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Abstract. Stochastic differential equation (SDE) models are formulated for

intra-host virus-cell dynamics during the early stages of viral infection, prior

to activation of the immune system. The SDE models incorporate more real-
ism into the mechanisms for viral entry and release than ordinary differential

equation (ODE) models and show distinct differences from the ODE models.
The variability in the SDE models depends on the concentration, with much

greater variability for small concentrations than large concentrations. In ad-

dition, the SDE models show significant variability in the timing of the viral
peak. The viral peak is earlier for viruses that are released from infected cells

via bursting rather than via budding from the cell membrane.

1. Introduction. Viruses require host cells in order to reproduce. Human immun-
odeficiency virus (HIV), the virus that causes AIDS, reproduces within the cells of
the immune system, CD4+ T helper cells [36]. Human and avian influenza viruses
reproduce in the cells of the respiratory epithelium [20]. Hantaviruses, the cause
of hantavirus pulmonary syndrome, reproduce primarily in the vascular endothelial
cells but also infect other cells [10, 38]. After viral entry into a host cell, a complex
set of intracellular processes occur: transcription, translation, replication, assembly
and release.

Some basic mathematical models of viral dynamics concentrate on two steps
in this process: viral entry and release. One of the most well-known models for
viral dynamics includes only three variables, one variable for free virus particles or
virions, a second variable for healthy target cells, and a third variable for actively
infected target cells [21, 25, 36]. Another basic model includes four variables; the
fourth variable represents latently infected cells [24, 26]. These basic models are
deterministic and describe the early stages of intra-host viral infection, prior to
activation of the immune response.

Several stochastic models have been developed from these basic models and ap-
plied to HIV-1 [5, 12, 23, 29, 31, 30, 37]. Tuckwell and Le Corfec [31] developed one
of the first stochastic models for intra-host viral infection in the form of stochas-
tic differential equations (SDEs). Their deterministic skeleton has latently infected
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target cells. The SDE model shows the variability in the timing of the peak level of
infection when a small amount of virus is introduced. The SDE model developed by
Tuckwell and Le Corfec incorporated stochasticity only in the collisions and binding
of virus particles to receptors on target cells. Tuckwell and Wan [30] formulated
the backward Kolmogorov differential equations for this SDE model, useful in first
passage time problems. Kamina et al. [12] developed another stochastic approach
to the basic model with four variables, assuming Poisson, binomial and multino-
mial distributions for some of the processes. Tan and Wu [29] used extensive Monte
Carlo simulations to study the distributions of the CD4+ T cells and virions in
a stochastic version of the basic model with four variables. Chao et al. [5] used
the basic virus-cell model as a starting point but formulated and simulated a more
realistic multi-stage-structured model that includes cytotoxic T cell response, an
agent-based model. Time is divided into fixed intervals so that after a fixed time
interval, cells divide or transition to another stage dependent on a given probabil-
ity distribution. The multiple stages account for the delays in reproduction and
stimulation by the immune response. Yuan and Allen [37] derived Itô SDEs and
continuous-time Markov chain models for the model with three variables, T , I, and
V and for a model that includes an immune response, applicable to HIV-1. Yuan
and Allen [37] and Pearson et al. [23] applied a stochastic approximation to compute
the probability of viral extinction for the budding and bursting release strategies.

Our goal in this investigation is to extend the work of Yuan and Allen [37], to
derive Itô SDEs for the basic model with four variables, similar to Tuckwell and Le
Corfec [31] but to include the variability due to births and deaths and the difference
in viral release strategy. We investigate the dynamics of the Itô SDEs by obtaining
differential equations for the moments of the joint probability density function.
Numerical simulations illustrate the variability in the sample paths with different
concentration or volumes, applicable to in vivo or in vitro studies. In addition,
the variability in the peak viral load is shown to depend on the particular release
strategy.

In Sections 2 and 3, the ODE and SDE models are introduced and some of their
dynamics summarized. Numerical examples comparing the dynamics of the ODE
and SDE models are presented in Section 4.

2. Model formulation.

2.1. ODE model. The basic deterministic model is a system of four ODEs [24, 26].
Figure 1 is a compartmental diagram illustrating the dynamics of T = healthy target
cells, L = latently infected cells, I = actively infected cells and V = virions. Only
the actively infected cells reproduce virions that either lyse the cell or bud from the
cell membrane. The model takes the form:

Ṫ = λ− µT + rT

[
1−

(
T + L+ I

Tmax

)]
− kTV

L̇ = pkTV − µL− αL

İ = (1− p)kTV + αL− aI

V̇ = NaI − γV − kTV

(1)

A summary of the parameters is given in Table 1. All parameters are positive,
unless noted otherwise. The parameters r and λ can be combined into one term
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Figure 1. Compartmental diagram for the basic intra-host viral dynamics

Table 1. Description of parameters

Parameters Description

λ Rate of formation of new target cells
r Maximum rate of growth of target cells from viral stimulation

Tmax Maximum target cell population
µ Death rate of uninfected and latently infected target cells
a Death rate of actively infected target cell population
γ Death rate of virions
k Rate constant for healthy target cells becoming infected by virions
α Rate latently infected cells convert to actively infected cells
N Number of virions produced from an infected cell=burst size
p Proportion of infected cells which are latent

but we keep them separate as in models for HIV-1. For HIV-1, healthy T cells are
reproduced in the thymus at a rate λ and die at a per capita rate µ. The term

rT

[
1−

(
T + L+ I

Tmax

)]
represents viral stimulation, a logistic type growth rate dependent on cell density,
with a bound on the maximum population density, Tmax.

A mass action term is used to represent infection of the healthy T cells by a virion,
kTV (representing a loss of a healthy T cell and a loss of a free viral particle). A
proportion p of the infected T cells become latent and the remaining proportion
1 − p become active. Latently infected T cells die at the same per capita rate µ
as healthy T cells, then convert to actively infected T cells at a per capita rate α.
Actively infected T cells die at a per capita rate a. A reasonable assumption is that
infected T cells have a higher death rate than healthy or latent T cells [24]:

a > µ. (2)



918 SUKHITHA W. VIDURUPOLA AND LINDA J. S. ALLEN

Prior to dying, actively infected T cells reproduce on average N virions. The pa-
rameter N is referred to as the “burst size” [24]. In addition, we assume for r > 0
that

λ

µ
< Tmax; (3)

stimulation increases the T cell population.
A special case of this ODE model is when r = 0 in (1), applicable to viral

infections where the target cells are not subject to antigenic stimulation. Tuckwell
and Le Corfec [31] formulated an SDE model based on the underlying ODE model
with r = 0.

2.2. SDE models.

2.2.1. Bursting. In the bursting case, an infected cell lyses and a burst of free
virions is released. That is, one infected cell dies at the same time N virions are
released, N ≥ 2. To differentiate the continuous random variables of the stochastic
model from the deterministic variables, the continuous random variables for the four
states T , L, I and V are denoted as X1, X2, X3 and X4, respectively. In addition,
Xtot = X1 + X2 + X3. These random variables are defined on an appropriately
defined sample space Ω, where Xi(t) = Xi(ω, t), ω ∈ Ω, with values for a fixed t in
the set [0,∞).

To formulate a system of Itô SDEs, the possible changes that occur in a discrete-
time process are defined [1, 2, 8]. Let ∆Xi = Xi(t + ∆t) − Xi(t). The possible

changes in the vector ~X = [X1, X2, X3, X4]tr for a small time interval ∆t and the
corresponding probabilities are summarized in Table 2. (The superscript tr refers
to the transpose of a vector or a matrix.)

Table 2. Possible state changes in the case of bursting during the
time interval ∆t, where Xi = Xi(t), i = 1, 2, 3, 4.

i Change, (∆ ~X)i Probability, pi∆t

1 (∆ ~X)1 = [1, 0, 0, 0]tr
[
λ+ rX1

(
1− Xtot

Tmax

)]
∆t

2 (∆ ~X)2 = [−1, 0, 0, 0]tr µX1∆t

3 (∆ ~X)3 = [−1, 1, 0,−1]tr pkX1X4∆t

4 (∆ ~X)4 = [−1, 0, 1,−1]tr (1− p)kX1X4∆t

5 (∆ ~X)5 = [0,−1, 0, 0]tr µX2∆t

6 (∆ ~X)6 = [0,−1, 1, 0]tr αX2∆t

7 (∆ ~X)7 = [0, 0,−1, N ]tr aX3∆t

8 (∆ ~X)8 = [0, 0, 0,−1]tr γX4∆t

9 (∆ ~X)9 = [0, 0, 0, 0]tr 1−
∑8
i=1 pi∆t

The change (∆ ~X)1 represents a birth of a healthy T cell, whereas changes (∆ ~X)i,
i = 2, 5, 8 represent death of either a healthy T cell, latently infected T cell or a

virion. The change (∆ ~X)3 = [−1, 1, 0,−1]tr represents a virion that enters a healthy
T cell and results in a latently infected cell with probability pkX1X4∆t, and the

change (∆ ~X)4 = [−1, 0, 1,−1]tr results in an actively infected cell with probability

(1 − p)kX1X4∆t. The change (∆ ~X)7 = [0, 0,−1, N ]tr represents a death of an
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actively infected cell and at the same time, the release of N virions. Finally, the

change (∆ ~X)6 represents a transition from a latently infected cell to an actively
infected cell. An alternate formulation for changes 4 and 5 was considered by
Vidurupola [35], where these changes are combined into [−1, p, 1 − p,−1]tr with
probability kX1X4∆t. Each of the random variables in the expressions for the
probabilities are evaluated at time t, Xi = Xi(t).

Applying the probabilities in Table 2, the expectation vector and covariance

matrix of ∆ ~X are computed. The expectation vector is

E(∆ ~X) =

9∑
i=1

pi(∆ ~X)i∆t = ~f( ~X)∆t,

where

~f( ~X) =


λ+ rX1

(
1− Xtot

Tmax

)
− µX1 − kX1X4

pkX1X4 − µX2 − αX2

(1− p)kX1X4 + αX2 − aX3

NaX3 − γX4 − kX1X4

 (4)

is the drift vector. The covariance matrix of ∆ ~X is obtained by dropping the
higher-order terms of order (∆t)2 or greater,

E[(∆ ~X)(∆ ~X)tr]− [E(∆ ~X)][E(∆ ~X)]tr ≈ E((∆ ~X)(∆ ~X)tr)

≈
9∑
i=1

pi(∆ ~X)i(∆ ~X)tri ∆t

= Σ( ~X)∆t,

where Σ( ~X) is given by


ϕ+ kX1X4 −pkX1X4 −(1− p)kX1X4 kX1X4

−pkX1X4 pkX1X4 + µX2 + αX2 −αX2 −pkX1X4

−(1− p)kX1X4 −αX2 (1− p)kX1X4 + αX2 + aX3 −(1− p)kX1X4 −NaX3

kX1X4 −pkX1X4 −(1− p)kX1X4 −NaX3 kX1X4 +N2aX3 + γX4



and ϕ = λ+ rX1

(
1− Xtot

Tmax

)
+µX1. A diffusion matrix G satisfies GGtr = Σ [2].

One matrix G is


√
ϕ −

√
pkX1X4 −

√
(1− p)kX1X4 0 0 0 0

0
√
pkX1X4 0 −

√
µX2 −

√
αX2 0 0

0 0
√

(1− p)kX1X4 0
√
αX2 −

√
aX3 0

0 −
√
pkX1X4 −

√
(1− p)kX1X4 0 0 N

√
aX3 −

√
γX4

 .

The matrix G is not unique; there are other matrices with the property GGtr = Σ
(see e.g., [2, 8, 17]). Applying the preceding matrix G, an Itô system of SDEs is
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obtained for the bursting case:

dX1 =

[
λ+ rX1

(
1− Xtot

Tmax

)
− µX1 − kX1X4

]
dt

+

√
λ+ rX1

(
1− Xtot

Tmax

)
+ µX1dW1 −

√
pkX1X4dW2 −

√
(1− p)kX1X4dW3

dX2 = (pkX1X4 − µX2 − αX2)dt+
√
pkX1X4dW2 −

√
µX2dW4 −

√
αX2dW5

dX3 = [(1− p)kX1X4 + αX2 − aX3]dt+
√

(1− p)kX1X4dW3

+
√
αX2dW5 −

√
aX3dW6

dX4 = (NaX3 − γX4 − kX1X4)dt−
√
pkX1X4dW2 −

√
(1− p)kX1X4dW3

+N
√
aX3dW6 −

√
γX4dW7,

(5)

where Wi = Wi(t), i = 1, 2, . . . , 7 are seven independent Wiener processes.

2.2.2. Budding. In the budding case, the virus is produced and released continu-
ously during the life of the infected cells; the virus “buds” from the infected cell.
The possible changes are summarized in Table 3.

Table 3. Possible state changes in the case of budding during the
time interval ∆t, where Xi = Xi(t), i = 1, 2, 3, 4.

i Change, (∆ ~X)i Probability, pi∆t

1 (∆ ~X)1 = [1, 0, 0, 0]tr
[
λ+ rX1

(
1− Xtot

Tmax

)]
∆t

2 (∆ ~X)2 = [−1, 0, 0, 0]tr µX1∆t

3 (∆ ~X)3 = [−1, 1, 0,−1]tr pkX1X4∆t

4 (∆ ~X)4 = [−1, 0, 1,−1]tr (1− p)kX1X4∆t

5 (∆ ~X)5 = [0,−1, 0, 0]tr µX2∆t

6 (∆ ~X)6 = [0,−1, 1, 0]tr αX2∆t

7 (∆ ~X)7 = [0, 0,−1, 0]tr aX3∆t

8 (∆ ~X)8 = [0, 0, 0, 1]tr NaX3∆t

9 (∆ ~X)9 = [0, 0, 0,−1]tr γX4∆t

10 (∆ ~X)10 = [0, 0, 0, 0]tr 1−
∑9
i=1 pi∆t

The only difference between the budding and bursting cases is in the two changes,

(∆ ~X)7 and (∆ ~X)8. The assumption in this case is that they are independent.
Following a similar procedure as in the bursting case, we find the drift vector and a
matrix H such that HHtr = Σ̃, where Σ̃ is the covariance matrix to order ∆t. The

drift vector ~f is the same as for the bursting case. The covariance matrix Σ̃ is

 ϕ+ kX1X4 −pkX1X4 −(1− p)kX1X4 kX1X4

−pkX1X4 pkX1X4 + µX2 + αX2 −αX2 −pkX1X4

−(1− p)kX1X4 −αX2 (1− p)kX1X4 + αX2 + aX3 −(1− p)kX1X4

kX1X4 −pkX1X4 −(1− p)kX1X4 kX1X4 +NaX3 + γX4

 ,
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with ϕ = λ+ rX1

(
1− Xtot

Tmax

)
+ µX1 and a matrix H is equal to


√
ϕ −

√
pkX1X4 −

√
(1− p)kX1X4 0 0 0 0

0
√
pkX1X4 0 −

√
µX2 −

√
αX2 0 0

0 0
√

(1− p)kX1X4 0
√
αX2 −

√
aX3 0

0 −
√
pkX1X4 −

√
(1− p)kX1X4 0 0 0

√
NaX3 + γX4

 .
An explicit form for the Itô SDE system in the budding case is

dX1 =

[
λ+ rX1

(
1− Xtot

Tmax

)
− µX1 − kX1X4

]
dt√

λ+ rX1

(
1− Xtot

Tmax

)
+ µX1dW1 −

√
pkX1X4dW2 −

√
(1− p)kX1X4dW3

dX2 = (pkX1X4 − µX2 − αX2)dt+
√
pkX1X4dW2 −

√
µX2dW4 −

√
αX2dW5

dX3 = [(1− p)kX1X4 + αX2 − aX3]dt+
√

(1− p)kX1X4dW3

+
√
αX2dW5 −

√
aX3dW6

dX4 = (NaX3 − γX4 − kX1X4)dt−
√
pkX1X4dW2 −

√
(1− p)kX1X4dW3

+
√
NaX3 + γX4dW7,

(6)

where Wi = Wi(t), i = 1, 2, . . . , 7 are seven independent Wiener processes.
The two Itô systems of SDEs (5) and (6) differ from the one formulated by

Tuckwell and Le Corfec [31]. Tuckwell and Le Corfec include only the variability
due to the infection rate caused by collisions and bindings of virus particles to
receptors on target cells. The parameter k in the differential equations for Xi,
i = 1, 2, 3 represents the probability per unit time per virion of a collision with
and attachment to an uninfected T cell [31]. In the differential equation for X4,
the parameter k is the probability per unit time per uninfected T cell of a collision
with and attachment to a virion and because the units are different, instead of k
another notation such as k′ is used. However, the value of the parameter k = k′.
In our models (5) and (6), the same value for k is applied in all of the differential
equations. The SDE model of Tuckwell and Le Corfec has the following form:

dX1 = (λ− µX1 − kX1X4)dt−
√
kX1X4dW

dX2 = (pkX1X4 − µX2 − αX2)dt+
√
pkX1X4dW

dX3 = [(1− p)kX1X4 + αX2 − aX3]dt+
√

(1− p)kX1X4dW

dX4 = (NaX3 − γX4 − k′X1X4)dt−
√
k′X1X4dW.

(7)

In system (7), there is only one Wiener process W = W (t).

3. Model analysis.

3.1. ODE model. Let the values of T , L, I and V at the disease-free equilibrium
(DFE) be denoted as T̄ , L̄, Ī and V̄ . Then L̄ = Ī = V̄ = 0. Setting the differential
equation for T in (1) to zero, there are two cases for the DFE depending on whether
r > 0 or r = 0. If r > 0, then

T̄ =
(r − µ) +

√
(r − µ)2 + 4rλ

Tmax

2r
Tmax

. (8)
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If r = 0, then

T̄ =
λ

µ
. (9)

In either case, the value of T̄ satisfies

λ

µ
≤ T̄ ≤ Tmax.

It is straightforward to obtain conditions for local stability of the DFE. Define
the basic reproduction number as

R0 :=
NkT̄ [αp+ (1− p)(µ+ α)]

(µ+ α)(γ + kT̄ )
. (10)

If R0 < 1, then the DFE is locally asymptotically stable and unstable if R0 > 1.
This basic reproduction number differs from the one obtained by the next generation
matrix approach [32, 33] but is the one more commonly cited in the literature for
special cases of this model [4, 24, 11]. Some alternate thresholds are defined in
Appendix A, known as type reproduction numbers when infected cells or the virions
are controlled [9, 27]. During the initial stages of the infection, it is often the viral
load that is controlled. The value in (10) is the type reproduction for controlling V
but we refer to it as the basic reproduction number. The threshold R0 = 1 defines
a critical burst size

Ncrit :=
(µ+ α)(γ + kT̄ )

[µ(1− p) + α]kT̄
.

Setting p = 1 leads to the value for Ncrit given by Perelson et al. [24].
Kamgang and Sallet [11] verified global stability of the DFE in the case r > 0

and p = 1. We extend the proof to the case r ≥ 0 and p ∈ [0, 1] by finding a new
Lyapunov function that applies to our system. The value of Tmax is the maximum
number of uninfected T cells in the volume under consideration. If T (0) ≤ T̄ , then
it follows from the T equation in (1) that

Ṫ ≤ λ− µT + rT

(
1− T

Tmax

)
which implies T (t) ≤ T̄ because T̄ is a unique positive stable equilibrium for the
differential equation

ẋ = λ− µx+ rx

(
1− x

Tmax

)
.

Define the constant V0 and the set C as follows:

V0 = max

{
NaT̄

γ
, V (0)

}
and

C =
{

(T, L, I, V ) ∈ R4
+|Ttot ≤ T̄ , V ≤ V0

}
.

The proof of the following theorem is given in Appendix B.

Theorem 3.1. The DFE of model (1) is globally asymptotically stable on the set
C if R0 < 1 (equivalently if N < Ncrit) and it is unstable if R0 > 1, where T̄ is
defined in (8) in the case r > 0 and T̄ = λ/µ in the case r = 0.
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3.2. SDE models. The forward Kolmogorov differential equations for the prob-

ability density function P (t, ~X) can be derived from the drift vector and covari-

ance matrix [3, 22]. For the SDE system in the budding case, model (6), d ~X =
~fdt + Hd ~W , where HHtr = Σ̃ is the covariance matrix. The density function is a
solution of the following partial differential equation:

∂P (t, ~X)

∂t
=

1

2

4∑
i=1

4∑
j=1

∂2

∂Xi∂Xj

[
P (t, ~X)

7∑
l=1

HilHjl

]
−

4∑
i=1

∂[P (t, ~X)fi]

∂Xi

=
1

2

{
∂2

∂X2
1

P (t, ~X)

[
λ+ rX1

(
1−

Xtot

Tmax

)
+ µX1 + kX1X4

]

+
∂2

∂X2
2

P (t, ~X) [pkX1X4 + (µ+ α)X2] +
∂2

∂X2
3

P (t, ~X) [(1− p)kX1X4 + αX2 + aX3]

+
∂2

∂X2
4

P (t, ~X) [kX1X4 +NaX3 + γX4]

}

−
∂2

∂X1∂X2

P (t, ~X) [pkX1X4]−
∂2

∂X1∂X3

P (t, ~X) [(1− p)kX1X4]

+
∂2

∂X1∂X4

P (t, ~X) [kX1X4]−
∂2

∂X2∂X3

P (t, ~X) [αX2]−
∂2

∂X2∂X4

P (t, ~X) [pkX1X4]

−
∂2

∂X3∂X4

P (t, ~X) [(1− p)kX1X4]

−
{

∂

∂X1

P (t, ~X)

[
λ− µX1 + rX1

(
1−

Xtot

Tmax

)
− kX1X4

]
+

∂

∂X2

P (t, ~X)[kpX1X4 − µX2 − αX2] +
∂

∂X3

P (t, ~X)[k(1− p)X1X4 + αX2 − aX3]

+
∂

∂X4

P (t, ~X)[NaX3 − γX4 − kX1X4]

}
,

where f = [fi], H = [Hij ] and the expression
∑7
l=1HilHjl is the (i, j) element of

the 4 × 4 covariance matrix Σ̃. Similar equations can be derived for the bursting
case. These equations are too complex to solve directly. Alternatively, to obtain

information about the probability density function P (t, ~X), the multivariate Itô’s
formula can be applied to yield SDEs for random functions of the type XiXj [1, 3,
22].

The Itô system of SDEs in the budding case has the following form:

d ~X(t) = ~f( ~X(t))dt+H( ~X(t))d ~W (t),

where ~f = [f1, f2, f3, f4]tr, H = [Hij ] is a 4 × 7 matrix and ~W = [W1, . . . ,W7]tr.

Given the scalar function, F (t, ~X(t)), the multivariate Itô’s formula can be expressed
as

dF (t, ~X(t)) = h(t, ~X(t)) dt+ ~g(t, ~X(t)) · d ~W (t),

such that for x = [x1, x2, x3, x4],

h(t, x) =
∂F

∂t
+

4∑
i=1

∂F

∂xi
fi +

4∑
i=1

4∑
j=1

7∑
k=1

1

2

∂2F

∂xi∂xj
HikHjk

and

~g(t, x) · d ~W (t) =

7∑
j=1

4∑
i=1

∂F

∂xi
HijdWj(t).

For models (5) and (6), the second moment of X1 can be computed using F (t, x) =
x2

1, ∂F/∂t = 0, ∂F/∂x1 = 2x1, ∂
2F/∂x2

1 = 2 with the other partial derivatives
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equal to zero. Calculating h and ~g,

h(t, ~X(t)) = 2X1

[
λ− µX1 + rX1

(
1− Xtot

Tmax

)
− kX1X4

]
+

[
λ+ µX1 + rX1

(
1− Xtot

Tmax

)]
+ kX1X4

and

~g · d ~W = 2X1

{√
λ+ µX1 + rX1

(
1− Xtot

Tmax

)
dW1 −

√
pkX1X4dW2

−
√

(1− p)kX1X4dW3

}
.

Therefore,

dX2
1 = (2X1 + 1)ϕdt− [(2X1 − 1)kX1X4 + 4µX2

1 ]dt

+2X1

{√
ϕdW1 −

√
pkX1X4dW2 −

√
(1− p)kX1X4dW3

}
,

where

ϕ = λ+ rX1

(
1− Xtot

Tmax

)
+ µX1.

The ODEs for the first and second moments for the remaining variables are given
in Appendix C.

Applying properties of Itô SDEs and Wiener processes, moment differential equa-
tions can be derived. Each moment differential equation depends on higher-order
moment equations resulting in an infinite system of differential equations. It is
necessary to make some assumptions regarding the higher-order moments to form
a finite system of equations. Often a normal or a log-normal assumption is made to
“close” the system of differential equations [7, 13, 14, 16, 18, 19, 28]. For example,
assuming normality in the variable X1 and in the simple case of no infection, Xi = 0
for i = 2, 3, 4, Xtot = X1, then the differential equations for the moments of X1 are
the same for the bursting and budding models, systems (5) and (6), respectively.
For a normal distribution,

E[X3
1 ] = 3E[X2

1 ]E[X1]− 2(E[X1])3.

The differential equations for E[X1] and E[X2
1 ] are

dE[X1]

dt
= λ+ (r − µ)E[X1]− r

Tmax
E[X2

1 ]

dE[X2
1 ]

dt
= λ+ (2λ+ µ+ r)E[X1] +

(
2r − 2µ− r

Tmax

)
E[X2

1 ]

− 6r

Tmax
E[X1]E[X2

1 ] +
4r

Tmax
E[X1]3.

(11)

The nonlinear system (11) simplifies to a linear system if r = 0, with a solution
given by

E[X1(t)] =
λ

µ
+ c1e

−µt (12)

E[(X1(t))2] =
λ

µ
+
λ2

µ2
+ c1

(
2λ

µ
+ 1

)
e−µt + c2e

−2µt,
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where c1 and c2 depend on E[X1(0)] and E[(X1(0))2]. In the case r = 0,

lim
t→∞

E[X1(t)] =
λ

µ
= lim
t→∞

Var[X1(t)];

the mean and variance approach the DFE. For model (7), if X4 = 0, the equation
for X1 is an ODE, so that no assumptions are needed to close the system. In this
case, the solution for X1 is given by the mean (12) and Var[X1(t)] = 0.

4. Numerical examples. We illustrate some of the dynamics of the SDE models
and compare them with the ODE model. We use two sets of parameter values for
our numerical simulations that have been applied to HIV-1. For the model with
r = 0, we use parameter values given in Tuckwell and Le Corfec [31], Table 4, but
with different initial conditions. The basic reproduction number for the ODE model
is R0 = 7.9 with critical burst size Ncrit = 38. For the model with r > 0, we use
the parameter values given in Perelson et al. [24], Table 5, for the slow/low strain
of HIV-1 that is able to evade the immune response, with the exception that we
let parameter p = 0.1. Perelson et al. assume all infected target cells are latent
prior to becoming actively infected, p = 1. The basic reproduction number for the
ODE model in this case is R0 = 2.7 with critical burst size Ncrit = 111. We let
the total volume be denoted as v mm3 which may depend on whether studies are
in vitro or in vivo and on the particular animal model. In the references, it was
assumed that the blood volume in humans is approximately v = 5 × 106 mm3. In
the parameter set in Table 4, only a proportion of the initial healthy T cells are
activated, T (0) = 200v. In the parameter set in Table 5, T (0) = 1000v. The initial
number of virions is a fixed number, independent of v.

Table 4. Parameter values and initial conditions for r = 0. The
basic reproduction number is R0 = 7.9 and critical burst size is
Ncrit = 38 [31].

Parameter Value Initial Values

λ 0.272v cells/(day v mm3) T (0) = 200v/(v mm3)
µ 0.00136/day L(0) = 0v/(v mm3)
a 0.035/day I(0) = 0v/(v mm3)
γ 2/day V (0) = 10/(v mm3)
k 2.7×10−4v mm3/(v [virions or cells] day)
α 3.6×10−2/day
N 300 virions/cell
p 0.1

Figure 2 compares the ODE solution with a sample path and stochastic mean of
the SDE models (based on 10,000 sample paths) when r = 0, the bursting model
(5). In Figure 2 (a) the volume is v = 1 mm3, in Figure 2 (b) v = 1000 mm3

and in Figure 2 (c), v = 5× 106 mm3. A locally stable endemic equilibrium exists

for the ODE model since R0 = 7.9 > 1. The stable equilibrium is (T̂ , L̂, Î, V̂ ) =
(25, 0.64, 6.8, 35)v. The total number of T cells at equilibrium is (25+0.64+6.8)v ≈
32.5v < T̄ = 200v. The total T cell population is depleted, as demonstrated by
Phillips [26]. The stochastic mean is calculated based on 10,000 sample paths of the
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Table 5. Parameter values and initial conditions for r = 0.03.
The basic reproduction number is R0 = 2.7 and critical burst size
is Ncrit = 111. (∗Perelson et al. [24], p = 1)

Parameter Value Initial Values

λ 10v cells/(day v mm3) T (0) = 1000v/(v mm3)
µ 0.02/day L(0) = 0v/(v mm3)
a 0.24/day I(0) = 0v/(v mm3)
γ 2.4/day V (0) = 50/(v mm3)
k 2.4×10−5v mm3/(v [virions or cells] day)
α 3×10−3/day
N 300 virions/cell
p 0.1∗

Tmax 1500v/(v mm3)
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Figure 2. ODE solution (Det=dashed curve), one SDE sample
path (thin curve) and stochastic mean (Sto Mean=thick curve,
calculated from 10,000 sample paths) for free virions in the bursting
model (5) with parameter values in Table 4 and r = 0. (a) v = 1
mm3; (b) v = 1000 mm3; (c) v = 5× 106 mm3.
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SDE models. The Euler-Maruyama method is used to numerically solve the SDE
models.

There is a small probability of viral extinction in the SDE models but it is close
to zero because the initial viral load although small is sufficiently large with R0 > 1
to ensure the virus becomes established. The standard deviation relative to the
mean becomes relatively small when the volume is large so that the variability in
the sample paths is not visible in Figure 2 (b) and (c). Also, the time to reach the
viral peak depends on initial viral concentration and release strategy. The peak is
reached earlier with a larger initial viral concentration (compare (a), (b) and (c) in
Figure 2). In addition, the variability in the time to reach the peak in the budding
model is greater than in the bursting model (compare (a), (b) and (c) in Figure 3).

The variability in the peak viral load was also observed in the SDE model of
Tuckwell and Le Corfec [31], model (7). Based on 100 sample paths, 95% confidence
intervals were computed for the mean time of the maximum viral peak in models
(5), (6) and (7) for parameter values in Table 4 for v = 5×106 mm3. The time of the
maximum viral peak in the ODE model is at 21.04 days, whereas for the bursting
model, the 95% confidence interval (CI) for the mean time of the viral peak is
[19.02, 19.26], for budding the 95% CI is [20.44, 21.05] and for model (7) the 95%
CI is [20.34, 20.72]. The mean time of the viral peak in the budding model cannot
be distinguished from the ODE model. The mean peak viral load is significantly
earlier in the bursting model and in model (7) than in the ODE model.

The early viral peak is also visible in the bursting model for parameter values
from Table 5 with r = 0.03. The DFE for the ODE model is T̄ = 1435v and
the stable endemic equilibrium is (T̂ , L̂, Î, V̂ ) = (366, 45, 39, 1178)v. Six sample
paths for the bursting and budding models with v = 5 × 106 mm3 are graphed
in Figure 4. The time of the maximum viral peak in the ODE model is 73.3 days.
From 100 sample paths, the 95% CI for the mean time of the viral peak for bursting
is [67.5, 68.3] and for budding the 95% CI is [74.0, 77.1].

One final numerical example illustrates the approximate quasistationary distri-
bution (conditioned on nonextinction) for the healthy T cells and free virions and
the formulas for the moments derived from multivariate Itô’s formula. For the bud-
ding model (6) with parameter values from Table 5, v = 100 mm3 and r = 0.03
by the time t = 400 days, the stable equilibrium is reached in the ODE model,
(T̂ , L̂, Î, V̂ ) = (366, 45, 39, 1178)v. Probability histograms for the healthy T-cell
population and free virions are computed at t = 400 based on 10,000 sample paths
and graphed in Figure 5. The mean µ̂i and standard deviation σ̂i, i = T, V , esti-
mated from the sample paths were used to fit to a normal distribution

µ̂T = 36, 700, σ̂T = 554, µ̂V = 117, 000, σ̂T = 5020. (13)

The equilibrium values for the first and second moments under the assumption of
normality were computed from the differential equations given in Appendix C. The
equilibrium values for the mean and standard deviation ofX1 andX4, corresponding
to the random variables T and V , respectively, are

E(X1) = 36, 650,
√
Var(X1) = 561, E(X4) = 117, 800,

√
Var(X4) = 4987.

There is good agreement with the estimates from the simulations, given in equation
(13). For larger volumes, the means are approximately proportional to v, whereas
the standard deviations are approximately proportional to

√
v.
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Figure 3. ODE solution (dashed curve) and six SDE sample paths
(solid curves) for free virions for parameter values in Table 4, v =
5×106 mm3 and r = 0.; (a) bursting model (5); (b) budding model
(6); (c) Tuckwell and Le Corfec model (7).
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Figure 4. ODE solution (dashed curve) and six SDE sample paths
(solid curves) for parameter values given in Table 5, v = 5 × 106

mm3 and r = 0.03; (a) bursting model (5); (b) budding model (6).
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Figure 5. Probability histograms based on 10,000 sample paths
at t = 400 days for the budding model (6) for parameter values in
Table 5, v = 100 mm3 and r = 0.03; (a) healthy T cell population,
µ̂T = 36, 700, σ̂T = 554; (b) free virions, µ̂V = 117, 000, σ̂V = 5020.
The normal approximation is the dashed curve.

5. Discussion. A basic virus-cell ODE model with healthy target cells, latent and
actively infected target cells and free virions is used to derive two new Itô SDE
models. Although the ODE model was originally applied to HIV-1 [24, 26], the
simplicity of the model allows it to be applied to other intra-host viral infections
during the early stages of infection. The new Itô SDEs are distinguished by the
method which the virus is released from the host cell, either budding or bursting.
Bursting assumes the infected host cell dies at the same time N (burst size) virions
are released, whereas in budding, virions are continuously released during the life
of an actively infected cell. Many types of viruses use one or both of these release
strategies. The distinction between budding and bursting is usually associated with
the presence or the absence of a viral envelope, but this is not always the case [6].

The Itô SDE models for virus-cell interactions incorporate more realism into the
mechanisms for viral entry and release than the ODE models and show distinct
differences from the ODE model. The variability in the SDE models depends on
the concentration, with much greater variability for small concentrations than large
concentrations (see e.g., [17]). The SDE models also show a large variability in
the timing of the viral peak (especially for the budding model) and a significantly
earlier mean time for the viral peak (with bursting), which may have implications
for viral evolution. From the viewpoint of the virus, there is an advantage to early
establishment. It has been shown, prior to activation of the immune system, that
bursting is a more successful strategy than budding, i.e., the probability of viral
extinction is smaller for bursting than budding [15, 23, 37].

Appendix A. Alternate thresholds. Alternate expressions for a threshold re-
production number can be computed via the next generation approach and via a
type reproduction number. These other thresholds are equivalent to R0 ≤ 1, where
R0 is defined in (10).

In the next generation matrix approach [32, 33], the vectors F and V are com-
puted, representing inflow and outflow from disease compartments L, I and V .
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That is,  L̇

İ

V̇

 =

 kpTV
k(1− p)TV

NaI

−
 µL+ αL
−αL+ aI
γV + kTV


= F − V

≈ (F − V )

 L
I
V

 ,
where

F =

 0 0 kpT̄
0 0 k(1− p)T̄
0 Na 0


and

V =

 µ+ α 0 0
−α a 0
0 0 γ + kT̄

 .
Then the next generation matrix K = FV −1 is

K =


0 0

kpT̄

γ + kT̄

0 0
k(1− p)T̄
γ + kT̄

Nα

µ+ α
N 0

 . (14)

The basic reproduction number is defined as the spectral radius of K:

ρ(K) =

√
NkT̄ [αp+ (1− p)(µ+ α)]

(µ+ α)(γ + kT̄ )
=
√
R0.

The type reproduction number is another threshold value proposed by Roberts
and Heesterbeek [9, 27]. The type reproduction applies the next generation matrix
but it singles out particular types of hosts. The value of the type reproduction gives
an indication of the effort required to control the particular type.

Suppose the goal is to control the virus population, then the type reproduction
corresponding to V is defined as follows:

Tv = etrv K(I− (I− Pv)K)−1ev,

where ev = [0, 0, 1]tr,

Pv =

 0 0 0
0 0 0
0 0 1

 ,
I is the identity matrix and K is the next generation matrix given in (14). Since
ρ((I− Pv)K) = 0, the inverse is well defined. Hence,

Tv =
kT̄N [αp+ (1− p)(µ+ α)]

(µ+ α)(γ + kT̄ )
= R0,

where R0 as defined in (10).
If the goal is to control the infected T cells, then the type reproduction number

corresponding to I is
Ti = etri K(I− (I− Pi)K)−1ei,
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where ei = [0, 1, 0]tr,

Pi =

 0 0 0
0 1 0
0 0 0

 .
Then

Ti =
kT̄N(1− p)

(γ + kT̄ )

(
1− pkT̄Nα

(µ+ α)(γ + kT̄ )

) .
An additional assumption is required so that the inverse exists:

pkT̄Nα

(µ+ α)(γ + kT̄ )
< 1. (15)

Thus, inequality (15) and Ti < 1 if and only if R0 < 1.
If the goal is to control latently infected cells, then the type reproduction for L

is

Tl =
(1− p)kT̄Nα

(µ+ α)(γ + kT̄ )

(
1− (1− p)kT̄N

γ + kT̄

)
provided

(1− p)kT̄N
γ + kT̄

< 1. (16)

Thus, inequality (16) and Tl < 1 if and only if R0 < 1. If all infected cells and
virions are to be controlled, then the type reproduction number equals the basic
reproduction number as computed via the next generation matrix approach, Tl,i,v =
ρ(K).

Appendix B. Proof of theorem. First, we define a compact positively invariant
subset C ⊂ R4

+ for system (1) when r ≥ 0, where R4
+ = {x|x = (x1, x2, x3, x4) ∈

R4, xi ≥ 0, i = 1, 2, 3, 4}. Note that

dT

dt

∣∣∣∣
T=0

= λ > 0,
dL

dt

∣∣∣∣
L=0

= kpTV ≥ 0

dI

dt

∣∣∣∣
I=0

= k(1− p)TV + αL ≥ 0,
dV

dt

∣∣∣∣
V=0

= NaI ≥ 0.

As already shown T (t) ≤ T̄ if T (0) ≤ T̄ . The presence of infection decreases the
healthy T cell population. We prove Ttot(t) = T (t)+L(t)+I(t) ≤ T̄ , if Ttot(0) ≤ T̄ .
If T (0) > 0 and V (0) > 0, then it can be shown that solutions to (1) are positive
for t > 0. From (1), it follows that

dTtot
dt

= λ− µTtot − (a− µ)I + rT

(
1− Ttot

Tmax

)
.

Since a > µ (assumption (2)) and I(t) ≥ 0 it follows that

dTtot
dt
≤ λ− µTtot + rT

(
1− Ttot

Tmax

)
. (17)

Suppose t̃ is the first time Ttot(t̃) = T̄ . Using the facts that T̄ < Tmax and T (t) <
Ttot(t) for t > 0, then at t = t̃, the right side of (17) is negative,

dTtot
dt

∣∣∣∣
Ttot=T̄

< λ− µTtot + rTtot

(
1− Ttot

Tmax

)∣∣∣∣
Ttot=T̄

= 0
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because T̄ is a zero of the right side of the preceding expression. With infection,
the total T cell population, Ttot, is bounded above by T̄ . Because Ttot(t) ≤ T̄ , then

V̇ ≤ NaT̄ − γV which implies

V (t) ≤ max

{
NaT̄

γ
, V (0)

}
= V0.

The set

C =
{

(T, L, I, V ) ∈ R4
+|Ttot ≤ T̄ , V ≤ V0

}
is positively invariant. We construct a Lyapunov function to show that the system
is globally asymptotically stable if R0 < 1.

Define L as follows:

L(T, L, I, V ) = [(γ + kT̄ )− kT̄N(1− p)]L+ pkT̄NI + pkT̄V .

If R0 < 1, then
NkT̄ (1− p)
γ + kT̄

< R0 < 1.

This implies L(T, L, I, V ) ≥ 0 and L(T, L, I, V ) = 0 only if I = L = V = 0. Taking
the derivative of L along solution trajectories gives

L̇(T, L, I, V ) = [(γ + kT̄ )− kT̄N(1− p)]L̇+ pkT̄Nİ + pkT̄ V̇

= [(γ + kT̄ )− kT̄N(1− p)][kpTV − µL− αL]

+pkT̄N [k(1− p)TV + αL− aI] + pkT̄ [NaI − γV − kTV ]

= {NkT̄ [µ(1− p) + α]− (µ+ α)(γ + kT̄ )}︸ ︷︷ ︸
<0

L− pkγ (T̄ − T )︸ ︷︷ ︸
≥0

V

Therefore, L̇(T, L, I, V ) ≤ 0.
To show that the DFE is globally asymptotically stable by Lyapunov’s direct

method, it is necessary to show that the only set where L̇(T, L, I, V ) = 0 is the set
consisting of only a single point, the DFE [34].

Consider E = {x ∈ C|L̇(x) = 0} and let S be the largest invariant set contained
in E. For x ∈ S, we must have L = 0 and either T = T̄ or V = 0. If L = 0 and
V = 0, it follows from the system (1) that I = 0, which in turn implies T = T̄ . If
L = 0 and T = T̄ , then I = 0 = V . Thus, in both cases, the largest invariant set S
consists of only the point (T̄ , 0, 0, 0), the DFE. This proves the global asymptotic
stability of the DFE.

A formula for an endemic equilibrium in C is:

T ∗ =
γ(µ+ α)

kA
, L∗ =

γpV ∗

A
, I∗ =

γV ∗(α+ (1− p)µ)

aA

where A = µN(1 − p) + αN − µ − α > 0 since N > Ncrit. It is easy to see that
T ∗ > 0 and L∗, I∗ > 0 if V ∗ > 0. Next the value of V ∗ is

V ∗ =
λ+ (r − µ)T ∗ − rT ∗(T ∗ + L∗ + I∗)/Tmax

kT ∗
.

As shown in the preceding arguments, an endemic equilibrium in C must satisfy
T ∗ + L∗ + I∗ < T̄ < Tmax. For r = 0,

V ∗ >
µ

kT ∗

(
λ

µ
− T ∗

)
> 0

since T ∗ < λ/µ at an endemic equilibrium. For r > 0, this endemic equilibrium is
computed based on the given parameter values.
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Appendix C. Moment differential equations in the budding case. Differ-
ential equations for the higher-order moments are given below.

dE[X1]

dt
= λ+ (r − µ)E[X1]−

r

Tmax

{
E[X2

1 ] + E[X1X2] + E[X1X3]
}
− kE[X1X4]

dE[X2]

dt
= kpE[X1X4]− µE[X2]− αE[X2]

dE[X3]

dt
= k(1− p)E[X1X4] + αE[X2]− aE[X3]

dE[X4]

dt
= NaE[X3]− γE[X4]− kE[X1X4]

dE[X2
1 ]

dt
= λ+ (2λ+ µ+ r)E[X1]−

r

Tmax
E[X1X2]−

r

Tmax
E[X1X3] + kE[X1X4]

+

(
2r − 2µ− r

Tmax

)
E[X2

1 ]−
2r

Tmax
E[X3

1 ]−
2r

Tmax
E[X2

1X2]

− 2r

Tmax
E[X2

1X3]− 2kE[X2
1X4]

dE[X2
2 ]

dt
= 2kpE[X1X2X4]− 2µE[X2

2 ]− 2αE[X2
2 ] + pkE[X1X4] + µE[X2] + αE[X2]

dE[X2
3 ]

dt
= 2k(1− p)E[X1X3X4] + 2αE[X2X3]− 2aE[X2

3 ] + (1− p)kE[X1X4]

+αE[X2] + aE[X3]

dE[X2
4 ]

dt
= 2NaE[X3X4]− 2γE[X2

4 ]− 2kE[X1X
2
4 ] + pkE[X1X4] +NaE[X3]

+γE[X4] + (1− p)kE[X1X4]

dE[X1X2]

dt
= λE[X2] + (r − 2µ− α)E[X1X2]− pkE[X1X4]−

r

Tmax
E[X1X2X3]

−kE[X1X2X4]−
r

Tmax

{
E[X2

1X2] + E[X1X
2
2 ]
}
+ kpE[X2

1X4]

dE[X1X3]

dt
= λE[X3] + (r − µ− a)E[X1X3]− k(1− p)

{
E[X1X4]− E[X2

1X4]
}

+αE[X1X2]− kE[X1X3X4]

− r

Tmax

{
E[X1X2X3] + E[X2

1X3] + E[X1X
2
3 ]
}

dE[X1X4]

dt
= λE[X4] + (r − µ+ k − γ)E[X1X4] +NaE[X1X3]−

r

Tmax
E[X1X2X4]

− r

Tmax
E[X1X3X4]−

(
r

Tmax
+ k

)
E[X2

1X4]− kE[X1X
2
4 ]

dE[X2X3]

dt
= kpE[X1X3X4]− µE[X2X3]− αE[X2X3] + k(1− p)E[X1X2X4]

+αE[X2
2 ]− aE[X2X3]− αE[X2]

dE[X2X4]

dt
= kpE[X1X

2
4 ]− µE[X2X4]− αE[X2X4] +NaE[X2X3]− γE[X2X4]

−kE[X1X2X4]− pkE[X1X4]

dE[X3X4]

dt
= k(1− p)E[X1X

2
4 ] + αE[X2X4]− aE[X3X4] +NaE[X2

3 ]− γE[X3X4]

−kE[X1X3X4]− (1− p)kE[X1X4].
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From the normality assumption, third moments in the above system can be
replaced by lower moments as follows:

E[X3
1 ] = 3E[X2

1 ]E[X1]− 2(E[X1])3

E[X2
1X2] = 2E[X1]E[X1X2] + E[X2

1 ]E[X2]− 2(E[X1])2E[X2]

E[X1X
2
2 ] = 2E[X2]E[X1X2] + E[X1]E[X2

2 ]− 2E[X1](E[X2])2

E[X1X2X3] = E[X1]E[X2X3] + E[X2]E[X1X3] + E[X3]E[X1X2]

−2E[X1]E[X2]E[X3].

The resulting finite system of moment equations can be solved for the first and
second moments using a computer algebra system such as Maple. We solved the
system of 14 equations for a stable equilibrium solution for parameter values in
Table 5 with r = 0.03 and v = 100 mm3. The following stable equilibrium solution
was obtained, E[X1] = 36650, E[X2] = 4504, E[X3] = 3941, E[X4] = 117800,
E[X2

1 ] = 1.344×109, E[X2
2 ] = 2.029×107, E[X2

3 ] = 1.556×107, E[X2
4 ] = 1.390×1010,

E[X1X2] = 1.651×108, E[X1X3] = 1.444×108, E[X1X4] = 4.316×109, E[X2X3] =
1.775×107, E[X2X4] = 5.307×108, E[X3X4] = 4.651×108. It should be noted that
there exist other equilibria but they are not necessarily stable. The eigenvalues of
the 14× 14 Jacobian matrix evaluated at this equilibrium have negative real part:
−0.0344±0.155i, −0.0172±0.0773i, −0.0411±0.0773i, −2.665±0.0776i, −0.0239,
−0.0344, −0.0478, −2.646, −2.674, −5.296.
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[1] E. Allen, “Modeling with Itô Stochastic Differential Equations,” Springer, Dordrecht, The
Netherlands, 2007.

[2] E. J. Allen, L. J. S. Allen, A. Arciniega and P. E. Greenwood, Construction of equivalent
stochastic differential equation models, Stochastic Analysis and Applications, 26 (2008), 274–

297.

[3] L. J. S. Allen, “An Introduction to Stochastic Processes with Applications to Biology,” 2nd

edition, Chapman Hall/CRC Press, Boca Raton, FL, 2010.

[4] D. Burg, L. Rong, A. U. Neumann and H. Dahari, Mathematical modeling of viral kinetics

under immune control during primary HIV-1 infection, Journal of Theoretical Biology, 259
(2009), 751–759.

[5] D. Chao, M. Davenport, S. Forrest and A. Perelson, A stochastic model of cytotoxic T cell

responses, Journal of Theoretical Biology, 228 (2004), 227–240.
[6] E. T. Clayson, L. V. Jones Brando and R. W. Compans, Release of simian virus 40 virions

from epithelial cells is polarized and occurs without cell lysis, Journal of Virology, 63 (1989),

2278–2288.
[7] A. J. Ekanayake and L. J. S. Allen, Comparison of Markov chain and stochastic differential

equation population models under higher-order moment closure approximations, Stochastic
Analysis and Applications, 28 (2010), 907–927.

[8] D. T. Gillespie, The chemical Langevin equation, The Journal of Chemical Physics, 113

(2000), 297–306.
[9] J. Heesterbeek and M. G. Roberts, The type-reproduction number T in models for infectious

disease control , Mathematical Biosciences, 206 (2007), 3–10.
[10] C. B. Jonsson, L. T. M. Figueiredo and O. Vapalahti, A global perspective on hantavirus

ecology, epidemiology, and disease, Clinical Microbiology Reviews, 23 (2010), 412–441.
[11] J. C. Kamgang and G. Sallet, Computation of threshold conditions for epidemiological models

and global stability of the disease-free equilibrium (DFE), Mathematical Biosciences, 213
(2008), 1–12.

[12] H. Kamina, R. Makuch and H. Zhao, A stochastic modeling of early HIV-1 population dy-

namics, Mathematical Biosciences, 170 (2001), 187–198.
[13] M. J. Keeling, Metapopulation moments: Coupling, stochasticity and persistence, Journal of

Animal Ecology, 69 (2000), 725–736.

http://www.ams.org/mathscinet-getitem?mr=MR2292765&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2399736&return=pdf
http://dx.doi.org/10.1080/07362990701857129
http://dx.doi.org/10.1080/07362990701857129
http://www.ams.org/mathscinet-getitem?mr=MR2560499&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2009.04.010
http://dx.doi.org/10.1016/j.jtbi.2009.04.010
http://www.ams.org/mathscinet-getitem?mr=MR2080267&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2003.12.011
http://dx.doi.org/10.1016/j.jtbi.2003.12.011
http://www.ams.org/mathscinet-getitem?mr=MR2739323&return=pdf
http://dx.doi.org/10.1080/07362990903415882
http://dx.doi.org/10.1080/07362990903415882
http://dx.doi.org/10.1063/1.481811
http://www.ams.org/mathscinet-getitem?mr=MR2311668&return=pdf
http://dx.doi.org/10.1016/j.mbs.2004.10.013
http://dx.doi.org/10.1016/j.mbs.2004.10.013
http://dx.doi.org/10.1128/CMR.00062-09
http://dx.doi.org/10.1128/CMR.00062-09
http://www.ams.org/mathscinet-getitem?mr=MR2414826&return=pdf
http://dx.doi.org/10.1016/j.mbs.2008.02.005
http://dx.doi.org/10.1016/j.mbs.2008.02.005
http://www.ams.org/mathscinet-getitem?mr=MR1849285&return=pdf
http://dx.doi.org/10.1016/S0025-5564(00)00069-9
http://dx.doi.org/10.1016/S0025-5564(00)00069-9
http://dx.doi.org/10.1046/j.1365-2656.2000.00430.x


STOCHASTIC MODELS FOR VIRAL INFECTION 935

[14] M. J. Keeling, Multiplicative moments and measure of persistence in ecology, Journal of
Theoretical Biology, 205 (2000), 269–281.

[15] N. L. Komarova, Viral reproductive strategies: How can lytic viruses be evolutionarily com-

petitive? , Journal of Theoretical Biology, 249 (2007), 766–784.
[16] I. Krishnarajah, A. Cook, G. Marion and G. Gibson, Novel moment closure approximations

in stochastic epidemics, Bulletin of Mathematical Biology, 67 (2005), 855–873.
[17] T. G. Kurtz, Strong approximation theorems for density dependent Markov chains, Stochastic

Processes and their Applications, 6 (1978), 223–240.

[18] A. L. Lloyd, Estimating variability in models for recurrent epidemics: Assessing the use of
moment closure techniques, Theoretical Population Biology, 65 (2004), 49–65.

[19] J. H. Matis and T. Kiffe, “Stochastic Population Models,” Springer, New York, Berlin and

Heidelberg, 2000.
[20] M. N. Matrosovich, T. Y. Matrosovich, T. Gray, N. A. Roberts and H. D. Klenk, Human and

avian influenza viruses target different cell types in cultures of human airway epithelium,

Proceedings of the National Academy of Sciences, 101 (2004), 4620–4624.
[21] M. A. Nowak and R. M. May, “Virus Dynamics,” Oxford Univ. Press, New York, 2000.

[22] B. Øksendal, “Stochastic Differential Equations: An Introduction with Applications,”

Springer, Verlag, Berlin, Heidelberg, 5th edition, 2000.
[23] J. E. Pearson, P. Krapivsky and A. S. Perelson, Stochastic theory of early viral infection:

continuous versus burst production of virions, PLoS Computational Biology, 7 (2011), 1–17.
[24] A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells,

Mathematical Biosciences, 114 (1993), 81–125.

[25] A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM
Review, 41 (1999), 3–44.

[26] A. N. Phillips, Reduction of HIV concentration during acute infection: independence from a

specific immune response, Science, 271 (1996), 497–499.
[27] M. G. Roberts and J. Heesterbeek, A new method to estimate the effort required to control

an infectious disease, Proceedings of the Royal Society London B, 270 (2003), 1359–1364.

[28] A. Singh and J. P. Hespanha, Moment closure techniques for stochastic models in population
biology, Proceedings of the 2006 American Control Conference, (2006), 4730–4735.

[29] W. Y. Tan and H. Wu, Stochastic modeling of the dynamics of CD4+ T-cells infection by

HIV and some Monte-Carlo studies, Mathematical Biosciences, 147 (1998), 173–205
[30] H. Tuckwell and F. Wan, First passage time to detection in stochastic population dynamical

models for HIV-1 , Applied Mathematics Letters, 13 (2000), 79–83.

[31] H. C. Tuckwell and E. Le Corfec, A stochastic model for early HIV-1 population dynamics,
Journal of Theoretical Biology, 195 (1998), 451–463.

[32] P. van den Driesssche and J. Watmough, Reproduction numbers and subthreshold endemic
equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180

(2002), 29–48.
[33] P. van den Driesssche and J. Watmough, Chapter 6: Further notes on the basic reproduction

number, in “Mathematical Epidemiology” (eds. F. Brauer, P. van den Driessche and J. Wu),

Springer, Verlag, Berlin, Heidelberg, (2008), 159–178.

[34] F. Verhulst, “Nonlinear Differential Equations and Dynamical Systems,” Springer-Verlag,
Berlin, Heidelberg, New York, 1985.

[35] S. W. Vidurupola, “Deterministic and Stochastic Models for Early Viral Infection within a
Host,” M. S. Thesis, Texas Tech University, Lubbock, Texas, U.S.A., 2010.

[36] D. Wodarz and M. A. Nowak, Mathematical models of HIV pathogenesis and treatment ,

BioEssays, 24 (2002), 1178–1187.

[37] Y. Yuan and L. J. S. Allen, Stochastic models for virus and immune system dynamics,
Mathematical Biosciences, 234 (2011), 84–94.

[38] S. R. Zaki, P. W. Greer, L. M. Coffield, C. S. Goldsmith, K. B. Nolte, K. Foucar, R. M.
Feddersen, R. E. Zumwalt, G. L. Miller, A. S. Khan, P. E. Rollin, T. G. Ksiazek, S. T.

Nichol, B. W. J. Mahy and C. J. Peters, Hantavirus pulmonary syndrome: Pathogenesis of

an emerging infectious disease, American Journal of Pathology, 146 (1995), 552–578.

Received September 26, 2011; Accepted June 14, 2012.

E-mail address: sukhitha.vidurupola@ttu.edu

E-mail address: linda.j.allen@ttu.edu

http://dx.doi.org/10.1006/jtbi.2000.2066
http://dx.doi.org/10.1016/j.jtbi.2007.09.013
http://dx.doi.org/10.1016/j.jtbi.2007.09.013
http://www.ams.org/mathscinet-getitem?mr=MR2216433&return=pdf
http://dx.doi.org/10.1016/j.bulm.2004.11.002
http://dx.doi.org/10.1016/j.bulm.2004.11.002
http://www.ams.org/mathscinet-getitem?mr=MR0464414&return=pdf
http://dx.doi.org/10.1016/j.tpb.2003.07.002
http://dx.doi.org/10.1016/j.tpb.2003.07.002
http://www.ams.org/mathscinet-getitem?mr=MR1765331&return=pdf
http://dx.doi.org/10.1073/pnas.0308001101
http://dx.doi.org/10.1073/pnas.0308001101
http://www.ams.org/mathscinet-getitem?mr=MR2009143&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2788139&return=pdf
http://dx.doi.org/10.1016/0025-5564(93)90043-A
http://www.ams.org/mathscinet-getitem?mr=MR1669741&return=pdf
http://dx.doi.org/10.1137/S0036144598335107
http://dx.doi.org/10.1126/science.271.5248.497
http://dx.doi.org/10.1126/science.271.5248.497
http://dx.doi.org/10.1098/rspb.2003.2339
http://dx.doi.org/10.1098/rspb.2003.2339
http://www.ams.org/mathscinet-getitem?mr=MR1601287&return=pdf
http://dx.doi.org/10.1016/S0025-5564(97)00094-1
http://dx.doi.org/10.1016/S0025-5564(97)00094-1
http://www.ams.org/mathscinet-getitem?mr=MR1760267&return=pdf
http://dx.doi.org/10.1016/S0893-9659(00)00037-9
http://dx.doi.org/10.1016/S0893-9659(00)00037-9
http://dx.doi.org/10.1006/jtbi.1998.0806
http://www.ams.org/mathscinet-getitem?mr=MR1950747&return=pdf
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://www.ams.org/mathscinet-getitem?mr=MR2428376&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1036522&return=pdf
http://dx.doi.org/10.1002/bies.10196
http://www.ams.org/mathscinet-getitem?mr=MR2907016&return=pdf
http://dx.doi.org/10.1016/j.mbs.2011.08.007
mailto:sukhitha.vidurupola@ttu.edu
mailto:linda.j.allen@ttu.edu

	1. Introduction
	2. Model formulation
	2.1. ODE model
	2.2. SDE models

	3. Model analysis
	3.1. ODE model
	3.2. SDE models

	4. Numerical examples
	5. Discussion
	Appendix A. Alternate thresholds
	Appendix B. Proof of theorem
	Appendix C. Moment differential equations in the budding case
	REFERENCES

