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Abstract. In this study, the treatment of Human Immunodeficiency Virus
(HIV) infection is investigated through an optimal structured treatment inter-

ruption (STI) schedule of two classes of antiretroviral drugs, mainly, reverse

transcriptase inhibitors and protease inhibitors. An STI treatment strategy
may be beneficial in lowering the risk of HIV mutating to drug-resistant strains,

and could provide patients with respite from toxic side effects of HAART. A

shorter treatment period is considered compared to previous studies and the
solution to the HIV STI problem is obtained via the Finite Set Control Tran-

scription (FSCT) formulation. The FSCT formulation offers a unique approach

for handling multiple independent decision variables simultaneously, and, as is
shown by the results of this study, is well-suited for an effective treatment of

the optimal STI problem. The results obtained in the present investigation

demonstrate that immune boosting and subsequent natural suppression of the
viral load are possible even when a reduced STI therapy treatment duration is

in consideration.

1. Introduction. The treatment for patients infected by Human Immunodefi-
ciency Virus (HIV) consists of a “cocktail” of two or more drugs and is known as
Highly Active AntiRetroviral Therapy (HAART).[22, 2, 7] Typically, the HAART
cocktail is a combination of two or more Reverse Transcriptase Inhibitors (RTIs)
and one Protease Inhibitors (PIs),[22, 2, 7, 30, 19] both potent antiretroviral drugs
that are administered in liquid, tablet, capsule, and injectable forms. The multi-
drug regimens are very effective in controlling viral load, but have several shortfalls
associated with long-term use. With extended usage, patients experience increased
severity in side effects and may develop resistance to drugs.[22, 2, 7, 1] When this
occurs, it becomes necessary to change the composition of the medication. How-
ever, in some cases it might be impossible to find alternative drugs that provide
effective treatment. Furthermore, patients might be deterred from adherence due
to the complexity of the drug regime and the high monetary costs of the treatment.
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Dynamic multidrug therapies, where drug combinations change in response to
disease progression, may provide increased effectiveness of HIV therapy.[30] The
studies by Caetano et al.,[7] Kutch et al.,[19] and Wein et al.[30] address dynamic
multidrug approaches where RTI and PI drug dosages are continuously varying
control variables that can change independently of each other.[22] An alternative
strategy, known as a drug holiday or structured treatment interruption (STI), cycles
the patient on and off therapy.[2, 1, 6, 18] In this approach, the control variable is
treated as a binary variable, indicated to be either ‘on’ or ‘off’ at a given time. An
STI treatment strategy may be beneficial in lowering the risk of HIV mutating to
drug-resistant strains,[22] and could provide patients with respite from toxic side
effects of HAART.

The present investigation considers the STI therapy design in the context of a
nonlinear hybrid optimal control problem. A hybrid system may be described as
having states that are governed by differential equations of motion, and controlled
through some form of discrete or decision based logic. The on-off profile of the
STI multidrug therapy fits well into this category. The control problem of optimal
treatment interruption is posed as: determine the optimal STI treatment strategy
in order to minimize the HIV strains and systemic costs of the drug treatments
(undesirable side effects and treatment cost) while steering the immune response
to a nominal (healthy) state.[2, 1, 22, 21] In this study, solutions to the HIV STI
problem are explored via the Finite Set Control Transcription (FSCT) method.

The FSCT method considers the hybrid optimal control problem in the context
of a transcribed parameter optimization problem.[17, 4, 5] Solutions are identified
using standard Nonlinear Programming (NLP) algorithms such as SNOPT. Similar
efforts in the published literature[23, 26, 15, 16, 13, 14, 10, 12, 3, 20, 29] address a
subset of the present problem from the perspective of mixed integer optimization
often using NLP algorithms. However, these methods do not adequately address
problems involving multiple independently switching decision variables. The draw-
back in these cases is a formulation that does not minimize the dimensionality of
a generally large and complex problem. This renders many of these techniques im-
practical in the analysis of complex hybrid systems such as in the case of (HIV) STI
therapy problem.

Although optimal treatments have been previously explored specifically for the
STI problem using a variety of methods [2, 1, 22, 21, 31], the same limitation is
identified in these studies. That is, in the proposed studies, a single decision vari-
able controls the on or off time of both RTI and PI drugs, despite the fact that
the two drugs have different transient effects[31]. However, this approach might
limit the effectiveness of dynamic multidrug therapy, which can be fully explored
only if the drug dosages are allowed to change independently of each other. A
significant advantage of the FSCT method is that it is capable of treating prob-
lems with multiple independent control variables (in this case RTIs and PIs) with
ease. An immediate advantage of the proposed approach is a significant reduction
in computational overhead during the numerical solution process. Furthermore,
shorter interruption periods are more easily incorporated into the optimal solution
via FSCT, a feature that is compromised in existing methodologies[2] in order to
reduce the inherently large dimensionality of the STI problem. Indeed, by allow-
ing frequent interruptions, the effectiveness of a relatively shorter treatment period
compared to existing numerical studies in literature can be explored. In the present
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investigation, a relatively short treatment period of 400 days is considered com-
pared to existing numerical studies in literature where typically 700 − 750 days of
treatment are considered[2, 22, 31]. The treatment therapy designed in the present
research shows that drug free management of HIV is feasible even after reduced
treatment durations, thus reducing the systemic costs on the body associated with
prolonged HIV drug therapy.

2. HIV model description. A wide variety of mathematical models describing
short and long term progression of HIV have been proposed. A survey article of
mathematical models that have been used to describe the pathogenesis of HIV
infection is provided by Callaway, et al.[8] Although the surveyed studies describe
the virus evolution by deterministic models, some available models consider the
stochastic nature of early HIV infection based on the high variability and rapid
response of HIV to changes in system parameters.[9, 27, 28]

The model implemented for this study is a system of ordinary differential equa-
tions developed by Adams et. al[1] and employed in several studies [2, 21, 22]. The
selected six-state nonlinear dynamical model captures long-term target cell decay
rate along with immune response. The pathogenesis is described by

Ṫ1 = λ1 − d1T1 − (1− ε1)k1V T1

Ṫ2 = λ2 − d2T2 − (1− fε1)k2V T2

Ṫ ∗
1 = (1− ε1)k1V T1 − δT ∗

1 −m1ET
∗
1

Ṫ ∗
2 = (1− fε1)k2V T2 − δT ∗

2 −m2ET
∗
2

V̇ = (1− ε2)NT δ(T
∗
1 + T ∗

2 )− cV
− [(1− ε1) ρ1k1T1 + (1− fε1)ρ2k2T2]V

Ė = λE +
bE(T ∗

1 + T ∗
2 )

(T ∗
1 + T ∗

2 ) +Kb)
E − dE(T ∗

1 + T ∗
2 )

(T ∗
1 + T ∗

2 ) +Kd)
E − δEE, (1)

where state variables T1 and T2 denote uninfected target cells, T ∗
1 and T ∗

2 describe
infected target cells, V describes free viruses, and E describes the immune response.
The virus state V is measured in copies/ml while all other states are measured in
cells/ml. A detailed description of each state as well as its biological significance
is provided in [2, 1]. The variables ε1(t) and ε2(t), where, 0 ≤ εi ≤ εi,max < 1
for i = 1, 2, are control terms given as efficacies of the RTI and PI anti-retroviral
medication, respectively. The unity upper bound on both control variables indicates
that drug therapy is less than 100% effective, an assumption based on multiple
patient-specific factors such as drug absorption rates, adherence, and complications
due to adverse effects. Furthermore, for an infected individual, a control history may
be obtained to suppress the viral load to a minimum value but cannot fully eradicate
the virus from the body. The assumption is consistent with clinical studies since
no known cure for HIV has been established. Thus, for the HIV specific problem,
the maximum efficacy of drug therapy is given as ε1,max = 0.7, and ε2,max = 0.3.[2]
The parameters in the model stated in Equation (1) are summarized in Table 2 and
described in [1].

The HIV dynamical model in Equation (1) has the following form,

ẏ = f(y,u), (2)
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Table 1. Parameter Values for the HIV Model

value units value units

λ1 10, 000 cells
ml·day d1 0.01 1

day

k1 8× 10−7 ml
virions·day m1 1× 10−5 ml

cells·day
ρ1 1.0 virions

cell δ 0.7 1
day

f 0.34 - λE 1.0 cells
ml·day

bE 0.3 1
day Kb 100 cells

ml

λ2 31.98 cells
ml·day d2 0.01 1

day

k2 1× 10−4 ml
virions·day m2 1× 10−5 ml

cells·day
ρ2 1.0 virions

cell c 13 1
day

NT 100.0 virions
cell δE 0.1 1

day

dE 0.25 1
day Kd 500 cells

ml

where y = [T1, T2, T
∗
1 , T

∗
2 , V, E]

T
and u = [ε1, ε2]

T
. The model exhibits several

uncontrolled (u = 0) equilibrium or steady-states. Of these, three are of special in-
terest and are summarized in Table 2 [2]. A viral load greater than 30, 000 copies/ml

Table 2. Physical (Non-Negative) Equilibrium States

yu y0 yh
T1 163573 106 967839
T2 49 3198 621
T ∗
1 11945 0 76
T ∗
2 46 0 6
V 63919 0 415
E 24 10 353108

(Unhealthy) (Uninfected) (Healthy)

is generally considered unsafe and requires treatment to bring the copies below a
level that is detectable by current laboratory tests. Note that yu displays high
viral loads and very low immune effectors which are both indicators of ill health of
the patient. The equilibrium condition of y0 corresponds to a nominal uninfected
state, while yh are each associated with a “healthy”, immune-dominated patient
condition with low viral load and high immune response.

A local stability analysis of the uncontrolled system dynamics performed in [2]
shows that y0 is unstable, while yu and yh are each stable equilibrium conditions. In
the subsequent sections, continuous and STI optimal control histories are obtained
for systems described by the acute infection stage. This state is characterized by
the introduction of a single virus particle to the uninfected steady state. Hence, the
perturbed initial condition is given by

yi =
[
106, 3198, 0, 0, 1, 10

]
. (3)

The natural, control-free (u = 0) evolution of the acute infection stage is depicted in
Figure 1 for a duration of 400 days. It is evident that without drug therapy, the virus
will multiply unchecked before converging on the viral dominant (unhealthy) steady-
state, yu. The objective of the control formulations in the subsequent sections is to
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drive the system away from the unhealthy equilibrium to the healthy equilibrium
condition identified above as yh.
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Figure 1. Time Evolution of Uncontrolled Acute Infection Stage.

3. Structured treatment interruption therapy. In the previous sections, the
dynamics of HIV are described using a continuous nonlinear dynamical model con-
sisting of a system of nonlinear ordinary differential equations. However, if a HIV
drug treatment strategy consisting of RTI and PI is prescribed with treatment inter-
ruptions, the control variable is treated as a binary variable, indicated to be either
‘on’ or ‘off’ at a given time. Thus, the HIV system exhibits both continuously-
varying state variables and discretely-chosen control components, and is appropri-
ately referred to as a hybrid system. The resulting hybrid optimal control problem
is solved by using an efficient transcription algorithm known as Finite Set Control
Transcription.[24]

The FSCT method effectively formulates the hybrid optimal control problem as
a parameter optimization problem using collocation that can be solved using a stan-
dard Nonlinear Programming (NLP) algorithm. In contrast to previous methods for
solving the STI problem (for example, Adams et al.,[2]), FSCT works by assuming
the control values and optimizing the elapsed time between when the drug is on or
off. This allows for shorter time segments to be more easily incorporated into the
optimal solution. Furthermore, the asynchronous optimal switching schedule allows
for each drug schedule to be treated independent of the others, thereby offering the



904 DIVYA THAKUR AND BELINDA MARCHAND

greatest flexibility in the solution process. A brief overview of the FSCT method is
provided in the next section.

3.1. FSCT method overview. In this section, a brief overview of the FSCT
formulation is provided for a reader with a general background in optimal control
theory. A complete development of the methodology may be found in Stanton and
Marchand, 2010[24]. The general system of interest for this transcription method
is described by

ẏ = f(t,y,u), (4)

where y ∈ Rny represents the continuous states, and u ∈ Rnu are the discrete
control variables that may take-on values limited to a finite set, Ui. Therefore, if
ui denotes the ith control variable, for i = 1, . . . , nu, then ui ∈ Ui where

Ui = {ũi,1, . . . , ũi,mi
} . (5)

The FSCT formulation seeks to solve an optimal control problem described as,

Minimize J = φ(t0,y0, tf ,yf ) +

∫ tf

t0

L(t,y,u) dt, (6)

subject to constraints

0 = ψ0(t0,y0),

0 = ψf (tf ,yf ), (7)

0 = β(t,y,u),

by transcribing into a nonlinear-programming problem (NLP) of the form,

Minimize F (x) (8)

subject to

c(x) =
[
cTψ0

(x) cTψf
(x) cTβ (x) cTẏ (x)

]T
= 0, (9)

and subsequently utilizing a standard NLP optimizer such as SNOPT to obtain a
solution for the parameter vector, x. In the above NLP definition, the constraints
are stated as equalities without loss of generality since inequality constraints may
be easily converted to equality constraints through the Lagrange Multiplier method.
Thus, x contains all the necessary information necessary to express y(t) and u(t)
for t ∈ [t0, tf ].

The vector, x, contains parameters that represent states yi,j,k, and times ∆ti,k,
t0, tf as is shown below

x = [· · · yi,j,k · · · · · · ∆tk · · · t0 tf ]T . (10)

The parameterization is a unique departure from traditional collocation and di-
rect shooting methods that directly represent control variables. However, since the
control variables are discrete in nature, their omission from the parameter vector
permits the treatment of the problem as a nonlinear programming problem. Fur-
thermore, as is demonstrated below, a control history is exactly determined by the
time elements in the parameter vector.

Define ns as the number of contiguous segments that comprise a trajectory from
initial time, t0, to final time, tf . The interior segment boundaries are termed knots,
and are characterized as points in time where one member of the control vector
switches from one feasible value to another. If a control variable is allowed nk
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Figure 2. The Parameters of x

switches during (t0, tf ), then the trajectory is composed of ns = nunk+1 segments.
During each segment, the ith control variable maintains a constant value.

Each segment is discretized into a set of nn equally spaced points in time, called
nodes. Specifically, a node is a point in time at which the values of the state variables
are captured by the parameter vector. Thus, element yi,j,k in Equation (10) denotes
the ith state at the jth node of the kth segment. A total number of nynnns elements
corresponding to all the state variables is contained in the parameter vector. The
element ∆ti,k in Equation (10) indicates the time elapsed between control switches
at (k − 1)th and kth knot for the ith control variable.

It is noted earlier that the control variables do not appear explicitly in x. Instead,
the values for each ui are prescribed between each switching point. That is, u∗i,k
denotes the pre-specified feasible value of the ith control variable during ∆ti,k. Thus,
with the control values prescribed, the optimizer determines the “best” values for
∆ti,k.

A pictorial explanation of the FSCT optimization method is provided in Figure
2. Consider a hybrid control problem with ny = 2 states and nu = 2 controls,
where U1 = {0, 1} and U2 = {0, 1}. The conceptual control variables are similar to
the control inputs described earlier in the HIV treatment interruption problem in
which the drug efficacies are limited to the finite set of values 1 (on) and 0 (off).
Next, assume the transcription is selected such that nn = 4 nodes per segment and
nk = 5 switching points per control variable. Thus, the number of segments is
ns = (2)(5) + 1 = 11 segments.

It is apparent from Figure 2 that each control variable may take up to nk+1 = 6
different values over the trajectory duration. The control values are arbitrarily
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prescribed from the set of feasible values before the optimization run. During the
optimization procedure, if a control value is deemed unnecessary or non-optimal,
then the duration of the corresponding time segment is essentially reduced to zero.
However, such a process also runs the risk of arbitrarily reducing a given time
segment to small but non-zero values. This may not be desirable or even practical
in certain problems in which control switches can only occur at a certain rate.
For instance, in the HIV STI problem, minimum segment durations may be driven
entirely by drug absorption and elimination rates. Hence, it may become necessary
to constrain the lower bound of ∆ti,k.

Figure 2 further illustrates that the node distribution is not necessarily uniform
over the interval [t0 tf ]. The duration of each segment is dictated by the current
values of ∆ti,k. The nn = 4 nodes per segment are evenly distributed over a segment,
but for shorter segments, this means a closer spacing between nodes. Thus, the state
values contained in x may pertain to dense or sparse regions, depending on the time
parameters in x.

It is also important to note that two nodes are associated with a given knot: the
terminal node from the preceding segment and the initial node from the following
segment. Therefore, in this parameterization, two sets of state values are contained
in x for the times at each knot. For a feasible solution, continuous state variables
exhibit identical values at simultaneous nodes. Constraints in c(x) are included
to enforce continuity across segments. Of course, these constraints are not always
satisfied on intermediate iterations of the solution process. For example, in Figure
2, the continuity constraints for y2 are not all met. Subsequently, this x does
not represent a feasible solution. During the FSCT optimization process, elements
of x are updated to ensure that, upon completion, the continuity constraints are
satisfied.

Additional constraints are included in c(x) to ensure that

0 = tf − t0 −
nk+1∑
k=1

∆ti,k, i = 1, . . . , nu.

Also, at all times, ∆ti,k ≥ 0 so that there are no negative time intervals.
By pre-specifying the control values, a collocation transcription results in which

control switching times are optimized to indicate an optimal control history over
all of the feasible control values. Multiple control variables are easily managed
and treated independently. The control variables for a given segment subsequently
affect the hybrid system dynamics, and they are included in appropriate constraint
equations for that segment. As the optimizer searches for a feasible and locally
optimal set of parameters, the state values are modified at each node so that, upon
completion, the state and control histories represent a matching, feasible trajectory.

The total number of feasible values for a control variable, mi, significantly affects
the choice of nk, the number of switching points allowed over the trajectory. Clearly,
when nk � max(mi), it is possible to pre-specify each control value over several
time durations, allowing more flexibility in the resulting NLP problem and a greater
likelihood to converge on a small local minimum. However, as nk gets larger, the
sizes of x and c(x) also increase, a feature that may complicate or slow down the
optimization process. This characteristic indicates the primary limitation of the
FSCT method. In order to perform an optimization, a user must specify nk, thus
limiting the number of control switches to some maximum value.
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In practice, it is useful to overparameterize a problem by setting nk to an arbi-
trarily high value, allowing for more control switches than are ultimately necessary.
Overparameterizing allows the optimizer to demonstrate the optimal number of
switches (less than the parameterized number) by driving to zero the duration of
superfluous control values. The overparameterization also allows the user additional
flexibility to arbitrarily pre-specify control values, knowing that non-optimal con-
trol values are ultimately eliminated in the final solution. Indeed, in the treatment
of the STI problem that follows, the concept of overparameterization is employed.
Consequently, ensuing solutions may display features that are ultimately artifacts of
the parameterization. For example, two knots may occur simultaneously, appearing
as though the control switches from one value to another and then instantaneously
to a third. In the parameterization, zero-duration segments are present, indicat-
ing that particular pre-specified control values are effectively eliminated from the
solution.

3.2. STI solution via FSCT. The FSCT formulation is implemented in order to
obtain an optimal STI treatment schedule. The cost function associated with this
problem is originally proposed in [2] and stated as

J =

∫ tf

t0

[
QV (t) +R1u

2
1(t) +R2u

2
2(t)− SE(t)

]
dt, (11)

where the weights are modified to Q = 0.001, R1 = R2 = 20, and S = 1000. Two
control axes are present, each with the finite set of values

Ui = {0, εi,max}. (12)

That is, each of the two drugs may have zero or full efficacy for each time segment
considered. Thus, the optimal control problem considered in this investigation is
given by the cost function described in Equation (11) subject to path constraints in
Equation (1) with boundary constraints yi given in Equation (3), t0 = 0, tf = 400
seconds, y ≥ 0, and discrete control variables that may take-on values limited to
the finite set in Equation (12).

To begin the optimization process, the number of knots are selected, indicating
the total allowable control switches over the course of the trajectory. Considering
the long propagation period and complicated dynamics of the HIV problem, a very
large number of knots is necessary to solve the problem. However, since large nk can
slow down the optimization process, a discretized solution approach is implemented
similar to that in [2, 1]. Specifically, smaller solution spaces are considered by
breaking up the trajectory into seven partitions, p1, p2, ..., p7, each of which is
characterized by node and knot distribution in each of the nu = 2 control axes as
follows,

p1 : t = [0, 50] , nn = 10, nk = 10

p2 : t = [50, 100] , nn = 10, nk = 10

p3 : t = [100, 200] , nn = 10, nk = 10

p4 : t = [200, 250] , nn = 10, nk = 5

p5 : t = [250, 300] , nn = 10, nk = 5

p6 : t = [300, 350] , nn = 10, nk = 8

p7 : t = [350, 400] , nn = 10, nk = 10. (13)



908 DIVYA THAKUR AND BELINDA MARCHAND

Thus, each partition is characterized by 10 nodes per segment, while the total ini-
tial allowable control switches varies for each partition. The discretized approach
permits overparameterization of each partition without slowing down the optimiza-
tion process. While the result is optimal for each partition, the overall solution is
considered near-optimal. The approach is outlined as follows:

1. Solve p1 via FSCT with acute infection as the initial state.
2. Use the final state of the solved p1 partition as the initial state for p2.
3. Solve p2 via FSCT.
4. Repeat the process from Step 2 until all partitions are solved.

For example, let nk = 10 knots per control axis for an initial optimization for
partition p1. Let the control values be prescribed as

u∗i,k = εi,max

∣∣∣cos
(π

2
(k − 1)

)∣∣∣ , (14)

indicating that ui begins at the value εi,max and alternates between 0 and εi,max
over each segment of nk + 1 = 11 segments per control axis. An initial guess is
devised with t0 = 0, tf = 50 days, and all knot times are evenly distributed over
the interval such that each segment duration is identical. The state parameters in
x are constructed to create a linear progression in each state from its initial value
to its final value. Initial, final, and knot condition constraints are satisfied by the
x supplied to the optimizer before the first iteration, but continuity constraints are
not immediately satisfied. During the optimization process, x is improved such
that all constraints are satisfied. In addition, the final x minimizes the objective
function in Equation (11). The final state of this optimization routine is then used
to generate a solution for partition p2, ..., p7 is a similar manner.

The results of the FSCT implementation are illustrated in Figures 3 and 4. As
shown in Figure 3, the drug therapy regime is characterized by frequent interrup-
tions in both u1 and u2. Moreover, the control history exhibits a general trend of
opposing interruption schedules for u1 and u2. That is, for the majority of the mul-
tidrug therapy, rather than interrupting both drug schedules at the same time, the
optimal solution recommends prescribing one drug while the other is temporarily
interrupted (turned-off). Furthermore, several instantaneous control switches are
noticeable, for example at t = 200 and t = 400 days. At each of these times there
exist time durations ∆ti,k for turning-on or turning-off the drugs, and each has been
optimized to be identically zero. The implication is that certain user-prescribed con-
trol switches were unnecessary or non-optimal and are therefore eliminated from the
final solution by driving the corresponding control axis duration to zero.

The state history in Figure 4 indicates periods of viral load suppression followed
by brief spikes in viral population near the 0, 100 and 200 day mark. The spikes
are accompanied by dips in the healthy target cell population. However, following
each of these spikes, immune effectors are stimulated, eventually gaining continued
viral load suppression beyond the 250 day mark. The results demonstrate that
STI therapy may enable immune boosting and viral load suppression even after a
significantly shorter treatment period compared to previous studies. Indeed, at the
conclusion of STI therapy, the final state of the system is found to be

T1f = 94208, T2f = 185, T ∗
1f = 295, T ∗

2f = 9, Vf = 1576, Ef = 285702, (15)

which is identified as being in the neighborhood of the healthy equilibrium yh.
Furthermore, allowing the state in Equation (15) to drift in an uncontrolled manner
results in the system asymptotically converging to yh. The convergence to the
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Figure 3. Optimal STI Therapy Obtained Using the FSCT
Method. (Weighting Factors Q = 0.001, R1 = R2 = 20, and
S = 1000.)

healthy equilibrium highlights the effectiveness of STI therapy in enabling natural,
drug-free suppression of the viral load. The drift states are illustrated in Figure 5.

Note, since the underlying dynamics that govern the behavior of the uninfected
target cell states, T1 and T2, are similar in nature, the time evolutions of the two
states are expected to share a common trend. In fact, the same is true for the in-
fected target cells, T ∗

1 and T ∗
2 , as is clearly illustrated in Figures 5(c)-(d). A zoomed

in plot for Figure 5(a) is provided in Figure 6 to better illustrate the oscillatory na-
ture of T1 and verify its dynamic similarity to the T2 state.

Recall that the optimal control trajectories illustrated in Figures 3 and 4 are
obtained with control variables prescribed by Equation (14), where each control
variable begins at εi,max (full-treatment). While it is possible to modify Equation
(14) in a manner that enforces each control variable to begin at 0 (no-treatment),
the modification, in effect, implies delaying the treatment until a later time. In fact,
numerical studies performed with the same node and knot distribution as Equation
(13) but with control variables prescribed to begin at zero did not yield a converged
optimal result.

The FSCT based results demonstrate that STI may be an effective strategy in
stimulating immune-response even when shorter treatment periods of 400 days are
considered compared to 700−750 days of treatment addressed in existing literature.
Shorter treatment periods have several advantages including reducing the long term
complications associated with extended drug usage. As stated earlier, the optimal
solution illustrated in Figure 3 is characterized by high frequency interruptions. The
smallest non-instantaneous control switch occurs in the RTI drug schedule following
an approximate 8 hour rest (no-treatment) period. From a clinical perspective, a
treatment interruption lasting only several hours may be considered less practical.
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Figure 4. State History Corresponding to STI Control Strategy
in Figure 3.

However, from a dynamical perspective, the FSCT solution indicates that a strong
immune response and suppression of viral load is possible for a reduced treatment
duration if frequent treatment interruptions are permitted. Furthermore, following
the optimal treatment strategy, drug-free management of HIV becomes feasible as
demonstrated in Figure 5 by the asymptotic convergence of the states to the healthy
equilibrium.

Finally, it is observed that while the FSCT method is capable of producing op-
timal control histories for the STI problem, it does not provide optimal control
laws for real-time implementation[24]. That is, the FSCT method is ultimately an
open-loop control strategy, where the control solution is precomputed for the model
described in Equation (1) and the parameters specifically prescribed in Table 1. A
potential drawback of such an approach is that modeling errors, perturbations, and
other unknowns may render the optimized treatment schedule ineffective. How-
ever, this limitation may be overcome by developing feedback control techniques for
tracking an a priori computed FSCT solution[24]. For example, preliminary studies
have considered FSCT together with Model Predictive Control (MPC) design for
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Figure 5. Control-Free Drift Following Conclusion of STI Therapy.

real-time implementation of problems encountered in the aerospace field[24, 25].
Specifically, the FSCT produced optimal state and control histories are used as
reference trajectories for real-time tracking with an MPC control law. While fur-
ther investigations are necessary in this regard, a similar approach may be used
for the STI control problem so that optimized drug schedules can be realized in
the presence of unmodeled effects or other unknowns such as missed doses by the
patient.

4. Conclusion. Dynamic multidrug therapies, where drug combinations change in
response to disease progression, may provide increased effectiveness of HIV treat-
ment. However, complications may arise with long term usage of HIV drugs, in-
cluding increased severity in side effects and drug resistance. Structured treatment
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Figure 6. Zoomed-in Plot of T1 State Control-Free Drift.

interruption, where patients are cycled on and off drugs, may lead to increased
effectiveness of HIV therapy without the need of extended drug usage. In the pre-
sented research, the treatment of HIV infection is investigated through an optimal
STI schedule of two drugs, RTIs and PIs. Specifically, STI therapy design is investi-
gated in the context of a nonlinear hybrid optimal control problem and the optimal
solution is determined through the novel FSCT method.

The FSCT method transcribes the hybrid optimal control problem into a NLP
problem. The unique transcription method is able to handle multiple indepen-
dent decision variables simultaneously, thereby providing an efficient optimization
methodology for large scale problems such as optimal STI therapy design. With
the control values limited to a finite set of zero (off-treatment) or maximum (on-
treatment) efficacy, two independent switching schedules are obtained for the RTI
and PI therapy. A relatively short treatment period of 400 days is considered
compared to 700 − 750 days in previous studies. Shorter treatment periods have
several advantages, including reducing the long term complications associated with
extended drug usage. The optimal solution obtained via FSCT demonstrates that
high frequency treatment interruptions can lead to immune boosting and promote
natural (drug-free) management of the viral load even when reduced treatment
durations are in consideration.
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