given number of cells V at grid element (i, j) is

dVij
dt

=
Aij(t)−MVij

g
(15)

where, in general, the energy required for maintenance and mitosis will depend on
cell type. Thus, in what follows, we add a subscript to the parameters M and g to
denote their dependence on cell type.

Cells use ATP as a carrier of cellular energy storage, assembling ATP during
metabolic processes and utilizing ATP for numerous cellular functions. Thus the
energy intake rate, A(t), described above corresponds to ATP availability rates. If
we assume that all of the available energy is used, cell growth and death can then be
determined from Equation (15) by calculating the available ATP. To calculate the
amount of ATP energy derived from nutrient consumption, we consider oxidative
and glycolytic metabolism separately. First, we consider the aerobic synthesis of
ATP. We can calculate the total oxidative ATP turnover from the rate of oxygen
consumption and a P:O ratio of 2.36 [33]. We may also calculate the number of
glucose molecules utilized in oxidative processes, GO, since the oxidization of one
glucose molecule requires 6 molecules of O2. Once the amount of glucose metabo-
lized aerobically has been calculated, we may deduce that the rest of the glucose was
metabolized anaerobically. Glycolysis is a far more inefficient process, producing
at most 2 ATP per glucose molecule. In the model, we assume that, on average, 4
ATP molecules are produced for every 3 glucose molecules consumed anaerobically,
taking into account any metabolic inefficiencies that may be present [48]. Note
that this is a conservative estimate, and this aspect of the model could be adjusted
to mimic particular environments. See, for example, the discussion in [7] where
it is assumed that 2 ATP are produced per glucose molecule. Letting ATPO and
ATPG denote the number of available ATP molecules produced aerobically and
anaerobically, respectively, we have the following equations:

∆ATPO = 2∆O × 2.36 (16)

∆ATPG =
4

3
(∆G−∆GO) =

4

3

(
∆G− ∆O

6

)
(17)

Note that the last equation is only valid when ∆G ≥ ∆GO, i.e., if some anaerobic
glycolysis occurs; otherwise ∆ATPG = 0. Thus, when enough oxygen is present,
there may be no ATP molecules produced anaerobically. In experiments such as
those reported in [14], it is possible that other fuel substrates are present. Therefore,
while Equations (11) – (13) might violate the constraint 6∆G > ∆O, this would
correspond to the presence of other fuel substrates in the experimental set-up. In
our model, however, we assume that the only nutrients present are glucose and
lactate. A refinement of the present model might take other fuels into account.

The total available ATP is the sum of Equations (16) and (17), which can then
be used to calculate the change in the number of cells of type ν in grid element
(i, j):

∆V νi,j(t) =
∆ATPi,j(t)−MνV νi,j(t)

gν
(18)

We remark that the calculation of the ATP produced as a function of the nutrient
consumption rates provides insight on the energy status of our simulated cell popu-
lations. The total amount of energy available to the host at any given time might,



134 C. DUBOIS, J. FARNHAM, E. AARON AND A. RADUNSKAYA

in principle, be a measure of the health of the organism, and could potentially be
used for prognosis and/or treatment design.

See Appendix A for the values of the constants in all equations.

3.6. Model of cell movement. Each grid element represents a fixed spatial vol-
ume, so it can be filled with proliferating tumor cells, which can then invade neigh-
boring grid elements. . However, cellular adhesion molecules, such as integrins and
Tissue Factor (TF), play a large role in the mobility of tumor cells, affecting their
interactions with neighboring cells and the surrounding extracellular matrix (ECM)
[47]. When modeling the progression of a tumor through its different stages, it is
necessary to consider the effects of cellular adhesion between cells and the ECM
since the secretion or suppression of adhesion molecules is a possible mechanism for
the onset of metastasis [2, 34, 28]. Mathematical models incorporating adhesion
include [10] and [25], while [66] and [65] explore the relationship between cell-cell
adhesion, pattern formation and disease prognosis.

Turner [70, 69], provides a method for estimating the diffusion coefficient for
biological cells modeled as adhesive, deformable spheres by considering the “poten-
tial energy of interaction” between individual cells. Turner shows that the diffu-
sion coefficient is proportional to the second derivative of the cells’ energy density,
E(n),which can be derived in terms of the biological parameters of individual cells
(such as elasticity and adhesiveness). This provides a way to consider a population
of discrete cells macroscopically. A polynomial of Laundau-Ginzburg form:

E(n) =
An2

2
+
Bn4

4

fits the solution of E(n) quite well near the equilibrium density, where n is the
density of cells, A < 0 and B > 0. We modify Turner’s formula for E(n) by setting
it to zero below a minimum cell density, at which point adhesive forces have no
effect, (see Figure 6).

Thus, below a specific minimal density (cells per grid element) nmin, cells are
assumed to make no physical contact, so E is zero. At densities greater than nmin,
cells begin to make contact and adhere, and E decreases to its minimum at the
optimal cell density neq. Above neq, cell elasticity becomes more pronounced than
adhesion, and E increases up to maximum possible density nmax.

In our simulations, each new tumor cell is placed in its grid element of origin,
or in one of the four neighboring elements, according to the following rules. Tumor
cells are placed first in grid elements with populations less than neq, with densely
populated elements receiving cells before sparsely populated elements, in order to
minimize total E over the local neighborhood. Once all elements in the five-element
neighborhood containing the element of origin and the four adjacent elements are
filled to neq, the remaining cells are distributed randomly over the neighborhood
until nmax is reached in all grid elements. Any remaining new tumor cells are
discarded due to overcrowding.

Adhesion between normal cells is assumed to be negligible compared with that
of tumor cells, so no potential energy function is used for the distribution of normal
cells. Newly generated normal cells are distributed randomly among the five-element
neighborhood surrounding the grid element of origin.

3.7. Boundary update rules. For both nutrient diffusion and cell mobility, the
conditions governing updates on the boundaries of CA grid elements are critical
to the simulation, ensuring that proper biological context is represented. We have
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Figure 6. The potential energy of cell configurations is used to
determine cell movement. Densities are given in cells per grid ele-
ment. The potential energy function is zero for densities less than
nmin, at which density the cells are assumed to be “just touching”.
At higher densities, the potential function decreases, reaching a
minimum at density neq. For densities higher than neq, the po-
tential function increases steeply, reaching a maximum at density,
nmax. In this figure, nmin = 50, neq = 80, and nmax = 100.

Figure 7. Time evolution of a simulation of a slow-growing tumor.
From left to right, the panels show tumor growth after 10, 100, 200
and 600 simulated days. Viable tumor cells are colored red, normal
cells are yellow and green, and necrotic cells are dark blue. The
simulations show that a necrotic core begins to develop by 200 days.

Figure 8. Nutrient Concentrations after 365 days. Left: Glucose,
Center: Oxygen, Right: H+ ions.
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Figure 9. Cell Populations: Left: normal cells, Center: tumor
cells, Right: necrotic cells.

implemented three pertinent boundary conditions for our biological simulations:
periodic grid topology, fixed boundary state, and zero-flux boundary. Diffusion and
cell movement for each boundary rule is implemented in a computationally efficient
manner, exploiting fast algorithms for matrix multiplication. The details are given
in Appendix B.

4. Results.

4.1. Nutrient consumption. The model parameters describing nutrient consump-
tion and the production of lactate were initially calibrated by checking nutrient
consumption rates in a variety of micro-environments to make sure that model pre-
dictions were consistent with experimental observation. Figure 10 shows oxygen
and glucose consumption rates predicted by the model. In the model, tumor cells
and normal cells consume oxygen at the same rate, but this rate does depend on
local glucose, oxygen and hydrogen concentrations. Since normal pH levels are
around 7.4 [64], it is the top left graph in each set that are the most significant
to our current study. The upper set of graphs show glucose consumption rates as
a function of oxygen concentration at four different levels of acidity. Consump-
tion rates for tumor cells (solid lines) and normal cells (dashed lines) are drawn
on the same axes for comparison. We see that the difference in consumption rates
as most marked at pH levels close to normal, and when oxygen concentrations are
low. In these graphs, the glucose concentration is fixed at 5.5 mM. The lower set
of graphs shows oxygen consumption rates as a function of oxygen concentration at
two different glucose concentrations and four different levels of acidity. Here we see
that at lower glucose levels oxygen consumption rates are significantly higher than
at normal glucose levels, consistent with [14]. As acidity increases, this difference
diminishes.

4.2. Tumor growth and micro-environment. In this section we describe the
results of some experiments with the model. Figure 9 shows the results of a sim-
ulation run for 365 days on a 300 by 300 grid with randomly distributed blood
vessels beginning with a very small initial tumor population. Normal cell popu-
lations, shown on the left, are unaffected away from the tumor. Consistent with
diffusion-limited growth, the tumor has developed a necrotic core and a proliferat-
ing rim. The center and right panels show that the tumor has become necrotic in
the center. Figure 8 shows nutrient concentrations for the same simulations. The
left panel shows little glucose diffusing to the interior, and the center panel shows
that the center of the tumor has become hypoxic. The right panel shows the effect
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Figure 10. Nutrient consumption rates as a function of oxygen
concentration. Upper two rows: glucose consumption for tumor
(solid lines) and normal (dashed lines) cells at four different pH
levels, [G] = 5.5mM ; lower two rows: oxygen consumption rates at
two different glucose levels (solid lines: [G] = 5mM , dashed lines:
[G] = .4mM) and four different pH levels.
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Figure 11. Simulation showing the final tumor after 400 days
(left) and total tumor population over time (right). In this case,
tumor growth is diffusion limited, and the tumor will grow no fur-
ther unless new blood vessels are formed.

of the tumor on the acidity of the surrounding tissue: far from the tumor, pH lev-
els approach normal, but nearby and in the center of the tissue, the environment
has become relatively acidic. Figure 11 illustrates that the inability of nutrients
to penetrate the core of the tumor limits its ability to grow beyond a certain size,
measured in terms of total population. In this simulation, adhesion parameters and
the distribution of blood vessels are kept constant. If the tumor cells have the abil-
ity to encourage the growth of new vasculature (angiogenesis) or to reduce cell-cell
adhesion, then the tumor has the ability to grow beyond this limiting population.
These preliminary simulations suggest that the model adequately captures these
features of tumor growth, so that mechanisms involved in the progression of the
disease can then be explored.

All of our results reflect the assumption that tumor cells are able to metabolize
glycolytically more readily than normal cells: glycolysis produces more lactate and
is less efficient than aerobic metabolism, and so the O2 concentrations and the pH of
the tissue surrounding the tumor is decreased, and the tissue occupied by the tumor
cells becomes hypoxic and more acidic. These changes in the micro-environment
have consequences not only for the normal cells and the overall energy budget of the
host, but can also affect the delivery and bio-distribution of potential treatments,
a factor that we propose to explore with this model. We note that these results are
consistent with observations from both in vitro and in vivo studies (e.g. [58], [38],
[32]).

4.3. The effect of glucose levels and adhesivity. Figure 12 shows that tumor
growth is enhanced by increased glucose levels in the blood vessels. Additionally,
a loss in adhesivity can enable the cells to migrate to more favorable regions of
tissue, thereby escaping the diffusive limit. Figure 13 shows the available ATP at
the end of the same simulations. The white contour, visible in the graph of ATP
levels under “normal” conditions, encloses a cross-sectional area of tumor that is
unable to sustain cell life. The contour is not visible in the other two graphs, since
cells either have more glucose available (middle graph) or are able to migrate more
freely towards areas of higher nutrient concentration (rightmost graph).
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Figure 12. Three different simulations illustrating the effect of
glucose levels and cell-cell adhesivity. The solid line shows growth
with parameter values considered to be in the normal range (solid
line), showing that the tumor population reaches a steady state of
approximately 11000 cells. A lower adhesivity coefficient (teq = 60
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Figure 13. Graphs of the available ATP over the simulation grid
at the end of the simulations shown in Figure 12. The contour,
visible in the leftmost graph, encloses a cross-sectional area that is
unable to sustain cell growth.

5. Discussion and future directions. We have developed a two-dimensional
hybrid cellular automaton model of tumor growth in tissue that incorporates the
effects of the cancer cells on the micro-environment. In particular, the model reflects
a cancer cell’s ability to metabolize glucose anaerobically and to survive in an acidic
environment that can be hostile to normal cells. By calculating the energy available
to cells locally, the model predicts that tumor cells have the advantage over normal
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cells and are able to invade surrounding tissue under certain conditions. The model
has the ability to describe the effects of cell-cell adhesion on the invasiveness of the
tumor, and it can also describe vascular constriction and collapse due to pressure
from the growing tumor.

The goal of the model is to provide a computationally efficient framework for
the investigation of the growth of specific tumors in tissue, of the mechanisms
underlying cell metastasis, and of the effects of certain cancer treatments, including
combination treatments made up of both chemotherapy and immunotherapy. The
model is detailed enough to be calibrated to a specific tumor-cell type, once data
describing cell metabolism, tissue vascularization, and tissue density is provided.
Once the calibration is completed, the effects of certain treatments can be simulated.
For example, the administration of a cytotoxic drug can be modeled by adding a
state variable describing the delivery and diffusion of the drug through the tissue
once the diffusion constant of the drug is known as well as its cytolytic potential.
We have developed equations describing fractional cell kill by a chemotherapeutic
drug in [19], [20] and [54], while we have modeled immunotherapy and combination
therapy in [21], [22] and [17]. The equations describing the effects of the drug on
the tumor cells and normal cells, as well as the interactions between immune cells
and tumor cells can be used in this CA model by using them as local evolutionary
rules. Recruitment and proliferation of immune cells must also be added to the
current model. Some of the ideas from the authors’ previous work in [18] describing
a cellular automaton model can be used, although the probabilistic rules in that
earlier model will be translated to deterministic laws, in line with this model’s
attempt to rely on tissue heterogeneity and the nonlinear nature of the interactions
to generate the complicated and unpredictable behavior observed in actual tumor
growth.

It is known that oxygen concentrations can be an important factor in the effec-
tiveness of radiotherapy as well as in the progression of the disease by metastasis
(e.g. [9], [12]). The model presented here could serve as a refinement of earlier
models such as [5] and [50] that investigate the role of oxygen concentrations on
radiotherapy and the delivery of chemotherapeutic agents. By appealing to the
insights offered in these and other works, we plan to use this DEB-based model to
connect the microscopic effects of therapy to overall host fitness.

The simulation could be extended to model tumor development in three-
dimensional tissue rather than an effectively two-dimensional tissue slice. This
would require several modifications to simulation data structures and an adjustment
to the Dirty Diffusion computation. Dirty Diffusion as described in this paper is a
matrix multiplication-based operation; since matrix multiplication is defined only
for two-dimensional matrices, running a single matrix multiplication as described
in §B.0.1 would no longer be possible. Instead, the three dimensional n-by-n-by-n
nutrient concentration matrix N would be treated as a stack of n two-dimensional
matrices [N0, N1, . . . , Nn−1]. Dirty diffusion would then be accomplished for each
matrix Nx by performing the following computation:

Nx,t+1 =
A×Nx,t +Nx,t ×B +Nx−1,t +Nx+1,t

6
. (19)

Thus, addition of adjacent grid elements within a two-dimensional slice is accom-
plished using matrix multiplication as before, whereas addition of neighboring ele-
ments in adjacent slices is accomplished using matrix addition.
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Appendix A. Parameter values. Table A lists the parameter values used in the
simulations.

Parameter Description Value 2

necPersistence Fraction of necrotic cells re-
maining after end of timestep

0.9

nodeVolume Volume of each grid element 1× 10−6 mL
nodeLength Side length of each grid ele-

ment
13.23 µm

maxPop Maximum cell population in a
grid element

100 cells

initNormalPop Number of normal cells per
grid element when starting a
new simulation

12 cells

vesselSize Amount of space (in cells)
consumed by each blood ves-
sel

25 cells

t max Maximum number of tumor
cells per grid element, eq. (10)

100 cells

t min Minimum number of tumor
cells for adhesion to take ef-
fect, eq. (10)

0 cells

dMATPt dt ATP needed (per cell) for tu-
mor cells to survive, eq. (18)

3.04× 10−16 mo/c/s 3

dMATPn dt ATP needed (per cell) for nor-
mal cells to survive, eq. (18)

4.48× 10−16 mo/c/s

dGATPt dt ATP needed (per cell) for tu-
mor cells to reproduce, eq.
(18)

1.5× 10−16 mo/c/s

dGATPn dt ATP (per cell) needed for nor-
mal cells to reproduce, eq.
(18)

2× 10−16 mo/c/s

growth thresh Minimum fraction by which
cell populations in a grid el-
ement can change

0.01

cons ctumor ctumor, consumption eq. (13) 2
cons cnorm cnormal, consumption eq. (13) 1
cons aO aO, consumption eq. (11) 7.2× 10−17mo/c/s 4

cons bO bO, consumption eq. (11) 2× 10−21
mo(mm)

n+1

cs
cons kO kO, consumption eq. (11) 4.6× 10−3 mm
cons n n, exponent in eq. (11) 0.92

cons aG aG, consumption eq. (12) 1.9× 10−21
mo(mm)

m

cs

cons bG bG, consumption eq. (12) 1.9× 10−23
mo(mm)

m+1

cs
cons kG kG, consumption eq. (12) 4× 10−2 mm
cons m m, exponent in eq. (12) 1.2

2Unitless if no units are noted.
3moles ATP/cell/sec
4moles per cell per second
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cons qtumor qtumor, consumption eq. (13) 4× 10−16 mo/c/s
cons qnormal qnormal, consumption eq. (13) 3× 10−16 mo/c/s
minConc Minimum nutrient concentra-

tion to avoid divide-by-zero
errors

1× 10−8 mm

GThreshold Minimum glucose concentra-
tion change required to con-
tinue simulating diffusion in
current timestep

2× 10−4 mm

OThreshold Minimum oxygen concentra-
tion change required to con-
tinue simulating diffusion in
current timestep

2× 10−5 mm

D G Glucose diffusion coefficient 5× 10−6 cm2/s
D O Oxygen diffusion coefficient 1.46× 10−5 cm2/s
D H Proton diffusion coefficient 1.08× 10−5 cm2/s
protonFactor Fraction of protons not neu-

tralized by buffers
1× 10−5

lacToGluc Ratio of proton production to
anaerobic glucose metabolism

1.56

G o Starting glucose concentra-
tion when running a new sim-
ulation

3.75 mm

G bv Glucose concentration in
blood

5.25 mm

G q Controls permeability of glu-
cose through blood vessel
walls

1 µm s−1

pH o Starting pH when running a
new simulation

7.3

pH bv Blood pH 7.35
H q Controls permeability of pro-

tons through blood vessel
walls

2.34 µm s−1

O o Starting oxygen concentration
when running a new simula-
tion

0.26 mm

O bv Oxygen concentration in
blood

0.5 mm

O q Controls permeability of oxy-
gen through blood vessel walls

5 µm s−1

phosToOxy Ratio of phosphorus to oxygen
used to compute ATP produc-
tion

2.36

atpPerGlucAer Molecules of ATP produced
through aerobic metabolism
of one glucose molecule

30 molecules
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Figure 14. A comparison of the three boundary-value rules using
the same initial conditions: Periodic (left), Zero Flux (center) and
Fixed (right).

atpPerGlucAnaer Molecules of ATP produced
through anaerobic metabo-
lism of one glucose molecule

0.75 molecules

minConcChange Minimum nutrient concentra-
tion change during diffusion

1× 10−4 mm

secondsPerDay Number of seconds in 24 hours 86 400 s
Table 1: Baseline parameters used in model simulations.

Appendix B. Implementation of boundary rules. We have implemented three
different boundary rules, illustrated in Figure 14. In general, simulations with peri-
odic grid topology or zero-flux boundaries demonstrate biologically realistic tumor
growth patterns. Simulations with fixed boundary state demonstrate biologically
realistic growth only if the boundary’s fixed nutrient concentrations are appropri-
ately tuned. The three boundary rules can be implemented in similar ways and
have similar computational costs. For completeness, we include here a discussion of
the methods used to implement each type of boundary. It is certainly possible to
perform simulations where the different boundary rules are combined should that
be desirable.

B.0.1. Periodic Grid Topology. In simulations with periodic grid topology, edge
elements are assumed to be adjacent to the element at the opposite grid bound-
ary; nutrient diffusion and cell movement between “neighboring” elements there-
fore occur across grid boundaries. Diffusion and cell movement in periodic grids is
implemented using multiplication with two specific matrixes, A and B, shown in
Figure 15.

Figure 15 illustrates the simulation of one timestep of nutrient diffusion in an n-
by-n periodic grid. Grid-wide nutrient concentrations are stored in an n-by-n matrix
N , with each entry containing the nutrient concentration in the corresponding grid
element. To apply the diffusion rule in equation 8, the matrix multiplication A×N
is carried out; as shown in Figure 15, each entry (r, c) in the resulting matrix
selfPlusVertNeighbors contains the sum of the entries (r, c), ((r + 1) mod n, c),
and ((r− 1) mod n, c), i.e., each entry contains its own nutrient concentration plus
that of its vertical neighbors. Values for entries in which r = 0, the top row, are
added to values in the second row and the bottom row; this multiplication therefore
enforces vertical periodic grid topology.
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A N
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 ×


a b c d
e f g h
i j k l
m n o p

 =

 a+ e+m b+ f + n c+ g + o d+ h+ p
e+ i+ a f + j + n g + k + c h+ l + d
e+ i+m f + j + n g + k + o h+ l + p
a+ i+m b+ j + n c+ k + o d+ l + p

 = selfP lusV ertNeighbors

N B
a b c d
e f g h
i j k l
m n o p

 ×


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 =


b+ d a+ c b+ d a+ c
f + h e+ g f + h e+ g
j + l i+ k j + l i+ k
n+ p m+ o n+ p m+ o

 = horizontalNeighbors

Figure 15. Implementation of periodic grid topology. N is a cellu-
lar automaton grid containing nutrient concentrations. The matrix
multiplication A×N yields the matrix selfPlusVertNeighbors. The
multiplication N × B yields horizontalNeighbors. These two ma-
trices are then added, and the resulting matrix is divided by 5 to
complete the diffusion calculation.

Similarly, the matrix multiplication N ×B is then calculated to produce matrix
horizontalNeighbors, which contains the sum of each grid element’s horizontal
neighbors while enforcing horizontal periodic grid topology. The two product ma-
trices are then added, and their results are divided by 5 to produce the final result,
in which each element contains the average nutrient concentration of it and its
four adjacent elements, with element adjacency defined using periodic grid topol-
ogy. The calculation of nutrient diffusion with periodic topology is summarized in
equation 20:

Nt+1 =
A×Nt +Nt ×B

5
(20)

Where Nt is the matrix of gridwide nutrient concentrations at timestep t.

B.0.2. Fixed Boundary State. The implementation of fixed boundary state is based
on that of periodic grid topology. To simulate diffusion with fixed boundary state on
an n-by-n grid, a list edgeVals of n precomputed nutrient concetrations is stored;
this list specifies the fixed state of the grid boundary. equation 20 is then used to
calculate matrix Nt+1 from Nt as if the grid had periodic topology. The resulting
matrix Nt+1 has invalid values in all edge elements, because the grid boundary
state should be fixed; however, all other elements have valid nutrient concentrations.
Finally, list edgeVals is copied into each of the four grid edges, restoring the fixed
boundary state and completing the diffusion calculation.
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Figure 16. Illustration of the values in the numNeigh matrix used
to implement zero-flux boundary conditions. Lower case letters
show the neighbors of the cell with the corresponding upper case
letter.

In order to produce a biologically realistic simulation, edgeVals must be accu-
rately tuned. If the nutrient concentrations in edgeVals are high, the simulated
tumor will grow outward toward the grid edges, which contain a plentiful, inex-
haustible supply of nutrients. If the nutrient concentrations in edgeVals are low,
grid-wide nutrient concentration levels may decrease below the threshold required
for tumor survival.

Values in list edgeVals were set for an n-by-n grid using the following procedure.
A tumor-free simulation was run on an n-by-n grid G with zero-flux boundaries for
500 timesteps, in order to allow grid-wide nutrient concentrations to reach a steady
state in the absence of tumor cells. The nutrient concentrations in the edges of G
were then used as the values for edgeVals in an n-by-n tumor simulation with fixed
boundary state.

B.0.3. Zero-Flux Boundary. In simulations with a zero-flux boundary, grid elements
do not all have the same number of neighbors — edge and corner elements have
fewer neighbors than central elements. Thus, the denominator of the diffusion rule
in equation 8 is no longer the constant value 5; it is replaced by a value from the
matrix numNeigh, illustrated in Figure 16:

Nt+1(r, c) =
Nt(r, c) +

∑
(i,j)∈nbhd(r,c)Nt(i, j)

numNeigh(r, c) + 1
(21)

WhereNt(r.c) is the nutrient concentration in element (r, c) at time t, numNeigh(r, c)
is element (r, c) of the numNeigh matrix, and nbhd(r, c) is the set of all elements
(i, j) that are adjacent to element (r, c). For example, nbhd(0, 0) = {(1, 0), (0, 1)}.

Because each element Nt+1(i, j) receives the average concentration in Nt(i, j)
and nbhd(i, j), the denominator in equation 21 must be equal to |nbhd(i, j)| +
1. With periodic grid topology, |nbhd(i, j)| = 4 for all grid elements; however,
|nbhd(i, j)| varies with location in a grid with zero-flux boundaries, requiring the
use of numNeigh. Matrix multiplication is used to calculate total neighborhood
nutrient concentrations with zero-flux boundaries by using the matrices A′ and B′,
as shown in Figure 17.

B.0.4. Alternative Implementation. The previous sections describe an implementa-
tion of the three boundary rules based on matrix multiplication. Alternatively, a
looping-based approach can be used, in which Equations (8) or (21) are directly
applied to individual elements. This approach requires a separate computation for
each grid element, so its computational complexity is in O(n2) on an n-by-n grid.
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A′ N
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 ×


a b c d
e f g h
i j k l
m n o p

 =


a+ e b+ f c+ g d+ h

e+ i+ a f + j + n g + k + c h+ l + d
e+ i+m f + j + n g + k + o h+ l + p
i+m j + n k + o l + p

 = selfP lusV ertNeighbors

N B′
a b c d
e f g h
i j k l
m n o p

 ×


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 =


b a+ c b+ d c
f e+ g f + h g
j i+ k j + l k
n m+ o n+ p o

 = horizontalNeighbors

Figure 17. Implementation of zero-flux boundaries. N is a cellu-
lar automaton grid containing nutrient concentrations. The matrix
multiplication A′×N yields the matrix selfPlusVertNeighbors. The
multiplication N×B′ yields horizontalNeighbors. These two matri-
ces are then added, and the resulting matrix element-wise divided
by matrix numNeigh to complete the diffusion calculation.

In contrast, the computational complexity of the matrix multiplication-based ap-
proach is in O(n3); however, in practice, the matrix multiplication-based method
performs much faster than the looping-based method.
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