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Abstract. The major goal of evolutionary oncology is to explain how ma-

lignant traits evolve to become cancer “hallmarks.” One such hallmark—the
angiogenic switch—is difficult to explain for the same reason altruism is difficult

to explain. An angiogenic clone is vulnerable to “cheater” lineages that shunt

energy from angiogenesis to proliferation, allowing the cheater to outcompete
cooperative phenotypes in the environment built by the cooperators. Here we

show that cell- or clone-level selection is sufficient to explain the angiogenic
switch, but not because of direct selection on angiogenesis factor secretion—

angiogenic potential evolves only as a pleiotropic afterthought. We study a

multiscale mathematical model that includes an energy management system in
an evolving angiogenic tumor. The energy management model makes the coun-

terintuitive prediction that ATP concentration in resting cells increases with

increasing ATP hydrolysis, as seen in other theoretical and empirical studies.
As a result, increasing ATP hydrolysis for angiogenesis can increase prolifer-

ative potential, which is the trait directly under selection. Intriguingly, this

energy dynamic allows an evolutionary stable angiogenesis strategy, but this
strategy is an evolutionary repeller, leading to runaway selection for extreme

vascular hypo- or hyperplasia. The former case yields a tumor-on-a-tumor,

or hypertumor, as predicted in other studies, and the latter case may explain
vascular hyperplasia evident in certain tumor types.

1. Introduction. The notion that cancer is essentially an evolutionary phenom-
enon has a deep history in oncology (see [18, 19, 36, 39, 43] for reviews). Evolu-
tionary forces shape the disease on at least three levels. At the individual organism
level, natural selection favors tumor suppressor mechanisms that keep cancer at
bay at least through the reproductive years. At the clinical level, natural selection
explains treatment failure, as first recognized by Law in 1952 [35]. But most im-
portant to our understanding of cancer pathobiology is evolution at the individual
cell level. Here, genetic and genomic alterations generate the raw material of nat-
ural selection—alternative genotypes that produce differential reproductive success
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among neighboring cells. Mutations that confer a proliferative phenotype tend to
expand in the population. Within proliferative lineages further mutations occur,
typically at a highly accelerated rate due to genetic instability. Selection then sifts
among new mutants, favoring those with a proliferative or survival advantage. The
result is neoplasia. In the proper environment, selective pressures can drive the
neoplasm to malignancy. Such evolutionary trajectories have been mapped using
chromosomal/genomic markers from the 1950s [12, 24, 37, 47] to the present (e.g.,
[34, 40, 45, 49, 52]).

Phenotypic traits predicted to be differentially favored in the evolution of malig-
nancy have been laid out in a classic review paper by Hanahan and Weinberg [21],
which has been updated recently [22]. The evolutionary benefits of most of these
traits are essentially obvious—for example, a clone inheriting gene amplification of
a receptor tyrosine kinase will acquire a greater proliferative potential. Less obvious
are the traits’ costs. Using the same example, a proliferative lineage must allocate
significant resources to protein production to support proliferation. Such a drain,
coupled with deranged energetic controls, could decrease resources for maintenance,
like the Na+/K+ ATPase pump, making highly proliferative cells less robust.

Of all the traits identified by Hanahan and Weinberg, the angiogenic switch is one
of the more perplexing from an evolutionary viewpoint. Superficially, angiogenesis
seems obviously beneficial. Tumor growth in most cases requires neoangiogenesis
[20]. Tumors failing to generate an angiogenic signal tend to remain tiny, insignif-
icant proliferative foci. But the evolutionary picture is less clear. Selection does
not act on the tumor per se. It acts on clones, individual cells or their genomes.
Tumor-level characteristics, like vascularization, arise as a consequence of this selec-
tion; they are not traits. Analyzed using the proper unit of selection, the angiogenic
phenotype is difficult to explain for the same reason altruism is difficult to explain.

Normal angiogenesis is regulated by a balance between pro- and anti-angiogenic
signaling molecules, including vascular endothelial growth factor (VEGF), angiopoi-
etins, fibroblastic growth factors (FGFs), platelet-derived growth factor (PDGF),
epidermal growth factor (EGF), transforming growth factors (TGFα and -β), and
thrombospondin-1 (TSP-1), among others [21, 22, 25, 46]. An individual cell’s
contribution to this response is coordinated by hypoxia-inducible factor (HIF), a
transcription factor that ushers hypoxic cells into an oxygen-conservation mode—
oxidative phosphorylation is suppressed in favor of fermentive glycolysis; ATP hy-
drolysis is inhibited, but secretion of VEGF and other pro-angiogenic factors in-
creases [30]. In tumor cells the angiogenic response can become deranged, leading
to the angiogenic switch characterized by constitutive expression of pro-angiogenic
growth factors and/or their receptors. Inefficient, malformed but marginally effec-
tive tumor vasculature is the typical result [7, 14, 20, 21, 22, 51, 55].

The evolutionary problem, however, is why angiogenic tumors are not invaded by
mutant lineages with their angiogenesis signaling apparatus knocked out. By avoid-
ing secretion, such a mutant would seemingly gain an energetic advantage over its
angiogenic competitors. In this view, one sees angiogenesis as an altruistic trait
susceptible to a cheater phenotype. Such cheater lineages, or “hypertumors,” have
been predicted by mathematical models of tumor angiogenesis [42, 44]. In these
models, selection always favored more proliferative over less proliferative clones.
Angiogenesis, on the other hand, was always evolutionarily neutral. However, cell
energetics were not included in these models, so they could not properly evaluate
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metabolic tradeoffs between cell proliferation and angiogenesis signaling. Physio-
logical capabilities of cells are limited by their energy states. This limitation largely
defines the costs associated with the malignant traits favored during carcinogenesis.

Here we extend the previous models by introducing intracellular adenylate me-
tabolism to more adequately address the evolution of angiogenesis and proliferative
potential within tumors under the hypothesis that costs and benefits of these “life
history strategies” are a consequence of their effect on cell energetics. We introduce
the modeling details in section 2 and parameterizations in section 3. In section 4 we
present results of the model at intracellular (section 4.2), tissue (section 4.3) and
evolutionary (section 4.4) scales. The model predicts that the angiogenic switch
can evolve from selection at the level of cell clones, but not directly because of its
ability to grow new blood vessels. Instead, angiogenesis arises either as an evolu-
tionary rider on the back of another trait favored by selection, including possibly
proliferative potential, or via runaway selection for ever-increasing angiogenesis sig-
naling. In both cases, the angiogenic switch is an indirect consequence of a complex
interaction between natural selection and the cell’s management of energy charge.

2. The models. Since metabolic effectors are intracellular while tumor growth is a
tissue-level phenomenon, we take a multiscale approach and model metabolism on a
spatial scale of micrometers and seconds to minutes and tumor dynamics in terms of
millimeters and hours. These scales are connected by the chemical potential energy
available to tumor cells. At the tissue level, tumor growth and angiogenesis factor
secretion depends on available chemical energy, primarily in the form of ATP. In
turn, the available energy is determined by oxygen and nutrient supply, themselves
functions of tumor vascularization and under the control of angiogenesis factors
secreted by tumor cells.

2.1. Cell energetics model. Physiologists typically measure a cell’s “energy” sta-
tus by a sort of weighted average of “high-energy” phosphates—β and γ phosphoryl
groups—per adenylate molecule. (For convenience I abuse the term “adenylate”
slightly by restricting its meaning to adenosine 5′ mono-, di- and triphosphate—
AMP, ADP and ATP, respectively.) This measure, called the energy charge and
denoted φ, is usually defined as

φ ≡ [ATP] + (1/2)[ADP]

[AMP] + [ADP] + [ATP]
. (1)

In cells, the enzyme adenylate kinase tightly controls the relative amounts of the
various adenylate compounds via the reaction,

2ADP 
 AMP + ATP.

Forward and backward reaction rates are nearly equal in most cells and large relative
to other metabolic processes involving adenylate [23], so typically,

[ADP]2 ≈ [AMP][ATP].

All other important reactions involving adenylate can be classified as either (i) syn-
thesis de novo, (ii) irreversible destruction, (iii) conversion of one adenylate form
to another; e.g., ATP → ADP by hydrolysis, or ADP → ATP by glycolysis or ox-
idative phosphorylation. Adenylate is constructed de novo in two main pathways:
salvage of adenosine from nucleic acid breakdown, and construction of AMP from
inosine monophosphate (IMP) which itself is made from phosphoribosyl pyrophos-
phate (PRPP) and an appropriate amino acid—glutamine, glycine or aspartate—via
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a complex pathway [8, 9, 17]. No distinction among various sources of adenylate
will be made in the model.

The second class of reactions—adenylate destruction—includes reactions medi-
ated by 5′ nucleotidases, referred to as AMP phosphatase by Ataullakhanov and
Vitvitsky [4]. For example, ecto-5′ nucleotidase removes phosphate from AMP, cre-
ating the nucleoside adenosine. Also, AMP can be broken down by various enzymes
in the AMP deaminase family, which convert AMP to IMP. In addition to these
mechanisms, adenylate can also “disappear” as ATP is incorporated as structural
elements in nucleic acids. Although these adenosine phosphates can be recovered
via nucleic acid breakdown, in the model this reaction acts as a sink for ATP.

Interconversions among various forms of adenosine phosphate present a much
more diverse array of reactions. In addition to the adenylate kinase reaction de-
scribed above, ATP is converted to ADP by a variety of hydrolytic reactions, most
notably the membrane-bound Na+/K+ ATPase, which controls cell volume and ac-
counts for up to 40% of ATP hydrolysis in resting eukaryotic cells [1, pg. 210]. ATP
is also converted to ADP in the adenosine kinase reaction,

ATP + Adenosine→ ADP + AMP, (2)

which serves as another source of AMP synthesis de novo. ATP can be converted
to AMP via a number of reactions, most notably the following: (i) adenylation of
amino acids for protein synthesis, (ii) the phosphoribosyl pyrophosphate synthetase
reaction,

Ribose 5-P + ATP→ PRPP + AMP,

and (iii) a two-step reaction in which adenylyl cyclase first converts ATP to cyclic-
AMP (cAMP) and pyrophosphate, followed by the conversion of cAMP to AMP by
cAMP phosphodiesterase. Finally, ATP can be regenerated from ADP by glycolysis
and oxidative phosphorylation.

Our immediate goal is to model all these reactions in a realistic yet simple way.
The energetics model operates on a much faster time and smaller spatial scale than
the tissue-level tumor model to come. Also, intracellular ATP concentrations are
about 3 mM (M = mol/L), which equates to about a billion ATP per cell [1, 13].
The ATP concentration in resting cells is about 10 times that of ADP and 100 times
that of AMP, implying tens of millions of AMP per cell. Cells hydrolyze ATP at a
rate nearly 108 per second [33]. Therefore, in the long run, stochastic fluctuations
both in time and space are assumed to have negligible effects at the level of a whole
tumor. So, for simplicity we choose to model adenylate dynamics with a system
of ODEs, using the pioneering work of Ataullakhanov, Vitvitsky and colleagues
[2, 3, 4, 5, 38] as our starting point.

Let Ai, i ∈ {1, 2, 3}, represent adenosine with i 5′ phosphates. If we denote tumor
vascular density as v (see tissue-level model below), then our adenylate model takes
the following form:

dA1

dt
= αa + k(A2

2 −A1A3) + aA3 − f(A1, A3),

dA2

dt
= 2k(A1A3 −A2

2) + bA3 −G(φ, v)A2,

dA3

dt
= G(φ, v)A2 − cA3 + k(A2

2 −A1A3),

(3)
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where a, b and c are constants that can be decomposed as follows:

a = β1 + γa + ηp + ηs(v),

b = β2 + γa,

c = β1 + β2 + µ+ γa + ηp + ηs(v).

The natural time scale for this model is per minute, in contrast to the tissue-level
model below. The rate of AMP synthesis de novo is denoted αa. The basic rate of
the adenylate kinase reaction, both forward and back, is k. Parameter γa is the basic
rate of the adenosine kinase reaction (the product of a mass action constant and
the concentration of adenosine, assumed to be constant). ATP is incorporated into
nucleic acid or otherwise irreversibly destroyed at per-molecule rate µ, and AMP
destruction by 5′ nucleotidases and AMP deaminases is modeled by the function
f(A1, A3).

The parameters β1 and β2 represent the the cell’s constant demand for ATP
to maintain normal physiological function. Parameter β1 represents the rate at
which ATP is converted to AMP, for example by amino acid adenylation during
biosynthesis, whereas β2 is converstion of ATP to ADP, mainly by maintenance
physiology, especially that required to power the Na+/K+-ATPase to maintain cell
volume. In addition to these purely maintenance functions, cells can allocate ATP to
protein synthesis in support of either proliferation or TAF secretion. The allocation
to proliferation, denoted ηp, is assumed to be under genetic control and invariant
over changes in local vascularization, v. On the other hand, ATP allocation to
TAF secretion, ηs(v), varies with local vascular density. In general, ηs(v) should
approach 0 as v → 0 or as v →∞, reaching a unique maximum at some relatively
small v [15, 25, 42]. Here we assume that TAF secretion is proportional to ATP
allocated for that function, and follow [42] in assuming the following form for such
allocation:

ηs(v) = η̂sve
−ξv. (4)

Parameter η̂s is the basic commitment to TAF secretion, which like ηp is assumed
to be under genetic control. In this model TAF secretion peaks at v = ξ−1, which
is assumed to be constant across tumor cell strains.

The function G(φ, v) represents ATP regeneration from ADP by both glycolysis
and oxidative phosphorylation. However, both for simplicity and because many
malignant tumors rely on glycolysis to regenerate ATP, in this model we will assume
that oxidative phosphorylation is negligible.

The rate of glycolysis appears to be a very simple function of intracellular ATP
concentration, at least in human erythrocytes [4]. Ataullakhanov and Vitvitsky’s [4]
data suggest that glycolysis rate in erythrocytes can be well modeled as a quadratic
function of ATP concentration, although they observed enormous inter-individual
variation. Following their lead, we combine data among individuals in their data
set and calculate the best-fit quadratic function:

0.06595 + 1.62033A3 − 0.70186A2
3

which yields r2 = 0.8467. However, there is good reason to believe that ATP gly-
colysis rate is tied to energy charge, not ATP concentration per se [4, 6]. Assuming
that the data from Ataullakhanov and Vitvitsky varies because of variations in to-
tal adenylate among cells in their samples, one can transform the quadratic model
above to a function of energy charge with a zero at φ = 1. Arbitrarily setting the
peak of this function to unity yields, thorough a straightforward transformation,
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Figure 1. Proposed model of the unscaled glycolysis rate, g, as a
function of cell energy charge (curve) with erythrocyte glycolysis
data from [4] superimposed (points; see text). The scaling factor
is given by s(v) (see Fig. 2).

the curve in Fig. 1, which also shows the data from [4] similarly transformed. This
graph suggests the following model of glycolysis:

g(φ) = 4φ(1− φ), (5)

where g(φ) is the rate of glycolysis in normalized units of amount per time. Intro-
ducing a scaling facter s, which most naturally has units fmol/min (see section 3),
converts the normalized model into

G(φ) = 4s(v)φ(1− φ). (6)

Biologically, s depends on v because it measures the maximum glycolysis rate avail-
able for a given supply of reduced carbon in the blood. We take s as an increasing,
saturating function of vascularization, v, since the plasma concentration of glucose
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Figure 2. The rate of glycolysis from equations (6) and (7) as
a function of energy charge (φ) and tumor vascularization (v) for
v up to twice its normal physiological range. At normal tissue
vascularization, v = 1 (see below). Note that glycolysis rate is
impeded significantly only for vascular hypoplasia below half nor-
mal.

is finite and glycolysis rate has a biochemically imposed upper limit. Let this phys-
iological maximum be smax. Then for the scaling factor in equation (6) we propose
the following model:

s(v) =
smaxv

0.1 + v
. (7)

The sensitivity parameter of 0.1 was chosen to match the model in [42].

2.2. Tumor growth model. To model tumor growth at the tissue level we adapt
model (3) to the model of Nagy [42]. In particular, for a tumor comprising only one
parenchyma cell phenotype, 

dx

dt
= Φ(A3)x,

dy

dt
= Ψ(v,A3)y,

dz

dt
= γy − δvz,

v =
z

x
,

(8)
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where x(t), y(t) and z(t) represent tumor parenchyma mass (g), immature vascu-
lar endothelial cell (VEC) mass (g) and total microvessel length (scaled arbitrarily
such that z = 1 is normal microvessel density in 1 g of healthy tissue; see [42]),
respectively. Functions Φ(A3) and Ψ(v,A3) (both hr−1) model per capita growth
rates for parenchyma and VEC populations, respectively, γ (microvessel units per
g per hr) is the rate at which endothelial cells become incorporated into functional
microvessels, and δ (g per microvessel unit per hr) represents the microvessel re-
modeling rate. The microvessel remodeling term takes this form because we view
space and vessel maintenance signals secreted from cancer and stromal cells as re-
sources over which vessels compete; for a detailed derivation, see [42]. We assume
that parenchyma cell proliferation exhibits Michalis-Menten dynamics as a function
of ATP allocated to proliferation, with maximum p and sensitivity ks. Also, as
a first approximation we assume that mortality is inversely proportional to ATP
concentration, with constant m. Therefore,

Φ(A3) =
pηpĀ3

ks + ηpĀ3
− m

Ā3
, (9)

where Ā3 is the equilibrium [ATP] from model (3). Note that, via the action of
adenylate kinase, Ā3 will only go to zero if total adenylate concentration does, in
which case the cell would promptly die. Therefore, we only consider cases for which
Ā3 > 0.

Unlike parenchyma cells, which proliferate on their own, immature vascular en-
dothelial cells require an angiogenic signal to stimulate proliferation. The strength
of that signal is assumed to be proportional to ATP allocated to producing and
secreting the molecules involved, specifically ηs(v)A3. However, the response of
immature VECs to this signal is nonlinear because biological limitations bar cell
proliferation from running off to an arbitrarily large rate. Here we assume that
VEC response to this signal obeys a Michaelis-Menten function of angiogenic signal
strength. To this we add constant VEC maturation and death rates to produce

Ψ(v, Ā3) =
αηs(v)Ā3

kv + ηs(v)Ā3
− β, (10)

where β is the sum of VEC death and maturation rates. Biologically, α represents
the maximum per-capita proliferation rate of VECs, and kv measures VEC sensi-
tivity to the angiogenic signal. Also unlike parenchyma cells, VECs generally have
access to fresh blood. Therefore, we assume that total adenylate and adenylate
balance is maintained homeostatically in these cells at a level that does not depend
on tumor vascularization.

We view Φ and Ψ as essentially placeholder functions with the correct general
properties, not detailed hypotheses about proliferation and angiogenic dynamics.
As in [42], the precise forms of these functions have little impact on the qualitative
results as long as they are generally saturating or unimodal functions of A3.

3. Initial conditions and parameterization. The notation used in these models
is summarized in Tables 1 and 2. The model’s complexity is reflected in the length
of the parameter list. However, reasonable estimates for most can be obtained. In
some cases, these estimates can be argued from biological first principles. Others
are founded on entirely empirical grounds. Nevertheless, some are still a priori
unobtainable. For parameters in this last category, we attempt to define their
magnitudes by identifying values that produce reasonable biological behavior. Such
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Table 1. Dependent variables and functions used in this research.

Notation Meaning

Variables
t Time

Ai(t) Concentration of Adenylate 5′ i-phosphate
x(t) Mass of tumor parenchyma cells
y(t) Mass of immature tumor VECs
z(t) Total length of tumor microvessels
v(t) Tumor microvessel length density (= z/x)

Functions
φ(A1, A2, A3) Energy charge
f(A1, A3) AMP destruction rate
G(φ, v) ATP regeneration rate
s(v) Max ATP regeneration rate
ηs(v) TAF secretion effort
Φ(A3) Parenchyma proliferation rate

Ψ(v,A3) VEC proliferation rate

estimates amount to testable biological hypotheses on parameter measures that are
not yet established empirically. Below we develop our estimates for all parameters
and identify their sources or derivations.

3.1. Estimates from biological measurements. Initial conditions for the adeny-
late model are derived directly from measures of ATP concentrations in cells. Stan-
dard textbooks—Alberts et al. [1, pg. 67] for example—tend to claim that the
generic resting cell maintains an equilibrium of about 1 billion ATP molecules. This
value agrees well with Du et al.’s [13] measurements in anesthetized rat brain, in
which they find an ATP concentration of 3.0 mM, which equates to almost exactly 1
billion ATP per cell assuming a cell volume equivalent to a 10 µm diameter sphere,
or a concentration of about 1.5 fmol/cell. Therefore we initially take A3(0) = 1.5
fmol (per cell). Since resting cells have about 10 times more ATP than ADP and
about 100 times more ATP than AMP [23], we initially set A1(0) = 0.1A2(0) and
A2(0) = 0.1A3(0). These values will be modified slightly based on model output
(see section 3.3).

Next we attack the functions G(v, φ) and f(A1, A3). Beginning with the former,
imagine a cell in a abundantly vascularized tissue. Data from erythrocytes [4]
suggest that the mean maximum rate of glycolysis for such a cell is approximately 2
mmol/L/hr, or about 1.7×10−2 fmol/cell/min, again assuming a cell with a volume
equal to a 10 µm diameter sphere. However, these data probably represent a lower
bound for maximum glycolysis rate in generic cells, since erythrocytes are relatively
metabolically inactive. Indeed, Kilburn et al. [33] found that mouse LS cells (in
vitro) hydrolyze ATP at 11.7 fmol/cell/min. Assuming a resting cell maintains an

ADP concentration of 0.15 fmol, a constant energy charge, φ̂, and has a constant

nutrient supply, then Kilburn et al.’s data imply G(φ̂, ·) = 78 min−1. From the
basic form of G(v, φ) in Fig. 1 and the observation that maximum glycolysis rates
are approximately 5 times resting rates [4], then maximum per ADP glycolysis rate
should be around 390 min−1, which we take as our estimate of smax.
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Table 2. Parameters and their default values, representing a
“resting” cell. Sources are given in section 3. Units labeled “U”
are microvessel units (see text).

Parameters Meaning Default Units

αa de novo AMP synthesis rate 5.725× 10−5 fmol/min
k Adenylate kinase rate parameter 106 1/fmol/min
β1 Maintenance ATP → AMP rate 4 min−1

β2 Maintenance ATP → ADP rate 4 min−1

γa Adenosine kinase rate 0.01 min−1

µ ATP destruction rate 0.01 min−1

ηp Proliferation secretion effort 1, max = 7 min−1

η̂s Basic TAF secretion effort 0.11 g/U/min
ξ Nutrient effect on TAF secretion 10/3 g/U

smax Max ATP regeneration rate 390 min−1

M1 AMP deaminase parameter 0.4 fmol/min
M2 Nucleotidase parameter 9.167× 10−7 fmol/min
k1 AMP deaminase parameter 0.5 fmol
k2 Nucleotidase parameter 5× 10−3 fmol
k3 Nucleotidase parameter 2.5× 10−10 fmol2

k4 Nucleotidase parameter 5× 10−5 fmol
p Basic parenchyma proliferation rate 0.072 hr−1

ks Proliferation sensitivity parameter 2 fmol/min
m Parenchyma mortality parameter 0.0698 fmol/hr
α Max VEC response to TAF 0.1 hr−1

kv Sensitivity of VECs to TAF 0.0115 fmol/min
β VEC death/maturation rate 0.04 hr−1

γ VEC maturation rate 3 U/g/hr
δ Microvessel remodeling rate 4× 10−3 g/U/hr

The model for AMP destruction, f(A1, A3), is taken directly from the work of
Ataullakhanov, Vitvitsky and colleages [4, 38]. In essence, their models assume
that activities of the two AMP-destroying enzyme classes are essentially negligible
at physiological AMP concentrations in resting cells, approximately 0.015 fmol/cell.
However, they suggest that the activity of 5′ nucleotidases dominates at relatively
low AMP concentration, whereas AMP deaminases dominate at high concentra-
tions. In particular, Martinov et al. [38] use

f1(A1) = M1

(
A1

k1 +A1

)4

(11)

to model action of AMP deaminases, whereas their model of 5′ nucleotidases takes
the following form:

f2(A1, A3) = M2
A1(k2 +A3)

k3 + k4A1 +A2
1

, (12)

where M1 = 0.4 fmol/cell/min, M2 = 9.167 × 10−7 fmol/cell/min, k1 = 0.5 fmol,
k2 = 5 × 10−3 fmol, k3 = 2.5 × 10−10 fmol2 and k4 = 5 × 10−5 fmol. Therefore,
we take f(A1, A3) to be the sum of expressions (11) and (12) with these parameter
values (Fig. 3).
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Figure 3. AMP destruction function f(A1, A3) for A3 = 1.5027,
the equilibrium value under the default parameters. AMP destruc-
tion is dominated by 5′ nucleotidases when [AMP] falls below 10−1.
Above this threshold, AMP deaminases dominate. Adapted from
[4, 38]. Dashed horizontal line represents f(A1, A2) = αa for de-
fault value of αa and the default equilibrium value of A3. Dashed
vertical line represents default equilibrium value of A1.

Parameters β1 and β2 can also be estimated from data. If Kilburn et al.’s [33] esti-

mate of ATP hydrolysis rate represents generic cells at rest, then (β1+β2)Â3 = 11.7

fmol/cell/min. With Â3 = 1.5 fmol/cell, then β1 + β2 ≈ 8 min−1. For simplicity,
we set β1 = β2 = 4 as defaults.

The cost of TAF secretion is very difficult to measure, largely because the precise
nature of the TAF signal varies among tissues. In most tissues, however, vascular
endothelial growth factor (VEGF) and various angiopoietins play significant roles.
Recently, Karoubi et al. [31] measured the cost of VEGF secretion in an assay in
which eukaryotic cells were transfected with a VEGF-carrying plasmid. In one assay
they measured the secretion rate of VEGF165 to be 8 fg/cell/hr, which equates to
about 3.6×10−4 fmol/cell/hr. Given that VEGF165’s molecular mass is 22.32 kDa,
synthesis of this compound requires adenylation of 191 residues per molecule. So,
secretion at this rate burns a minimum of 6.9×10−2 fmol of ATP per cell per hour.
In other assays, Karoubi et al. boosted VEGF secretion up to 40 × this value by
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increasing the number of plasmids per cell. How this level of synthesis relates to
natural VEGF production is hard to evaluate. But certainly these calculations only
account for synthesis of VEGF, not secretion. Nor does it measure synthesis and
secretion of other compounds in the TAF signal. So, here we assume that TAF
secretion requires no more than 0.7 fmol/cell/hr = 1.17 × 10−2 fmol/cell/min, 10
times the basic value measured by Karoubi et al. Since max ηs(v) = ηs(ξ

−1) =
η̂sξ
−1e−1 is assumed to be 1.17 × 10−2, our estimate of η̂s ≈ 0.11 (g/microvessel

unit) min−1, assuming ξ−1 = 0.3 (see below).
We should note that most of the measurements obtained in this section are

derived from healthy tissue or laboratory cultures. Cells in these contexts differ
from cancer cells in significant ways. Most notably, such cells typically regenerate
ATP using oxidative metabolism instead of fermentative glycolysis. Therefore, we
take all these values as relatively rough estimates of conditions within cancer cells.

3.2. Estimates from biological principles and hypotheses. As already noted,
the adenylate kinase reaction is very fast relative to other metabolic reactions in-
volving adenylate. This observation justifies the assumption that

k � αa, β1, β2, γa, µ, ηp, (13)

and also
k � max

0≤v, 0≤φ≤1
G(v, φ), max

0≤A1,A3

f(A1, A3), max
0≤v

ηs(v). (14)

In numerical investigations we set k = 106.
In resting cells we assume that AMP construction via adenosine kinase (γa) and

ATP loss through nucleic acid construction (µ) are much smaller than β1 + β2.
Therefore, as a first approximation we set γa = µ = 0.01.

To determine ηp, we note that, with few very atypical exceptions—eggs of the
frog Xenopus for example—mammalian cells double no faster than once every 12
hours. To reproduce itself, a eukaryotic cell requires approximately 1.6 × 104 fmol
of ATP [33]. Therefore, a cell growing at its maximum rate is burning ATP at a
rate of approximately 22 fmol min−1. If such a cell were able to maintain its ATP
level at 1.5 fmol, then we expect

(β1 + β2 + ηp)1.5 ≈ 22 fmol/min,

assuming µ and γa (maintenance amino acid adenylation and the background adeno-
sine kinase reaction rates, respectively) are minor drains on ATP. With the default
values for β1 and β2, this expectation implies an upper bound for ηp of 7 min−1.
However, we leave open the possibility that pathology can cause this upper bound
to increase significantly.

3.3. Estimates from model fitting. Obtaining a priori values for the remaining
parameters presents considerable technological challenges, but these parameters can
be estimated from the model by considering a cell either at rest or in equilibrium
within a healthy, but dynamic, tissue. Resting cells burn negligible ATP for both
proliferation and TAF secretion (ηp = ηs(v) ≡ 0), and their adenylate pools are in
equilibrium. With all other parameters set to their defaults, we find that “tuning”
αa = 5.725 × 10−5 maintains a resting cell’s adenylate in equilibrium near their
initial concentrations. To be precise, with αa and all other parameters set to their
defaults, adenylate concentrations equilibrate at Â1 = 0.0250, Â2 = 0.1938 and
Â3 = 1.5027 (Fig. 3). Therefore, in all subsequent numerical investigations we set
the default adenylate concentrations to these values.
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Figure 4. Adenylate and energy charge dynamics of a cell repro-
ducing at its maximum rate. Parameters and initial conditions
were set to default values listed in table 1 except that ηp = 7, its
theoretical maximum, and η̂s = 0. (A) Total adenylate (top line),
ATP, ADP and AMP concentrations. (B) Energy charge.

To obtain an estimate of p, the proliferation response parameter, we consider a
cell dividing at its maximum rate. In section 3.2 we established that, for such a cell,
ηp ≈ 7 min−1. The adenylate model predicts that maintaining such a proliferation
commitment incurs a drain on ATP (Fig. 4) which the adenylate model predicts
will eventually equilibrate at about 1.4301 fmol. Therefore, to maintain a maximal
proliferation rate of 0.06 hr−1, equivalent to a 12 hour doubling time assuming
exponential growth, requires

p =
0.06(2 + 7(1.4301))

7(1.4301)
≈ 0.072 hr−1.

Note that the base time scale for adenylate dynamics is min−1 while that of the
tissue-level tumor model is hr−1.

The maximum VEC response to TAF, α, the VEC sensitivity parameter, kv, and
the parenchyma mortality parameter, m, are tuned in the default model to produce a
homeostatic tissue when there is a small commitment to proliferation—that is, ηp is
somewhat arbitrarily set to 1, representing proliferation required to replace natural
cell death—in a healthy tissue in which v = 1. In such a tissue, there should be
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Figure 5. Properties of a healthy tissue. All parameters are set
to their default values listed in Table 1. (A) Parenchyma (Φ) and
VEC (Ψ) growth functions as functions of tumor vascularization.
(B) Total adenylate and ATP concentration per cell at equilibrium
as a function of vascularization.

no net tissue growth ⇒ Φ(Ā3) = 0, or net vascular change ⇒ Ψ(1, Ā3) = 0. When
ηp = 1, then Ā3 = 1.9589 (obtained by solving model 3 to equilibrium under default
parameters), so Φ = 0 is satisfied when m = 0.0698 fmol/hr. Tissue homeostasis
otherwise arises when α = 0.1 hr−1, kv = 0.0115 fmol/min (Fig. 5). This function
nicely matches the Gammack et al. tumor growth model [15] as adapted in [42].

The remaining parameters, ξ (reciprocal of vascular density at which TAF se-
cretion reaches it maximum), β (immature VEC death/maturation rate), γ (rate
at which immature VECs construct functional microvessels) and δ (microvessel re-
modeling rate) take the same values as in [42].

4. Results. In this section we begin with a treatment of the adenylate dynamics
predicted by model (3) before moving to the tissue-level model and its evolutionary
dynamics.

4.1. Time scales. From Table 2 we can estimate the orders of magnitude for the
parameters in the adenylate dynamics model: a, b, c = O(1), G = O(102), αa =
O(10−5) and k = O(106). In addition, we can simplify the adenylate destruction
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function by replacing f2(A1, A3) in Equation (12) by f̃2(A1, A3) = M2A3

A1
, since

the relative error f2−f̃2
f2

for A1 > 10−3 is less than 5%. Taking into account the

scales in Figure 3 we assume that f(A1, A3) has the same order of magnitude as
αa. Hence the scales in the adenylate model (3) are s1 = 106, s2 = 1, s3 = 10−5

corresponding to timescales τ1 = 106t, τ2 = t, τ3 = 10−5t. Defining ε = 10−6 we can
write Equations 3 on the ultrafast τ1 timescale as:

dA1

dτ1
= ε2(α̃a − f̃(A1, A3)) + εaA3 + k̃(A2

2 −A1A3), (15)

dA2

dτ1
= ε(bA3 −GA2)− 2k̃(A2

2 −A1A3), (16)

dA3

dτ1
= ε(GA2 − (b+ a)A3) + k̃(A2

2 −A1A3), (17)

where α̃a and f̃ are O(10) and k̃ = O(1). With X = A2
2−A1A3, Y = A1 +A2 +A3

and setting ε = 0 we get the dynamics on the ultrafast timescale:

dX

dτ1
= −k̃X(Y + 3A2), (18)

dY

dτ1
= 0, (19)

dA2

dτ1
= −2k̃X. (20)

We find that on this time scale the initial population Y (0) stays constant and
the ultrafast adenylate kinase reaction equilibrates in finite time to X = 0 and a
finite A2. We continue by assuming that in equilibrium on the τ1-timescale we have
Y = 1 and two possible states for the evolution on the next timescale: i) Ai = 1

3

corresponding to an energy charge φ = 1
2 and a glycolysis term G = 4s and ii)

A1 = A2 = 0, A3 = 1 corresponding to an energy charge of φ = 1 and a glycolysis
term G = 0. On the timescale τ2 we get

dA1

dτ2
= aA3 + k

X

ε
dA2

dτ2
= bA3 −GA2 − 2k

X

ε
dA3

dτ2
= GA2 − (b+ a)A3 + k

X

ε
.

(21)

Notice that on the timescale τ2, Y = 1 is still an exact manifold but X = 0 will be

true only to order ε. Since G = 4sφ(1− φ) and φ =
A3+

1
2A2

Y , near φ = 1/2 we can
approximate GA2 on the manifold Y = 1 by GA2 ≈ 1 − A3 − A1 and near φ = 1
by GA2 ≈ 0. Hence the system in (A1, A3) space restricted to the fast manifolds
can be linearly approximated, and trajectories follow the eigenvectors and become
approximately straight lines.

In case (i) the energy charge φ grows, in case (ii) φ decays. Since ε� 1 the time
scales are strongly separated and hence the system (21) relaxes to an equilibrium on
the timescale τ2. Hence the energy balance is restored to a very good approximation
via enzymatic reactions and glycolysis within a few seconds. This equilibration on
time scale τ2 for the default model is evident in Figure (6) (the solution limb labeled
“II”).
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Figure 6. Adenylate dynamics on time scales τ1 and τ2 (see
text). Red surface is the graph of the manifold on which X = 0
(adenylate kinase in equilibrium) and the translucent grey mani-
fold is the set of points satisfying Y = constant (conservation of
adenylate). Black curve is a numerical solution of the full model
(equations [3], [4], [6], [7], [11] and [12]) with default parameters
and no simplifying assumptions. I) Dynamics on time scale τ1, rep-
resenting equilibration of adenylate kinase (note that this portion
of the trajectory lays above the red manifold); II) dynamics on time
scale τ2. Dot is the initial condition. Compare Fig. 7.

Finally, total adenylate is regulated on time scale τ3. Note that

dY/dt = αa + (γa − µ)A3 − f(A1, A3).

Therefore, with our assumption that γa = µ, an equilibrium for the entire system
requires αa = f(A1, A3). (Relaxation of this assumption can lead to unbounded
solutions, suggesting that development of more sophisticated models of nucleic acid
biosynthesis and the adenosine kinase reaction would be worthwhile.) This balance
between de novo AMP synthesis and AMP destruction is achieved with a very fine
adjustment on the ultra-slow time scale τ3, corresponding to weeks according to the
parameterization used here. This somewhat implausibly slow adjustment in total
adenylate probably arises from a slight error in the parameterization of f , which in
turn leads to an error in αa. Nevertheless, the qualitative behavior of the model is
plausible (see Discussion), so we assume in the tissue-level model to come that the
adenylate dynamics are locked in the (quasi-) equilibrium elucidated below.

Numerical results from the default parameterization (Figs. 4 and 7) and all others
investigated (not shown) suggest that energy charge equilibrates on timescale τ2.
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Figure 7. Adenylate dynamics, with selected initial conditions.
Red manifold is defined in Figure 6, and the two translucent man-
ifolds satisfy A3 = mA2 and A3 = m2A1, m = Ĝ/(2c − b) (see
equations (24) and (25)). The heavy black trajectory is the same
solution as shown in Figure 6, continued to show dynamics on time
scale τ3, labeled III. Blue curves are various solutions with differ-
ent starting concentrations of ATP. The heavy dot embedded in all
three manifolds is an apparently asymptotically stable equilibrium
attracting all these solutions.

From the definition of φ,

dφ

dt
=
A′3 + (1/2)A′2

Y
− αa − f(A1, A3)

Y
φ, (22)

since dY/dt = αa − f(A1, A3). Here and below, ′ = d/dt to ease typography. At a

fixed point for the entire system, then, αa = f(Â1, Â3); therefore,

A′3 +
1

2
A′2 = 0 (23)

at equilibrium. Substituting the explicit expressions for the derivatives followed by
a bit of algebra shows that

Ĝ =
(2c− b)A3

A2
≥ 0, (24)
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Figure 8. Equilibration of adenylate with changes in prolifer-
ation committment. Red curve is the graph of the solution to
αa = f(A1, A3). Black trajectories are projections of solutions of
model (3) (no simplifying assumptions) onto the A1, A3 plane for
values of ηp ∈ {0, 1, . . . , 12} with v = 1 and all other parameters set
to default values. Solid blue lines are the initial conditions, which
intersect at the equilibrium associated with ηp = 0. Dashed blue
line is the graph of equation (25) for ηp = 12. Fixed points are
black circles, blue arrows show progression of fixed points with in-
creasing ηp and black arrows show direction of solution trajectories.
Evident are dynamics on time scales τ2 (rapid movement from ini-
tial condition to cusp, left to right) and τ3 (slow adjustment along
the line defined by equation (25)). Dynamics on time scale τ1 are
irrelevant here since the initial conditions satisfy X = 0. Compare
Fig. 9A.

where Ĝ is the equilibrium glycolysis rate. At equilibrium we also have k(A2
2 −

A1A3) + aA3 = 0,

⇒ A3 =
Ĝ2

(2c− b)2
(
A1 −

a

k

)
≈ Ĝ2

(2c− b)2
A1. (25)

Returning to the explicit expression for f(A1, A3) (equations (11) and (12)) and

given αa = f(A1, A3), Ĝ (equation (24)) and approximation (25), the equilibrium
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value for A1, say Â1, can be approximated by solving

Z(αa − f1(Â1))−M2

(
Ĝ

2c− b

)2

Â2
1 −M2k2Â1 = 0, (26)

Z = Â2
1 + k4Â1 + k3 for Â1. Since Ĝ equilibrates so rapidly, identifying the (ap-

proximate) equilibrium values for all species of adenylate becomes a straightforward
numerical problem, the solution to which is used to determine the quasi-equilibrium
ATP concentration in the tissue-level model.

Although relation (26) was constructed to identify the location of the equilib-
rium adenylate concentrations, the argument leading to it generates insight into the
dynamics on timescale τ3. Speaking roughly, the τ2 dynamics transition to the τ3
dynamics as energy charge, and therefore glycolysis, equilibrates and αa approaches
f(A1, A3). This is evident in Figures 7 and 8. In the former, the limb labeled “II”
represents the τ2 dynamics. As solutions approach the planes defined by equations
(24) and (25) (translucent grey in the figure), solutions abruptly switch to the final
equilibration phase on timescale τ3 (labeled “III” in the figure) creating an apparent
cusp. In fact, the solution remains smooth. Figure 8 shows a series of solutions in
which only one parameter was varied (ηp). In each case solutions shoot to the right
on timescale τ2 from their initial condition (crossing of solid horizontal and vertical
lines; note that here the dynamics on τ1 are not evident as these initial conditions
already satisfy the equilibrium conditions for system (18)). As they approach the
plane satisfying condition (25), they transition to the creep towards equilibrium as
they adjust total adenylate to balance de novo construction, αa, with destruction,
f(A1, A3).

4.2. Adenylate dynamics. With the basic qualitative dynamics understood, we
now move on to a biological assessment of adenylate dynamics and the effects of
variations in the two evolutionarily important parameters—proliferation and angio-
genesis factor secretion. A cell that increases commitment to proliferation (increases
ηp) may degrade, but may even bolster, its equilibrium ATP and total adenylate
concentrations. Numerical investigation (Figs. 4 and 8) suggests that a resting cell
(ηp, η̂s = 0) at normal tissue vascularization (v = 1) which modestly ramps up
its proliferative machinery tends to increase its ATP reserves. This occurs in the
model because the cell overcompensates its increasing ATP demands by a dispro-
portionate decrease in total adenylate destruction. However, if demand for ATP
becomes severe, starting just above the break-even commitment of ηp = 1, equilib-
rium ATP concentrations begin to decline with increasing ηp (Fig. 9A), reflecting
the physiological stress of proliferation that can no longer be accommodated by
manipulations of total adenylate. Increasing ηp to 14 min−1, approximately twice
our estimated physiological maximum, causes total adenylate and ATP to decline
to about 65% of normal (Fig. 9A). These observations are consistent with the model
of Ataullakhanov and Vitvitsky and real cells [4].

Energy charge, on the other hand, is reasonably well buffered from changes in
ATP demanded for proliferation. In a glycolytic but otherwise physiologically nor-
mal cell, this model predicts that energy charge will not drop beyond 92% of its nor-
mal value when ηp rises to 14 min−1 (Fig. 9B). This result is largely explained by the
homeostatic mechanism represented by f(A1, A3), as suggested by Ataullakhanov
and Vitvitski [4] and is unlikely to be much different in oxidative cells since ATP
regeneration in such cells is at least as efficient as in glycolytic cells.
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Figure 9. Cellular energy status as a function of ATP allocated
to proliferation (ηp) over twice its estimated physiological range.
(A) Equilibrium ATP and total adenylate concentrations. (B) En-
ergy charge. All other parameters were set to their values indicated
in Table 1, with v = 1 (normal tissue vascularization).

A cell’s energy status has a similar, somewhat counterintuitive relationship with
tissue vascularization in this model. In particular, as vascular density increases,
ATP concentration may increase or decrease. Since blood supplies nutrients—
mainly glucose and, for aerobic cells, O2—required for immediate regeneration of
ATP, one might predict that equilibrium ATP concentration is a monotonically in-
creasing function of vascularization, v. This model contradicts that suggestion; in
highly vascularized tissues, ATP concentration may decline with increasing v (Fig.
10). As vascular density increases beyond the normal range, the model predicts
that total adenylate begins to decline, decreasing the ATP concentration. Whether
this prediction represents actual biological behavior or is simply model artefact is
an open question that can be addressed experimentally.

4.3. Tumor dynamics. This model predicts that cells suffer diminishing returns
as they ramp up ATP hydrolysis to support proliferation. The tumor growth rate
as a function of proliferative commitment (Φ(A3) viewed as a function of ηp) is
concave, with the mode at about ηp = 3.5 (Fig. 11C). At this point the rate at
which proliferation increases with ATP “spent” on proliferation is matched by the
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Figure 10. Equilibration of adenylate with changes in vascular-
ization. Curves as in Fig. 8 with the following exceptions: here
ηp = 1 and v now varies on the set {0.1, 0.2, . . . , 1.5}. Concentra-
tion of AMP declines with v in this range.

rate at which necrosis increases due to ATP deficiency. As more and more ATP is
drained for proliferation, necrosis outpaces reproduction, so growth rate declines.
However, vascularization starts to increase as blood vessel growth can more easily
keep pace with tumor growth (Fig. 11A). When ηp exceeds about 10.5, ATP reserves
become so degraded that the tumor begins to regress (Fig. 11B and C).

Since equilibrium ATP concentration, Ā3, is ultimately a function of vasculariza-
tion v, both Φ and Ψ in model (8) can be viewed as functions of v. Following [42],
one can therefore define w = y/z and differentiate it and v to obtain the system,

dv

dt
= γw − v(Φ + δv),

dw

dt
= (Ψ− Φ)w, (27)

as an alternative to model (8). A fixed point in model (27) represents a particular
solution of model (8) in which the tumor grows or decays exponentially with an
invariant density of microvessels and immature vascular endothelial cells.

As shown in [42], model (27) can allow a saddle-node bifurcation if Φ and Ψ cross
as variations in parameters move the two functions relative to each other (Fig. 12).
The saddle, at say (v̂, ŵ), has the property that Φ′(v̂) < Ψ′(v̂), and the (locally
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Figure 11. “Equilibrium” tumor properties as a function of tu-
mor cell proliferation commitment (ηp), in a tumor with phenotyp-
ically identical cells; that is, all cells use the same ηp. Although in
general the tumor size is changing, these are equilibrium values in
the sense that vascularization and [ATP] have stabilized. Panels
represent stable (A) tissue vascularization, (B) mean intracellular
ATP concentration, and (C) tumor growth rate. Left-hand limit
is a bifurcation point between situations when a tumor with stable
vasculature is possible (to the right) and not (to the left; see Fig.
12). Note that panel (B) differs from Fig. 9A; that latter assumes
a constant v = 1.

asymptotically stable) node has the inequality reversed. If

Φ′(v) > 0 for all v ∈ [0,∞), (28)

lim inf
v→∞

Φ(v) > 0, and lim sup
v→∞

Ψ(v) < 0, (29)

then by Proposition 1 in [42], the “right-hand” fixed point, i.e., that associated with
the largest v̂, is always a node. In the model considered here, conditions (28) and
(29) are not guaranteed (see e.g., Fig. 12), leading to an interesting biological pos-
sibility. If the bifurcation arises as in Figure 12, then at the the largest v̂ satisfying
Φ(v̂) = Ψ(v̂) we observe Φ′ < Ψ′ and Φ(v) < Ψ(v) for all v > v̂. Perturbations from
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Figure 12. Saddle-node bifurcation with increasing commitment
to proliferation. Here we view ηp as the bifurcation parameter.
Red and blue curves represent Ψ and Φ, respectively, for three
different values of ηp: 0.2, 0.255 and 0.3. The proliferation function
Φ increases uniformly with ηp. For ηp < 0.255, Φ < Ψ and there
are no biologically relevant fixed points. At about ηp ≈ 0.255, we
see a saddle-node bifurcation at the point where Φ ≈ Ψ. As ηp
continues to increase, saddle and node separate with the saddle to
the right.

v̂ in the direction of increasing v will therefore lead to runaway (ever-increasing) vas-
cular hyperplasia as blood vessels grow faster than the tumor for ever. We term this
dynamic hypervascularization to distinguish it from another, entirely different
mechanism of hyperplasia predicted by this model (see section 4.4).

Dynamic hypervascularization would be characterized by a “weedy” growth of
blood vessels that the model predicts will choke the tumor to death. Typically, ATP
concentration must remain finite. (Biologically this can be taken as axiomatic.)
Therefore, if we let maxt0≤t<∞A3 = A∗3, then

lim
v→∞

Ψ(v, Ā3) ≤ lim
v→∞

αηs(v)A∗3
kv + ηs(v)A∗3

− β < 0, (30)

since limv→∞ ηs(v) = 0 and by assumption β > 0. Since v is destined to remain
greater than v̂, and Φ(v) < Ψ(v) for all v > v̂, we have Φ(v) < 0; the tumor must



866 JOHN D. NAGY AND DIETER ARMBRUSTER

regress. Dynamic hypervascularization continues even while the tumor regresses, in
this case not because blood vessels grow faster than the tumor mass, but because
they die more slowly than does the tumor mass.

4.4. Evolutionary dynamics. We begin our analysis of the evolutionary dynam-
ics by considering only 1-dimensional evolutionary strategies. In particular, only a
single model parameter is, for now, assumed to be affected by natural selection. Let
s ∈ R represent this parameter, and define S = {s; 0 ≤ s < ∞} as the strategy
space. Our first goal is to identify evolutionary stable (or unbeatable [16]) strate-
gies (ESSs) within this strategy space. As originally defined by Maynard Smith and
Price in the 1970s [27, 26], an ESS is any evolutionary strategy that is invulnerable
to invasion by any other strategy that arises as a rare mutant in a population in
which all other individuals are using the ESS.

Here we employ standard generalizations of Maynard Smith and Price’s concept
as developed in (phenotypic) adaptive dynamics theory (see Geritz et al. [16] for
a review). First we extend the model to include two strains: a resident with mass
xr, and a rare mutant with mass xm. Following [42], the 2-strain model takes the
following form:

dxr
dt

= Φr(A3r)xr,

dxm
dt

= Φm(A3m)xm

dy

dt
= Ψ̂(v,A3r, A3m, xr, xm)y,

dz

dt
= γy − δvz,

v =
z

x
,

x = xr + xm,

Ψ̂(v,A3r, A3m, xr, xm) =
Ψr(v,A3r)xr + Ψm(v,A3m)xm

xr + xm
− β,

(31)

where A3i and Ψi are the ATP concentration and angiogenesis signal output in cells
of strain i ∈ {r,m}, respectively.

Following Geritz et al. [16], let sr, sm ∈ S be the strategies employed by residents
and mutants, respectively. In practice, s represents a parameter in model (31) that
takes different values in the different strains. We view sm as a strategy used by a
vanishingly rare mutant in a resident population of cells otherwise using strategy
sr. For now we ignore cases in which more than one mutant strain competes with
the resident. We also assume that the mutant challenger arises in a tumor growing
along an attracting solution for the resident population; equivalently, we assume the
mutant arises in a population already sitting on one of the locally stable equilibria
of model (27) representing a monomorphic tumor composed of the resident strain.

Let f(sm, sr) be the fitness, sensu Metz et al. [41], of a mutant using strategy
sm in a resident population using sr. (Maynard Smith and Price [27] and Geritz
et al. [16] use a notation of the form fsr (sm).) Given the results in section 4.3, the
fitness of the mutant immediately follows from Proposition 2 in [42]; specifically,

f(sm, sr) = Φ(A3m; sm)− Φ(A3r; sr), (32)
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Figure 13. Fitness gradient for ηp (ATP investment to prolifer-
ation) throughout its range of viability. Grey regions on either side
represent regions in which the tumor is inviable. Dashed vertical
line marks the ESS. All other parameters are set to default values.

assuming the two strains have otherwise identical parameters.

4.4.1. Evolution of proliferation potential. Set s = ηp; that is, consider the ATP
commitment to proliferation as the parameter under selection. The fitness gradient—
the derivative of the fitness in equation (32) in the direction of the mutant strategy
at the point where mutant and resident strategies coincide (see [16] for technical
definitions and theory)—is plotted across potential resident strategies for default
parameters in Figure 13. The singular strategy (resident strategy for which the
fitness gradient is zero) is marked by a vertical dashed line and is evidently locally
convergence-stable as defined by [16] (roughly, it is an evolutionarily attracting
strategy). The pairwise invasibility plot (PIP)—a plot of the zero contour of the
fitness function (32)—for the same default tumor (Fig. 14) shows that the singu-
lar strategy is an ESS; that is, no mutant strategy in the physiologically relevant
strategy set can invade a population of residents employing the singular strategy.
Therefore, the singular strategy is also an evolutionary endpoint [16]. So, in this
model, tumors characterized by the default parameters will evolve to an ATP pro-
liferation investment ηp ≈ 3.67 if mutations cause only small changes in ηp [16].

4.4.2. Evolution of angiogenesis potential. In contrast to the relatively simple evo-
lutionary dynamics of proliferative potential, angiogenesis presents a much less
straightforward evolutionary picture. Interestingly, this model predicts the pos-
sibility that an angiogenic phenotype can evolve based on indirect benefits at the
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Figure 14. Pairwise invasibility plot for ATP allocation to pro-
liferation (ηp) under default parameters.

individual level of selection, but the result is typically runaway selection causing ei-
ther vascular hypo- or hyperplasia. In either case, the model predicts the eventual
production of a hypertumor.

We begin by studying a tumor with “normal” cell turnover; that is, we fix ηp = 1
and study evolution of ATP earmarked for TAF secretion (s = η̂s). In Figure 15
we see a singular strategy at an ATP-TAF investment rate of η̂s ≈ 0.0524, well
within the region of tumor viability. The PIP (Fig. 16) shows that this strategy is
an ESS. However, it is not locally convergence-stable. Apparently for any resident
strategy greater than (less than, respectively) the singular strategy, there exist mu-
tant strategies with a higher (respectively, lower) TAF investment that can invade
the resident population (Fig. 15), and the fitness gradient as a function of resident
strategy has a positive slope at the singular strategy (in fact, throughout the range
of tumor viability; Fig. 15). Therefore, the ESS is an evolutionary repeller [16]. Tu-
mors with initial investment in TAF secretion to the right of the ESS will experience
runaway selection always favoring increasing TAF secretion, eventually pushing the
tumor into the right-hand inviability region. The result is evolutionary suicide [48]
leading to a hypertumor [42]. This picture is mirrored on the other side of the sin-
gular strategy, with runaway selection eventually causing evolutionary suicide this
time by favoring decreasing TAF secretion. So here we have a single mechanism,
selection for TAF secretion, generating hypertumors with apparently two distinct
natural histories—one would observe either hyper- or hypoplasia of the vascular net
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Figure 15. Fitness gradient for ATP investment in TAF secre-
tion (η̂s) throughout the zone of viability. Grey areas represent
regions of tumor inviability. Vertical dashed line indicates the sin-
gular strategy. All other parameters are fixed at their defaults; in
particular, ηp = 1.

before tumor collapse. The former case contrasts with dynamic hypervasculariza-
tion introduced in section 4.3. Here evolutionary forces generate the phenotype,
and so we refer to this situation as evolutionary hypervascularization.

Variations in ATP investment for proliferation (ηp) changes the location of the
TAF secretion (η̂s) ESS, but it remains an evolutionary repeller. As ηp increases,
both boundaries for the zone of viability rapidly retreat from each other, and the
graph of the fitness gradient declines while retaining the same basic shape, at least
for moderate increases in ηp (Fig. 17). The ESS accelerates to the right (Fig. 17)
with no qualitative changes in the PIP (data not shown). If ηp has reached its
evolutionary endpoint at default (= 3.67; Figs. 13 and 14), the ESS for η̂s has
moved well beyond what is physiologically reasonable (η̂s > 90) but remains a
repeller. Therefore, if a tumor has reached its evolutionary endpoint for ηp before
η̂s has undergone any major evolutionary change, we can expect that η̂s will be to
the left of its ESS and the fitness gradient at this point will be negative. As a result,
we would expect the evolutionary destruction of the tumor’s vascular infrastructure
as selection continually favors mutants with less investment in TAF secretion (Fig.
18). This situation represents the original hypertumor mechanism predicted in [42].

5. Discussion. In this paper we study the evolution of proliferative and angio-
genic potential in tumors by extending a previous evolutionary model of angiogenic
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Figure 16. Close-up view of pairwise invasibility plot near ESS
for for ATP allocation to angiogenesis factor secretion (η̂s) un-
der default parameters. The PIP remains qualitatively the same
throughout the range of biologically reasonable values of η̂s.

tumor growth [42]. The extension adds evolutionary costs in the form of energy
requirements associated with particular proliferation and angiogenesis strategies.
The result is a multiscale model, with cell energetics modeled on space and time
scales of micrometers and seconds to minutes, respectively, and tumor dynamics
modeled at millimeters and hours. The energetics model is adapted from the work
of Ataullakhanov, Vitvitsky and colleagues [2, 3, 4, 5, 38].

As noted in the introduction, we focus on angiogenesis because, of the various
hallmarks of cancer [21, 22], angiogenic potential relies on cooperative production of
the angiogenic signal. As with other altruistic traits, angiogenic “behavior” should
be susceptible to mutant cheater clones that conserve energy by refusing to cooper-
ate. In the case of cancer, the cheater clone would be identified histologically as a
local (potentially extensive) hypoxic necrosis caused by microvascular hypoplasia.
Given that all angiogenic tumors are potentially susceptible to cheaters, one expects
either that hypertumor necrosis is fairly common or that some general mechanisms
exist to prevent it.

This model suggests a simple, but nontrivial, hypothesis for the latter possibility.
In the previous model, which represented small tumors limited only by access to mi-
crovessels [42], natural selection always favored clones with the highest proliferative
potential (difference between division and cell death rates), but was neutral towards
angiogenic growth factor secretion. If ATP allocation were zero-sum—that is, ATP
allocated to secretion necessarily decreases ATP available for proliferation—then



EVOLUTION OF PROLIFERATION AND ANGIOGENESIS IN CANCER 871

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−4

TAF strategy (η
s
)

F
itn

es
s 

G
ra

di
en

t

Figure 17. Fitness gradients for ATP investment in TAF
secretion (η̂s) for various proliferation investments (ηp ∈
{1.2, 1.3, 1.4, 1.5, 1.6}). Vertical dashed lines indicate singular
strategies (all of which are ESSs), and arrows indicate the direction
of increasing ηp. All other parameters are fixed at their defaults.

natural selection would secondarily disfavor angiogenic clones since these clones
have less energy to support proliferation. The current model, which includes a
more realistic energy management system, implies that this simple picture is incor-
rect. ATP allocation is not zero-sum. Reallocation of ATP away from proliferation
in favor of angiogenic secretion can at the same time increase ATP available for
proliferation due to a nonlinear interaction between ATP hydrolysis rate and total
cell adenylate. Cells in a “resting” state, represented here by the default param-
eters, respond to increasing ATP hydrolysis by slowing adenylate destruction and
thereby elevating total cell adenylate (Fig. 8). Homeostatic mechanisms, primarily
glycolysis, then buoy up energy charge by transferring AMP to ATP. As a result,
the cell has more ATP than before, and by default allocates more to proliferation
even though no mutations acted directly on proliferative ability. As in the previous
model, natural selection acts exclusively on proliferative potential. However, this
model predicts that individual selection acting on clonal lineages can favor muta-
tions that increase angiogenesis, but only via a pleiotropic effect on the energetic,
and therefore proliferative, phenotype expressed by the clone. Cheaters cannot
benefit by halting secretion because by doing so they decrease total adenylate and
therefore ATP available for proliferation.

However, the picture just painted applies only in relatively permissive environ-
ments. In more challenging environments, the homeostatic mechanisms switch into
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Figure 18. Fitness gradient for ATP investment in TAF secre-
tion (η̂s) at the default ESS proliferation investments (ηp ≈ 3.67).
Gray region on the left is the tumor inviability region.

a mode in which ATP allocation becomes zero-sum or worse. As originally suggested
by Atkinson [6], when the cell has difficulty adjusting total adenylate upwards to
compensate for ATP hydrolysis—for example from ischemia (Fig. 10) or some in-
crease in ATP hydrolysis rate (Fig. 8)—it maintains energy charge by increasing
the AMP destruction rate (see equations (11), (12) and Fig. 3). Therefore, in such
a situation, any increase in ATP hydrolysis for angiogenesis results in loss of total
adenylate, total ATP and decreased proliferative potential. Therefore angiogenesis
is selected against in a highly proliferative clone (high ηp). In such clones, the fitness
gradient for angiogenesis potential (η̂s) is negative for all physiologically reasonable
values (Fig. 17). Therefore, only clones that down-regulate angiogenesis secretion
are favored, resulting in runaway selection for ever-decreasing angiogenic potential.

Here we have a classic conflict between individual and group (tissue) level ben-
efits [11, 50, 56, 57]. The group benefits from angiogenesis, but individuals ben-
efit from proliferation. Because cells in nutrient-poor tumors cannot adjust total
adenylate to compensate for increased ATP hydrolysis, proliferation and angiogene-
sis become antagonistic traits. Since selection acts exclusively on individual (clonal)
traits, proliferation evolves at the expense of the group and its angiogenic potential.
Given enough time, individual-level selection will eventually produce a favored lin-
eage incapable of generating sufficient angiogenesis to support the tumor, resulting
in evolutionary suicide [48] by a “hypertumor,” or tumor-on-a-tumor [42, 43, 44].
Such a situation applies to a tumor proliferating at its default ESS (Fig. 18), sug-
gesting that a non-angiogenic clone, and therefore a hypertumor, is the ultimate
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evolutionary endpoint when both proliferative (ηp) and angiogenic (η̂s) potential
are under selection, although the techniques employed here cannot demonstrate
this conjecture.

Selection for angiogenic potential’s pleiotropic benefits generates another inter-
esting prediction. Although this model typically admits an ESS for an angiogenic
phenotype in the zone of tumor viability, the ESS is as an evolutionary repeller—
small perturbations on either side cause runaway selection in the direction of the
perturbation. Perturbations “to the left” of the ESS result in evolutionary sui-
cide, as just described. Perturbations to the right spark runaway selection towards
ever-increasing angiogenic signalling, resulting in massive microvessel hyperplasia
(“evolutionary hypervascularization”). In this case, evolutionary suicide is again
inevitable in this model because extreme secretion rates degrade cellular energy
stores beyond that required to maintain osmotic balance in the cell. In reality, this
result is unlikely since other biochemical and biophysical limits besides cell death
exist on angiogenic potential.

Nevertheless, such evolutionary hypervascularization could be responsible for mi-
crovascular hyperplasia characteristic of high-grade gliomas. Traditionally the ex-
planation for microvascular hyperplasia in glioma is hypoxia, perhaps caused by
thrombosis [10, 32, 53, 54]. According to this model, evolutionary hypervascu-
larization should be limited to tumors with relatively low proliferative potential.
Highly proliferative clones hydrolyze ATP a rates significantly above resting cells.
Such clones therefore tend to erode total adenylate as decribed above, removing
ATP for angiogenesis signaling. Note that this prediction does not imply that the
phenomenon occurs only in slowly growing tumors. Tumor growth rate is a func-
tion of vascularization and nutritional support in addition to proliferative abilities
conferred by genotype. To be precise, the prediction is that, for clones compared
in the same environments, less proliferative genotypes would be more susceptible
to evolutionary hypervascularization than would more proliferative clones. A rel-
atively low-proliferative tumor hypervascularized by this evolutionary mechanism
may nevertheless grow rapidly because of its dense nutritional infrastructure.

The hypotheses distilled from this model depend critically on one key behav-
ior of the energetics model, namely the counterintuitive increase in total adeny-
late resulting from increased ATP hydrolysis. This physiological behavior has
empirical support—indeed, it was precisely this behavior in erythrocytes that led
Ataulakhanov, Vitvitsky, Martinov and their colleagues to formulate their adeny-
late model [2, 3, 4, 5, 38], which largely inspired model (3). This compensatory
response creates the conditions making the angiogenic singular strategy an evolu-
tionary repeller. Therefore, the model’s key prediction is largely robust to changes
in the adenylate model as long as the compensatory mechanism remains. For ex-
ample, there is good empirical support for the assumption that total adenylate is
regulated primarily via AMP [38], at least in erythrocytes where adenylate dynam-
ics are relatively easily studied. However, total adenylate in model (3) is regulated
exclusively by feedback on AMP destruction. Alternative models in which adeny-
late is regulated by its production rate have been around for some time [28, 29] and
would make an interesting alternative to the formulation used here. However, as
long as resting cells increase adenylate concentration in response to increased ATP
hydrolysis, the model’s evolutionary predictions will remain unchanged.
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