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Abstract. Although a virus contains several epitopes that can be recognized
by cytotoxic T lymphocytes (CTL), the immune responses against different
epitopes are not uniform. Only a few CTLs (sometimes just one) will be
immunodominant. Mutation of epitopes has been recognized as an important
mechanism of immunodominance. Previous research has studied the influences
of sporadic, discrete mutation events. In this work, we introduce a bounded
noise term to account for the intrinsic stochastic nature of mutation. Monte
Carlo simulations of the stochastic model show abounding complex phenomena,
and patterns observed from the numerical simulations shed lights on long term
trends of immunodominance.

1. Introduction. A virus contains several epitopes that can be recognized by cor-
responding cytotoxic T lymphocytes (CTL). The immune responses against differ-
ent epitopes are not uniform. Only the CTLs directed to a few epitopes, sometimes
just one, will be dominant. This hierarchical response phenomenon is known as
immunodominance [1, 2, 3]. Immunodominance is an interesting phenomenon and
has been actively investigated during the last two decades [4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17]. Competition and predation of the immune species interactions
are believed to be the reason of immunodominance. Mathematical models have
been developed to explain the mechanism [18, 1, 19, 2, 20, 21, 3, 22, 23]. These
models show very complicated dynamics and rich features. The emergence of new
virus variants may give rise to peaks in viral concentrations, the so-called “antigenic
drift” [24, 18, 25, 26, 27]. Even in the absence of mutations, fluctuations and oscilla-
tions in the concentration of virus variants and immune responses against different
epitopes, known as “antigenic oscillation”, are observed [1, 19]. As an important
consequence of the emergence of escape mutants, shifting of the immunodominance
may lead to disease progression [1, 19]. Memory cytotoxic T lymphocyte precursors
(CTLp) are important for efficient virus control [20].

Previous research treats mutation as discrete events, which occur at prescribed
times with deterministic mutation rates [22]. To account for the intrinsic uncertain-
ties in escape mutation, we introduce a stochastic process to the immunodominance
model developed by Nowak et al. [1]. The stochastic mutation term has great in-
fluences on both the instant state and the long-term trend of the immune response.
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The model shows many interesting dynamical behaviors, and can be used to explain
some experimental results from longitudinal studies.

2. The stochastic mutation model. Nowak, May and Sigmund developed an
immune model, which considers two mutants in epitope A (labeled as A1 and A2)
and a single variant in epitope B [1]. Here, we modify the model of Nowak et al.
as follows:
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where V ′

1 and V ′

2 denote the concentration of two virus variants. Note that virus 1
contains epitopes A1 and B, and virus 2 contains epitopes A2 and B. The variables
X ′

1, X
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2, and Y ′ denote the CTL clones directed at epitope A1, A2, and B, respec-
tively. Replication rates of the viruses are denoted by r′1V
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respectively. The coefficients c′1, c

′

2, and k′ describe the immunogenicity rates of the
epitopes. In the absence of antigenic stimuli, the activated CTLs die at the rates
−b′X ′

1, −b′X ′

2, and −b′Y ′, respectively. We introduce the term 1
2εr

′

1V
′

1(1 + ξ′(t′))
to describe the stochastic, frequent mutation from epitope variant A1 to variant
A2. Here, ξ

′(t′) = sin(Ω′t′ + σ′W (t′) + ∆) is a bounded noise, where Ω′ is the cen-
ter frequency determined by the cell cycle, σ′ represents the intensity of frequency
stochastic perturbation, W (t′) is the standard Wiener process with mean 0 and
variance t at time t, ∆ is a random phase uniformly distributed in [0, 2π], and the
strength factor ε ∈ [0, 1] represents the maximum mutation rate. All parameters
are positive real numbers. A detailed explanation of stochastic mutation term is
given in appendix A.

In order to facilitate dynamical analysis, we first non-dimensionalize Equation
(1). Denote by L a characteristic length constant and by T a characteristic time
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′. Substituting these non-

dimensional variables into Equation (1) yields
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where ξ(t) = sin (Ωt+ σW (t) + ∆). The non-dimensional parameters are defined
as follows: r = r′2/r

′

1, p = p′2/p
′

1, q = q′/p′1, c = c′2/c
′

1, k = k′/c′1, b = b′/r′1,

Ω = Ω′/r′1, and σ = σ′/
√

r′1. The bounded noise ξ(t) is a stationary process
[28, 29]. The spectral density of ξ(t) is
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σ2

4π

ω2 +Ω2 + σ4
/

4
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/

4)2 + σ4ω2]
(3)

The auto correlation function of ξ(t) is
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1

2
exp

(

−σ2

2
|τ |

)

cosΩτ (4)

The bandwidth of ξ(t) depends mainly on σ, the so-called bandwidth factor. We
say ξ(t) is a narrow band process when σ is small, a wide band process when σ
large.

The non-dimensional deterministic system without bounded noise term is

v̇1 = v1

(

1− ε

2
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)

v̇2 = v2 (r − px2 − qy) +
ε

2
v1
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ẏ = y [k (v1 + v2)− b] (5)

System (5) has 5 saturated fixed points, which are stable against invasion by those
variables that are close to zero; see Table 1. The saturated regions of these fixed
points are mutually exclusive and cover the whole parameter space; see Fig. 1. Here,
Pi stands for the region, in which the fixed point FPi is saturated.

Table 1. The values of five saturated equilibriums of system (5).

Fixed point v1 v2 x1 x2 y

FP1 0 b
k 0 0 r

q

FP2
b
k − b

c
b
c 0 r−1

p + εc
2pk

2−ε
2q
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b
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εb

2k(1−r) 0 0 2−ε
2q

FP4 b b
k − b 1− r + ε

2(k−1) 0 r
q − εk

2q(k−1)

FP5 b b
c

2−ε
2

r
p + εc

2p 0

It can be seen from Table 1 and Fig. 1 that epitope A is immunodominant in
P5 region whereas epitope B dominates in P1 and P3 regions. In regions P2 and
P4, the two epitopes A and B are codominant. Different parameter regions may
correspond to responses in different patients.

3. Dynamics of stochastic immune system. In the absence of the stochastic
mutation term, dynamics of system (5) exhibit either regular oscillations or fixed
points. However, the stochastic mutation term will draw a different picture and lead
to more complicated behaviors. We will use Monte Carlo simulations to show the
new phenomena and to promote an intuitional understanding. In order to show the
dynamical behaviors following the emergence of new virus mutant v2, we assume
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Figure 1. The parameter regions of the saturated fixed points of
system (5) in which they possess existence and saturation. Note
that there is a Hopf bifurcation at the critical control parameter
value c = 2/ε− 1, and the saturated region of fixed point FP4 only
exhibits in the parameter space where c < 2/ε − 1. The red line
corresponds to r = − εc

2
1
k + 1, and the blue curve is r = 1− ε

2−2k .

(a) if c > 2/ε− 1; (b) if c < 2/ε− 1.

that all possible CTLs are present in the beginning (t = 0), and there exists only
one variant A1 of epitope A. Thus, at this initial stage, the system is reduced to

v̇1 = v1 (1− x1 − qy)

ẋ1 = x1 (v1 − b)

ẋ2 = −bx2

ẏ = y (kv1 − b) (6)

The pre-existing CTL x2 will decline exponentially in the absence of the virus
mutant v2. There are two neutrally stable saturated equilibriums

(v1, x1, x2, y) = (b, 1, 0, 0), if k < 1

(v1, x1, x2, y) = (b/k, 0, 0, 1/q), if k > 1 (7)

Epitope A is immunodominant when k < 1; otherwise, epitope B is immunodomi-
nant.

In the following, we investigate the effects of stochastic mutations using Monte
Carlo simulations. We assume that, at the initial infection, the amount of viruses
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and CTLs are v1 = 0.001, v2 = 0, x1 = 0.001, x2 = 0.001, and y = 0.001. Then,
after 200 time units, a stochastic mutation term is introduced to the system so that
the dynamics is governed by Eq. (2) since then.

3.1. P1 region. Since the fixed point FP1 of system (5) is neutrally stable, the
responses exhibit neutral oscillations around their long-term averages, where CTLs
X1 andX2 are vanished. There is clearly a complete shift of immunodominance from
epitope A to epitope B while k < 1. Figure 2(a) shows that the shift happens just
as the mutation takes place at (t = 200). Despite stochastic noises, the oscillations
exhibit regular patterns. Moreover, the mutation also eliminates the original virus
variant V1, and the emergent mutant V2 oscillates with a larger amplitude.

3.2. P2 region. The fixed point FP2 is an asymptotically stable fixed point of
system (5). Since the CTLs X2 and Y have positive values in the steady state,
there is a partial shift of immunodominance regardless of k (partial shift means
that the old response against epitope A, with specificity for the original variant,
coexists with a response against epitope B [1]). The immunodominance is partially
shifted from epitope A to epitope B while k < 1, together with a new specific
CTL response against epitope A (old response against variant A1 is replaced by
new response against variant A2), and partially shifted from epitope B to epitope
A when k > 1. We also notice an interesting “immunodominance interchange”
phenomenon, as seen in Fig. 3(a). The complete shift of immunodominance from
epitope A to epitope B takes place soon after the mutation happens at t = 200.
However, the converse process takes place almost 400 time units later, and epitope
B captures the immunodominance at approximately t = 600. Epitope B loses its
immunodominance after 200 time units and finally the system converges to the fixed
point FP2. The virus concentrations exhibit similar pattern. Virus V1 experiences
quite a long time of “latency”, before it suddenly shows up approximately at t = 800.
The asymptotic property of the fixed point FP2 ensures that the system converges
to a statistically steady state. The probability density of the concentrations are
depicted in Figs. 4. The stationary probability density of virus with σ = 0.1 is
bimodal, which implies that the virus has two more probable concentration levels. It
is interesting to note that the variance of oscillation is not monotonically increasing
with a concomitant increase in σ, which suggests increasing strength of stochastic
perturbation. The maximum variance is achieved with a specific strength of σ.
The phenomenon suggests that the magnitude of virus fluctuations may be greatly
influenced by the bandwidth of the noise, which is due to σ-dependent spectral
density and will be further explained in Sec. 3.3.

3.3. P3 region. In this region, the mutant stimulates the response against epitope
B. When k < 1, the response in B displaces the original response in A, repre-
senting a complete shift in immunodominance from epitope A to epitope B. While
the neutrally stable fixed point FP3 introduces regular periodic oscillations to sys-
tem (5), the stochastic mutation in system (2) disrupts its regularity and makes
the viruses perform nearly unrestricted growth. It is clear to see from Fig. 5(b)
that the total virus amount first shrinks immediately after the mutation, and then
booms over tens of times than before. Clinically, this represents an undetectable
latency period, which is followed by a rapid growing period with the concomitant
constitutional symptoms.

We assume that there is a threshold of the concentration of virus, beyond which
the host is critically ill. The probability that the virus levels reach the threshold is
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Figure 2. Immune responses in the P1 region, parameter settings:
c = 0.8, r = 0.75, k = 0.9, p = 1, q = 1, b = 1, ε = 1, Ω = π,
σ = 1. (a) Complete shift in immunodominance from epitope A to
epitope B. The CTL responses exhibit regular oscillations around
the neutrally stable fixed point FP1. (b) Virus V1 vanishes, while
virus V2 emerges and oscillates with larger amplitude.

a function of time. The stochastic mutation will increase the probability of critical
illness. It is reasonable to assume that the host will rapidly become critically ill
when the peak of the spectral density of the bounded noise ξ(t) overlaps the eigen-
frequency of system (5). The center frequency Ω and the bandwidth factor σ will
determine the spectral density according to Eq. (3). We keep Ω = π and study the
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Figure 3. Immune responses in the P2 region, parameter settings:
c = 1.3, r = 0.75, k = 0.9, p = 1, q = 1, b = 1, ε = 1, Ω = π, σ = 1.
(a) “Immunodominance interchange” between epitopes A and B.
The immune responses converge to asymptotic stable equilibrium
FP2: X1 = 0, X2 = 0.47, and Y = 0.5. (b) Virus V1 experiences
a period of “latency”, before showing up again and converging to
fixed point FP2: V1 = 0.34, V2 = 0.77.

influence of the bandwidth factor σ. The period of system (5) can be simply esti-
mated from the inset in Fig. 6(a) T0 ≈ 47.5, and the relationship of σ to the spectral
density of bounded noise ξ(t) can be plotted by setting Ω = π and ω = 2π/47.5
in Eq. (3). The peak value is σ ≈ 2.5. The host will more likely to evolve into
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Figure 4. Probability densities of stationary distributions of con-
centrations in the P2 region, parameter settings: c = 1.3, r = 0.75,
k = 0.9, p = 1, q = 1, b = 1, ε = 1, Ω = π. (a) The bounded noise
in the stochastic mutation term is a narrow band one for σ = 0.1.
(b) Noise for σ = 1. (c) Noise for σ = 10. (d) Wide band noise for
σ = 100.

critical illness in this situation. The conclusion can be validated by Fig. 6(b). The
σ-dependent spectral density may also explain the phenomenon observed in Fig. 4.
Since the parametric resonance of nonlinear system under parametric excitation of
narrow band bounded noise will occur, the maximum critical illness probability will
be achieved with specific value of Ω [30].

3.4. P4 region. In the P4 region, the partial shift of immunodominance from epi-
tope A to epitope B always occurs. The original response against epitope A co-
exists with a response against epitope B. We observe the “immunodominance
interchange” phenomenon again. As depicted in Fig. 7(a), the epitope B becomes
immunodominant at the first stage after mutation. The CTL response directed
against epitope A emerges after a long period of “latency”, and is codominant with
the one against epitope B. However, the epitope B dominates again since t ≈ 6000.
The stochastic perturbation disturbs the stable limit cycle which surrounds the
unstable fixed point FP4, and the virus booms over 50 times together with the
“immunodominance interchange” process.
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Figure 5. Immune responses in the P3 region, parameter settings:
c = 0.8, r = 0.095, k = 0.45, p = 1, q = 1, b = 1, ε = 1, Ω = π,
σ = 1. (a) Complete shift of immunodominance from epitope A to
epitope B. The immune responses oscillate irregularly and the peak
value increases tens of times ever since mutation. (b) The change of
total virus amount, V1+V2, due to mutation. The amount increases
over 40 times in concentration.

3.5. P5 region. The fixed point FP5 is neutrally stable for system (5). A sample
orbit is depicted in Fig. 8(a). There is no shift of immunodominance in P5 region.
What differs from other regions is a “pulse” fluctuation in the evolution of virus
mutant, as illustrated in Fig. 8(b). The virus mutant V2 takes a surprising jump,
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Figure 6. Critically ill probability in the P3 region, parameter
settings: c = 0.8, r = 0.095, k = 0.45, p = 1, q = 1, b = 1, ε = 1,
Ω = π. (a) The relationship of bandwidth factor σ to the spectral
density of bounded noise ξ(t) at ω = 2π/47.5, the eigenfrequency
of system (5). The inset shows the stationary behavior of system
(5), from which the period can be estimated as T0 ≈ 47.5. (b) The
critical illness probability for σ = 2.5, 10 and 1.5, respectively. The
threshold of the concentration of virus is V1 + V2 = 100.



DYNAMICS OF STOCHASTIC MUTATION TO IMMUNODOMINANCE 947

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

1000

Time

C
T

L

 

 

X1

X2

Y

0 5000 10000
0

100

200

300

0 5000 10000
0

100

200

300

(a) Evolution of CTL concentration

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

Time

V
iru

s

 

 

Total virus before mutation
Total virus after mutation

0 200 400
0

10

20

30

40

(b) Evolution of viral concentration

Figure 7. Immune responses in the P4 region, parameter settings:
c = 0.8, r = 0.08, k = 0.45, p = 1, q = 1, b = 1, ε = 1, Ω = π,
σ = 1. (a) Partial shift of immunodominance from epitope A to
epitope B. At the first stage after mutation (from t = 200 to
4000), the epitope B takes immunodominance. However, the CTL
directed to epitope A recurs and is codominant with the one di-
rected to epitope B, and takes over the immunodominance, but the
epitope B dominates again since t ≈ 6000. (b) The change of total
virus amount, V1 + V2, due to mutation. The amount increases up
to 50 times in concentration together with a concomitant “Immun-
odominance interchange” process.
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Figure 8. Immune responses in the P5 region, parameter settings:
c = 0.8, r = 0.75, k = 0.4, p = 1, q = 1, b = 1, ε = 1, Ω = π,
σ = 1. (a) A sample trajectory in the region of P5 of system (5).
(b) The “pulse” fluctuation of virus mutant V2.

which is over 10 times larger than the original V1 variant in concentration. The
phenomenon indicates that a rapid increasing of the escape mutant may be detected
soon after mutation; however, the high concentration may not last long.

3.6. Stochastic migration of state. Since the intrinsic effect of the stochastic
term is perturbation in the intensity of mutation ε, a direct consequence of stochas-
tic mutation is the migration between parameter regions. The long-term behavior
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Table 2. Conditions of immunodominance shift due to stochastic mutation.

Parameter region k < 1 k > 1

P1 A1
Complete shift−−−−−−−−−−→ B

P2 A1
Partial shift−−−−−−−−−→ 〈A2, B〉 B

Partial shift−−−−−−−−−→ 〈A2, B〉
P3 A1

Complete shift−−−−−−−−−−→ B

P4 A1
Partial shift−−−−−−−−−→ 〈A1, B〉

P5 A1 =⇒ 〈A1, A2〉

will jump back and forth between adjacent regions randomly, which makes the sys-
tem response very irregular and unpredictable. The phenomenon is probably more
significant when the parameters of system are located in the vicinity of the bound-
aries of the regions. However, P5 region is relatively stable since it is independent
of ε. Since each patient corresponds to a specific parameter setting, the stochastic
migration between parameter regions will show the stochastic variability of immune
system with the evolution of infection.

4. Conclusions. We introduce a bounded noise term to the immunodominance
model developed by Nowak et al., to account for the intrinsic stochastic mutations
of the immune system. The current study is different from previous research in that
we consider continuous occurrence of mutation instead of sporadic events [1, 22].

We study the effects of a stochastic mutation term on immunodominance, as
summarized in Table 2. There are five mutually exclusive parameter regions of the
corresponding deterministic system, and each region has a saturated boundary fixed
point. The variable epitope A may shift immunodominance to conserved epitope B.
In parameter regions of P1 and P3, there are complete shift in immunodominance
from epitope A to epitope B if k < 1. In parameter region of P2, there is partial
shift of immunodominance from epitope A to epitope B if k < 1, and the contrary
is the case if k > 1. In parameter region of P4, there is always partial shift of
immunodominance from epitope A to epitope B. In the region of P5, there is no
shift in immunodominance occur, but a diversification in immune responses against
epitope A. In parameter regions of P2 and P4, the interesting “immunodominance
interchange” phenomenon is observed.

Since the spectral density of bounded noise ξ(t) is dependent on the center fre-
quency Ω and the bandwidth factor σ, the immune response is also influenced by
these parameters. Specified value of Ω and σ will apparently increase the concen-
tration of virus and probably make the host enter into critically ill condition.

We also study the dynamics of stochastic mutation system. The system has
complicated behaviors and exhibit interesting features, such as the “pulse” fluctu-
ation phenomenon. The evolutions of CTLs and viruses may experience “latency”
or “booming” period, and the state will migrate between adjacent parameter re-
gions stochastically, which makes the evolution of the immune system unpredictable.
However, the regular patterns analyzed in this work may promote our understand-
ing of the long-term trend of the immune system. The systems within parameter
regions P3, P4, and P5 may experience unbounded increases in the viral concen-
trations. However, the systems in the regions of P1 and P2 may have their viral
concentrations controlled in a limit range. The distinct long-term evolutionary
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trends of different parameter regions suggest that a possible immunotherapy to
treat the patients and to improve their conditions to satisfy the requirements of
parameter region P2. Numerical studies on stochastic mutations may lead to better
understanding of immunodominance and may help to advance the development of
immunotherapy.
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Appendix A. Stochastic mutation term. There are three critical parameters:
the strength factor ε, the bandwidth factor σ, and the center frequency Ω. The
strength factor ε ∈ [0, 1] is the maximum mutation rate. The stochastic mutation
term describes a stochastic fluctuation around the average mutation rate ε/2, which
should be estimated according to the experimental data.

The mathematical expectation of bounded noise at a fixed time t is:

E[ξ(t)] =

∫

∞

−∞

sin(Ωt+ σx+∆)
1√
2πt

e−x2/2tdx

= e−tσ2/2 sin(Ωt+∆)

=

{

0 σ → ∞
sin(Ωt+∆) σ → 0

(8)

And the auto correlation function (4)

R(τ) =
1

2
exp

(

−σ2

2
|τ |

)

cosΩτ =











1

2
δτ,0 σ → ∞

1

2
cosΩτ σ → 0

(9)

where δτ,0 is Kronecker delta. Thus, the bounded noise ξ(t) tends to a finite power
white noise as σ → ∞, and becomes a harmonic noise as σ → 0.

It can be concluded from spectral density expression, Eq. (3), that the bandwidth
of process ξ(t) depends mainly on σ, so we also call σ bandwidth factor. It is a
narrow band process when σ is small and a wide band process when σ is large.

The flexible and adjustable characteristics of bounded noise make it an appropri-
ate description of the intrinsically random mutation rate and a good approximation
to cell cycles according to heterogeneous scenarios.

Cell cycle is obviously periodic; however, the endogenous and exogenous signal
that influences the mutation may be aperiodic. Thus, it is reasonable to assume
that the mutation rate is a stochastic perturbation to periodic fluctuations. In
case the mutation rate observed in experiments shows regular periodic fluctuations
around a mean value, a small σ should be adopted. Then, the center frequency Ω
is determined by the cell cycle Tcell cycle

Ω =
2π

Tcell cycle
=

2π(proliferation rate− death rate)

ln 2
(10)

Alternatively, when there do not exist regular fluctuations or a characteristic fre-
quency band, a large σ will be chosen to capture the stochastic nature.
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Appendix B. Parameters and Monte Carlo simulation. Parameters and
variables are non-dimensionalized to facilitate dynamic analyses. The parameters
c′1, r

′

1, and p′1 are selected as the characteristic parameters. Other parameters are
scaled relative to these characteristic parameters. Note that the units of the char-
acteristic parameters are c′1 (L3T−1), r′1 (T−1), and p′1 (L3T−1). Then, one can

obtain the concentrations of all the variables in SI units as V ′

1 =
r′
1

c′
1

V1, V
′

2 =
r′
1

c′
1

V2,

X ′

1 =
r′
1

p′

1

X1, X
′

2 =
r′
1

p′

1

X2, Y
′ =

r′
1

p′

1

Y .

Since the Wiener process is the formal derivative of Gaussian white noise

dW (t)

dt
= ζ(t) (11)

whereW (t) is the standard Wiener process, and ζ(t) is the standard Gaussian white
noise. System (2) can be extended as

V̇1 = V1(1−X1 − qY )− 1

2
εV1(1 + sinZ)

V̇2 = V2(r − pX2 − qY ) +
1

2
εV1(1 + sinZ)

Ẋ1 = X1(V1 − b)

Ẋ2 = X2(cV2 − b)

Ẏ = Y [k(V1 + V2)− b]

Ż = Ω + σζ(t) (12)

To demonstrate the dynamic behaviors, we choose representative parameter com-
binations from corresponding parameter regions. The stochastic dynamics are stud-
ied using Monte Carlo simulations. The corresponding time series of the population
density are obtained by integrating Eqs. (12) numerically using the fourth order
Runge-Kutta scheme. The stationary probabilities are estimated with sample av-
erages over 120 realizations, with integration time step 0.005 and integration time
up to 30000 for each realization.
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