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Abstract. Hepatitis B virus can persist at very low levels in the body in the
face of host immunity, and reactive during immunosuppression and sustain the

immunological memory to lead to the possible state of ’infection immunity’.

To analyze this phenomena quantitatively, a mathematical model which is
described by DDEs with relative to cytotoxic T lymphocyte (CTL) response

to Hepatitis B virus is used. Using the knowledge of DDEs and the numerical

bifurcation analysis techniques, the dynamical behavior of Hopf bifurcation
which may lead to the periodic oscillation of populations is analyzed. Domains

of low level viral persistence which is possible, either as a stable equilibrium

or a stable oscillatory pattern, are identified in parameter space. The virus
replication rate appears to have influence to the amplitude of the persisting

oscillatory population densities.

1. Introduction. Viral infections caused by hepatitis B virus (HBV) are the ma-
jor global health problems due to more than 300 million people being persistently
infected[1,2]. It is suggested that HBV can persist at various levels rather than
being completely eliminated to a sterile state from the host[3] but are controlled by
infection-immunity, which refers to a coexistence state of immunity together with
low level infection. Recent experiment data shows that HBV can persist below the
detection limit of conventional assays of about 102 − 103 HBV DNA copies/ml of
serum[4], which continuously restimulate a low level immune response. The quali-
tative parameters of low level HBV coexistence with immunity memory are difficult
to assess and the mechanism of the viral persistence is not yet understood. Biologi-
cally and mathematically, the dynamics of the HBV virus infection is characterized
by the relationship between interacting populations of viruses and virus-specific cy-
totoxic T lymphocytes[5]. Recently, a number of mathematical models have been
proposed to explore the population dynamics of the virus and cells[6-7]. In gen-
eral, the hepatis B virus acts as a positive regulator of the CTL population due to
adaptive immunity, whilst CTL function to eliminate the virus population.
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Based on the general mechanism of within-host dynamics, the interaction rela-
tionship between virus and CTL population are described as the following:

dx

dt
= βx(t)(1 − x(t)

K
) − γx(t)z(t),

dy

dt
= b

x(t− τ)y(t− τ)

θ + x(t)
− αy(t) + C,

dz

dt
= s

x(t− τ)y(t− τ)

θ + x(t)
− dz(t),

(1.1)

where x denotes virus number(or density), while y and z represent the resting CTL
population and effector CTL population number(or density), respectively. The
biological basis underlying the model (1.1) lies in that: (i) The virus population
is assumed to obey the logistic growth rule; (ii) the virus population induces the
clonal expansion and differentiation of the specific resting CTL population into
effector CTL population; (iii) CTL population caught the virus cells and the like
predator-prey relationship is reflected by Holling-II type function response.

Parameter Biological meaning Units Value used Plausible range

β Replication rate constant l/day 0.3 0− 0.4
of viruses

γ Rate constant of virus ml/copies day 1.75× 10−3 10−6 − 10−3

clearance due to CTLs
K Virus carrying capacity copies/ml 8× 109 < 1010

τ Duration of CTL division day 0.6 0.4-1
cycle

b Rate constant of CTL l/day 0.07 0-4
stimulation

θ Viral load saturation in copies/ml 1200 < 1010

CTL expansion rate
α Rate constant of CTL ml/day 45 0.1− 103

death
C Rate of CTL export from cell/ml/day 0.1 0-10

thymus
s Rate of effector cells l/day 0.05 0-4

stimulation
d Rate constant of effector ml/day 45 0.1− 103

cells death

Table 1 The values of parameters used in system (1.1).

In the equation for virus state x(t), the first term on the right-hand side describes the
virus growth with an resource capacity K due to the limited amount of sensitive tissue cells
to support the virus replication. The second term illustrates the elimination of anti-virus
control.

In the equation for resting state y(t) of CTL, the maintenance of virus-specific CTL
population through exporting from thymus with the rate C and death in the periphery
system are considered. The Holling-II type function reflects the virus-induced proliferation
with the inhibitory effect of cumulative virus on clonal expansion, and time delay τ is the
necessary time in division cycle.

The dynamics of effector cells z(t) is governed by the differentiation of antigen-stimulated
resting CTL population and the natural death due to its finite life span.The relative in-
formation about model parameters [5] are listed as in Table 1.
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We are interested to know the necessary condition for the stability of steady states of
system. The bifurcation analysis is done to understand how solutions and their stability
change as the parameters in the system vary. Due to the infinite-dimensional nature of
DDEs, the characteristic matrix, appearing in the stability theory for DDEs, has an infinite
number of eigenvalues[8,9]. The recently developed analyzing scheme known as the Sturm
sequence [10,11] is used to decide the stability and the existence of imaginary roots iω as
the characteristic polynomial equation for ω has high multiplicity.

In this paper, we outline the quantitative analysis of the stability of the positive equilib-
rium solution of system (1.1) in Section 2. The relevant numerical methods for bifurcation
analysis with the use of software DDE-BIFTOOL obtaining the continuation of steady
states and periodic solutions is done in Section 3. A brief conclusion is given finally.

2. Model properties. Initial data for the system has the form

x(s) = x0(s) > 0, y(s) = y0(s) > 0, z(s) = z0(s) > 0

with s ∈ [−τ, 0].
Using the method of steps, it is easily seen that each component of the solution of

system (1.1) remains non-negative for all t > 0.
By straightforward calculation, we have E0 = (0, C

α
, 0) is a disease-free state of system

(1.1) which is unstable. Suppose E∗ = (x∗, y∗, z∗) is the positive equilibrium state, then
it satisfies

y∗ =
C(θ + x∗)

−bx∗ + αθ + αx∗
, z∗ =

β(K − x∗)
Kγ

and

dβ(α− b)x∗2 + (sCγK + dβKb− dβKα+ dβαθ)x∗ − dβKαθ = 0 (2.1)

If x∗ ∈ (0,K), then E∗ is an interior positive equilibrium solution in R3
+ = ((x, y, z) :

x, y, z > 0). The solutions of Eq.(2.1) have the formula

x∗± =
−B ±

√
∆

2dβ(α− b)
with

B = sCγK + dβKb− dβKα+ dβαθ;
∆ = (sCγK + dβKb− dβKα+ dβαθ)2 + 4d2β2Kαθ(α− b).

We are interested to know the necessary conditions for the coexistence of a small scale
virus population and CTL population as an equilibrium or periodic oscillating state of
system. With assumption α < b, it is easily verified x∗+ ∈ (0,K).Therefore, the case
x∗ = x∗+ is considered hereafter .

In the context of dynamical system analysis, we will investigate the stability of equi-
librium E∗ in detail. The local asymptotic stability of a steady state can usually be
determined from the roots of characteristic equation, det(P + Qe−λτ − λI) = 0. For our
model,

P =


−βx

∗

K
0 −γx∗

− bx∗y∗

(θ + x∗)2
−α 0

− sx∗y∗

(θ + x∗)2
0 −d

 Q =


0 0 0
by∗

θ + x∗
− bx∗

θ + x∗
0

sy∗

θ + x∗
− sx∗

θ + x∗
0


In the case of a positive delay, the characteristic equation for the linearized equation

around the equilibrium point E∗ is

P (λ) +Q(λ)e−λτ = 0 (2.2)

where
P (λ) = a1λ

3 + a2λ
2 + a3λ+ a4,

Q(λ) = b1λ
2 + b2λ+ b3,
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with
a1 = 2x∗Kθ +Kθ2 + x∗2K,
a2 = Kθ2d+ 2x∗Kαθ + 2x∗Kθd+Kαθ2 + x∗2Kα+ x∗2Kd

+2x∗2βθ + x∗βθ2 + βx∗3,
a3 = Kαθ2d− syγx∗2K + 2x∗2βθd+ 2x∗2βαθ + x∗2Kαd

+x∗βαθ2 + x∗βθ2d+ 2x∗Kαθd+ x∗3βα+ x∗3βd,
a4 = x∗βαθ2d− x∗2sy∗γKα+ x∗3βαd+ 2x∗2βαθd,
b1 = x∗Kbθ +Kbx∗2,
b2 = Kbx∗2d+ sy∗γx∗2K + x∗2βbθ + x∗Kbdθ + sy∗γx∗Kθ + βx∗3b,
b3 = sy∗γx∗Kθα+ x∗2βbdθ + βx∗3bd+ x∗2sy∗γKα.

The equilibrium solution is stable in the absence of the delay if the roots of P (λ) +
Q(λ) = 0 have negative real parts. Equivalently,

λ3 +
a2 + b1
a1

λ2 +
a3 + b2
a1

λ+
a4 + b3
a1

= 0 (2.3)

By Routh Hurwitz’s criteria, this occurs if and only if a2 + b1 > 0, a4 + b3 > 0 and
(a2 + b1)(a3 + b2) − a1(a4 + b3) > 0 since a1 > 0. This is satisfied with the set of
parameters shown in Table1.

Now substituting λ = iω in Eqs(2.2) and separating the real and the imaginary parts,
we obtain the system of transcendental equations

−a2ω2 + a4 − b1ω2 cos(ωτ) + b2ω sin(ωτ) + b3 cos(ωτ) = 0,
−a1ω3 + a3ω + b1ω

2 sin(ωτ) + b2ω cos(ωτ)− b3 sin(ωτ) = 0.

Therefore,

cos(ωτ) = b2ω
4a1−b2ω2a3+b1ω

2a4+b3a2ω
2−b1ω4a2−b3a4

b22ω
2+(b1ω2−b3)2

,

sin(ωτ) = ω(b1ω
4a1−b1ω2a3−b3ω2a1+b3a3+a2ω

2b2−a4b2)
b22ω

2+(b1ω2−b3)2
,

(2.4)

Squaring and adding both sides of Eqs.(2.4), we have

a21ω
6 + (−b21 + a22 − 2a3a1)ω4 + (−2a4a2 − b22 + 2b3b1 + a23)ω2 + a24 − b23 = 0 (2.5)

By the method of the discrimination sequence of polynomials, we have seriously discussed
the roots of Eqs.(2.5) in paper [12,13] , and the conclusion is cited as the following: Propo-
sition 1: If a22 − b21 − 2a3a1 > 0 and a24 − b23 < 0, then Eqs.(2.5) has only one pair of roots
±iω0, and τ∗n corresponds to ±iω0 is given by

τ∗n =
1

ω0
arccos

b2ω
4a1 − b2ω2a3 + b1ω

2a4 + b3a2ω
2 − b1ω4a2 − b3a4

b22ω
2 + (b1ω2 − b3)2

+
2nπ

ω0
(2.6)

For τ = 0, E∗ is stable. Hence, E∗ will remain stable for τ = τ0 where τ0 = τ∗0 as n = 0 .
For example, with the parameters given in Table 1, the corresponding discrimination

sequence is [1,−1,−1,−1,−1, 1] and the pair of roots is given as ±iω0 = ±11.2377i. The
critical value of delay τ0 is also calculated by Eq.(2.6) as τ0 = 0.06380.

3. Low level viral persistence. In Section 2, we use analytical methods to give some
results about the existence of steady states and the condition for the possible Hopf bifur-
cation. Due to an infinite-dimensional nature of system (1.1), we will show some relevant
issues to the bifurcation analysis of system (1.1) further based on the numerical methods
upon the package DDE-Biftool [14,15].

It is suggested that HBV virus can persist at various levels rather than being com-
pletely eliminated from the host. The low level HBV persistence below the detection limit
of conventional assays of about 102−103 HBV DNA copies/ml pf serum can have negative
consequences for the host. The coexistence of low level HBV virus can reactive during im-
munosuppression and sustain the immunological memory to form the infection immunity,
that is, the likelihood that these individuals or their organs may be infectious to others.
To analyze the low level HBV coexistence, we use the numerical bifurcation techniques to
explore the quantitative features of the nonlinear mathematical model described by system
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Figure 1. Left: Steady-state solutions x, y, z as varying CTL
death rate α (β = 0.0761). Right: regions in β − α plane cor-
responding to solutions with x < 103 and x < 200 respectively.
The solid line denotes the Hopf bifurcation curve.
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Figure 2. Left: the stability region (depicted in color) of the
steady-state solution of system (1.1) in (β − α) plane. Right: The
amplifying figure of the region corresonds to solutions with x < 103,
the solid line denotes a Hopf bifurcation curve.

(1.1). The domains where low level HBV coexistence with CTL memory is possible, either
as an equilibrium state or an oscillatory pattern, are identified in parameter space.

To start the analysis, we set the virus growth rate β = 0.0761 and all other parameters
as in Table 1. We compute the steady state by using continuation technique to examine the
dependence of the corresponding steady state on the parameter α. By varying parameter
α within its ranges, as shown in Fig.1(left), the steady state density (x, y, z) of system
(1.1) are calculated numerically, which indicate effect of virus and CTL death rate on the
populations level and the numerical values are in agreement with the explicit analytical
results derived in Section 2. One can seen that the value of x can keep at a very low
level along the boundary of the stability region( the curve of Hopf points) in Fig.1(right).
As it shown further, if the CTL death rate is small, change of β have little impact on
the equilibrium values of x. Hence the features remain true in the stability region in the
amplifying figure shown in Fig.2(right). HBV virus can persist at a low level and have little
change as varying β ∈ [0, 0.089] and α is less than 32.4. The branch of Hopf bifurcation
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points in (β − α) plane, as shown in Fig.2(left), is drawn by the continuation calculation
from the emanating Hopf point, and the adoptable value of delay is τ = 0.02.

0 0.2 0.4 0.6 0.8 1
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

β

T

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

β

x
max

x
min

(a) (b)

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

β

y
min

y
max

0 0.2 0.4 0.6 0.8 1
10

−2

10
0

10
2

10
4

β

z
min

z
max

(c) (d)

Figure 3. Period T , evolution of maximal and minimal values of
x, y, z along a branch of bifurcating periodic solutions of system
(1.1) emanating from a Hopf point (∗) versus parameter β for α =
45, τ = 0.02.Branches of stable (-) and unstable (–) steady state
solutions and branch of stable periodic solutions (-.).
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Figure 4. Periodic solutions with different virus growth rate β.
(a)β = 0.4429, T = 4.8328;(b) β = 1.0395, T = 3.7988 ;(c) β =
1.6344, T = 2.9941.

We study the existence of oscillatory patterns in different level viral persistence by
computing branches of periodic solutions emanating from the Hopf point. Fig.3 depicts a
branch of bifurcating periodic solutions as a function of the parameter β (α = 45, τ = 0.02),
whilst Fig.5 depicts a branch of periodic solutions as varying parameter α (β = 0.6419, τ =
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Figure 5. Period T , evolution of maximal and minimal values of
x, y, z along a branch of bifurcating periodic solutions of system
(1.1) emanating from a Hopf point (∗) versus parameter α for β =
0.6419, τ = 0.02.Branches of stable (-) and unstable (–) steady state
solutions and branch of stable periodic solutions (-.).
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Figure 6. Periodic solutions with different values of parameter
α. (a)α = 21.9792, T = 3.2129; (b) α = 31.9682, T = 3.6589;
(c)α = 41.9740, T = 4.1214.

0.02). Define xmax(β) = maxt∈[0,T ]x(t, β), xmin(β) = mint∈[0,T ]x(t, β),etc., then variation
of solutions along the branch is characterized by their maximal and minimal values over the
period for each computed point on the branch. As β grows from its Hopf point value, the
amplitude of oscillations in populations densities x, y, z grows. Reversely, the oscillation
period T of the periodic solutions decrease rapidly. After time is scaled by the factor T−1,
as shown in Fig.4 and Fig.6, respectively, we depict the periodic solutions on the time
interval [0, 1] with values of β chosen as β = 0.4429, T = 4.8328; β = 1.0395, T = 3.7988;



816 SUQI MA

β = 1.6344, T = 2.9941 and with different values of α as α = 21.9792, T = 3.2129;
α = 31.9682, T = 3.6589; α = 41.9740, T = 4.1214.

The results on existence of periodic solutions in (β − α) plane is summarized in Fig.7.
The region of our interest, where periodic oscillation are such that xmax < 1000 is quite
small. It becomes narrow with increasing virus growth rate β. The possible high amplitude
oscillation is obtained outside the coexistence region of low level virus.
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Figure 7. Stability regions of steady state and periodic solutions.

4. Conclusion. Hepatitis B virus can coexist with expanded clones of virus specific CTL
in the memory phase below the detection limit. The mathematical model to predict the
population dynamics of the anti-virus CTL response to Hepatitis B virus was reported. In
this paper, we analyzed in quantitative terms the kinetic basis of coexistence of a small
virus population with CTL and effector cells. It was seen, the combination of virus growth
rate and death rate for CTL population led to a possible stable coexistence, either as an
equilibrium state or an oscillatory pattern. Based on the numerical continuation techniques
upon package DDE-Biftool, we also performed the bifurcation analysis of the population
model, which predicted the combinations of the parameters such that viral load oscillate
with different levels. Pulse form of oscillations was instructive to understand the HBV
virus kinetics and the period of the periodic ’bursts’ of viral replication ranged from 2 to
9 days .
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