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Abstract. A tuberculosis (TB) transmission model involving migrant workers

is proposed and investigated. The basic reproduction number R0 is calculated,
and is shown to be a threshold parameter for the disease to persist or become

extinct in the population. The existence and global attractivity of an endemic

equilibrium, if R0 > 1, is also established under some technical conditions.
A case study, based on the TB epidemiological and other statistical data in

China, indicates that the disease spread can be controlled if effective measures

are taken to reduce the reactivation rate of exposed/latent migrant workers.
Impact of the migration rate and direction, as well as the duration of home

visit stay, on the control of disease spread is also examined numerically.

1. Introduction. Tuberculosis (TB) caused by infection with the Mycobacterium
tuberculosis (M. tuberculosis) is an airborne infectious disease that is preventable
and curable [45]. It was estimated that 1.5 million people died from TB in 2006
[45]. In addition, another 200,000 people with HIV died from HIV-associated TB
[45]. In the late 1980s, the numbers of incidence of tuberculosis in many Western
countries were rising or stagnating after several decades of decrease [15, 21, 23,
36]. The resurgence of tuberculosis might have been attributed to the increase of
human mobility, co-infection with HIV, the emergence of drug-resistant strains of
M. tuberculosis, elimination of TB control programs, and poverty [1, 28, 33].

According to the Ministry of Health of China [30], there are 4.5 million active
TB patients, 80% of whom are rural population. There are about 1.5 million new
infectious TB cases each year, and about 130,000 deaths are due to TB annually.
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The Ministry of Labor and Social Security of China’s web page [31] indicates that
there have been about 5 million new migrant workers who leave their poor villages
to look for jobs in towns/cities from 1998, while the statistics from the Ministry
of Agriculture of China shows that the amount of migrant workers increased to
126 million in 2007, and these workers left their impoverished villages to work in
the prosperous towns/cities or south-east coastal cities [2], about 60% of whom
flowed into mega cities such as Beijing, Shanghai, Guangzhou and Shenzhen (see
the National Bureau of Statistics of China web page [32]). With the heavy influx of
migrant workers into cities, curbing the spread of large-scale TB and HIV infection
is an immense challenge [16]. As described in [38] on tuberculosis, when over 10%
of an entire population is on the move, and when these floating people are poorer
and have more tuberculosis than average, public health faces a big problem; and
when that happens in China, with a fifth of global population and more than its
share of tuberculosis, the world faces a much more difficult public health issue.

Migrant workers in China usually work outside their villages for a long time each
year. The total amount of time of migrant workers working in towns/cities ranged
from 8 months to 9.4 months during the year 2002 and 2006 ( see the web site of
the China Labor Market [11, 12]). Most of these migrant workers just return to
their homes during the Spring Festival or in the harvest seasons of the year briefly
and then go back to work in towns/cities: around 56.6% of migrant workers went
back home and reunited with their families during the Spring Festival in the year
2007, and about 83% of whom were planning to return to their former companies
in towns/cities to work [12]. This seasonal influx of migrant workers becomes more
and more obvious and universal. In addition, there has been an increasing trend
that the whole family leaving their villages. In 2006, for example, the amount of
migrant workers with their whole families leaving their rural homes accounted for
one fifth of the migrant workers [2].

Like many developed countries where immigration is the main reason for stag-
nation or increasing in TB incidence [3, 7, 17, 49], the resurgence of TB in many
parts of China occurs mainly because of the huge population mobility of migrant
workers [38]. The migrant population is ranked among the most vulnerable group
for TB infection in Chinese metropolitan areas because

(i) 80% of the Chinese TB cases are the rural residents and a substantial portion
of migrant workers are infectious or have carried the M. tuberculosis before
they flow into towns/cities [13, 26];

(ii) comparing with other sub-populations, latent migrant workers are more likely
to progress to infectious cases due to heavy working load, malnutrition, and
overcrowded living conditions, which affect their immune systems;

(iii) migrant workers are more susceptible to the M. tuberculosis infection because
of their long frequent contact with infectious migrant workers;

(iv) it is more difficult to identify TB patients and to treat them in a timely fashion
due to the lack of periodic health examination for migrant workers;

(v) migrant workers do not have sufficient knowledge on tuberculosis protection
and treatment [13, 26, 38].

Many different mathematical models have been developed to consider the impact
on TB transmission of factors such as fast and slow progression, drug-resistance,
co-infection with HIV, relapse, reinfection, and vaccination [4, 5, 8, 9, 10, 14, 34, 37,
18, 19, 20, 50]. Some mathematical TB models have been formulated to investigate
the influence of immigration on the local people [6, 22, 27, 49]. In particular, [49]
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developed a deterministic discrete-time model of TB transmission in the Canadian
born and foreign born populations in order to study the effects of this demographic
distinction on the short-term incidence and long-term transmission dynamics, and
the impact of immigration latent TB cases on the overall TB incidence rate in the
whole community. In [22], a three-population TB model was formulated to examine
the impact of latently-infected new immigrations on the TB incidence rate of the
host immigration countries and the importance of cross-infection between foreign-
born and local-born population in Canada and UK.

Motivated by these studies and the aforementioned situation in China involv-
ing a large number of migrant workers, we develop in this paper a TB model with
migration to investigate TB transmission in China. The model will incorporate
the epidemiological and social and economic features of migrant workers, and our
analysis and simulations will allow us to draw both qualitative and quantitative
conclusions of how intervention measures corresponding to these features may con-
tribute to a successful national control and prevention program. The rest of the
paper is organized as follows. In section 2, we develop the TB model with migration
and define the basic reproduction number R0. In section 3, we study the long-term
behavior of the TB model. We prove that there is a unique disease-free equilibrium
and the disease always dies out when R0 < 1; while the disease uniformly persists
in the population and there is at least one endemic equilibrium when R0 > 1. Fur-
thermore, if the migration rates of migrant workers from villages to towns/cities and
infectious migrant workers from towns/cities to villages are very small, the global
attractivity of the unique endemic equilibrium is also obtained if R0 > 1. Numeri-
cal simulations, provided in section 4, show that the spread of TB may be lowered
if the effective actions are taken to reduce the reactivation rate of exposed/latent
migrant workers and/or to encourage farmers to stay and work at home. A brief
discussion is given in section 5.

2. Model formulation. In this section, a TB model with migration is developed.
The whole population is first divided into three subgroups: rural residents, migrant
workers (temporary urban residents), and urban population (permanent urban res-
idents). Each subgroup is further subdivided into four compartments: susceptible
(S), exposed/latent infection (E), infectious (I), and recovery/treated (R). The
subscripts r,m, andu denote rural residents, migrant workers, and urban popula-
tion, respectively.

The susceptible individuals can be infected by the frequent contact with infectious
persons and enter the infectious classes by fast developing TB cases, or just flow into
the exposed/latent classes containing the bacteria, who when their immune systems
are weakened will easily reactivate to infectious TB cases. The directly observed
treatment, short-course (DOTS) strategy can be used to treat the infectious TB
cases and the completely cured TB patients will go into the recovery/treated classes.

All the infectious TB cases can infect the susceptible individuals in the same sub-
group. Migrant workers travel between villages and towns/cities. When the harvest
season or the Spring Festival comes, these migrant workers go home, reunite with
their families, and become the members of rural residents. When the infectious mi-
grant workers (Im) go home, they immediately become the infectious rural residents
(Ir). Thus, we just consider the infectivity between the susceptible rural residents
(Sr) and the infectious rural residents (Ir) after those infectious migrant workers
(Im) get back to their homes. Because the migrant workers live in the same regions
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with the urban population after they return to towns/cities in order to find job,
they have contact with urban population. Therefore, the infectious migrant workers
(Im) can infect the susceptible urban population (Su), and vice versa, the infectious
urban population (Iu) can also infect susceptible migrant workers (Sm) (see Fig. 1).

We assume that all the newborns are left in their villages with their grandparents
or other relatives. Furthermore, there is no death or birth during travel. The mass
action incidence is used here. Thus, our TB model involving migrant workers is
described by the following ordinary differential system:

dSr

dt = Λr − βrrSrIr − (µ+ amr)Sr + armSm,
dEr

dt = (1− pr)βrrSrIr − (µ+ kr + bmr)Er + brmEm,
dIr
dt = prβrrSrIr + krEr − (µ+ αr + γr + cmr)Ir + crmIm,
dRr

dt = γrIr − (µ+ emr)Rr + ermRm,
dSm

dt = −βmmSmIm − βmuSmIu − (µ+ arm)Sm + amrSr,
dEm

dt = (1− pm)Sm(βmmIm + βmuIu)− (µ+ km + brm)Em + bmrEr,
dIm
dt = pmSm(βmmIm + βmuIu) + kmEm − (µ+ αm + γm + crm)Im + cmrIr,
dRm

dt = γmIm − (µ+ erm)Rm + emrRr, (1)
dSu

dt = Λu − βuuSuIu − βumSuIm − µSu,
dEu

dt = (1− pu)Su(βuuIu + βumIm)− (µ+ ku)Eu,
dIu
dt = puSu(βuuIu + βumIm) + kuEu − (µ+ αu + γu)Iu,
dRu

dt = γuIu − µRu,
Ni = Si + Ei + Ii +Ri, i∈{r,m, u}, and N = Nr +Nm +Nu.

Note that Ni(t), i∈{r,m, u}, represents the number of the subpopulation in the
ith subgroup at time t. N(t) is the number of the whole population at time t.

Parameters used in the model are defined as follows. Λi, i∈{r, u}, represents the
recruitment rate of the population in the ith subgroup. βrr is the transmission rate
between susceptible rural residents and infectious rural residents. βij , i, j∈{m,u},
represents the transmission coefficient from the infectious individuals in the jth sub-
group to the susceptible individuals in the ith subgroup. µ is the natural death rate
of the whole population. aij , i, j∈{r,m}, i6=j, represents the migration rate of sus-
ceptible individuals from the jth subgroup to the ith subgroup. bij , i, j∈{r,m}, i6=j,
represents the migration rate of exposed/latent individuals from the jth subgroup
to the ith subgroup. cij , i, j∈{r,m}, i6=j, represents the migration rate of the infec-
tious individuals from the jth subgroup to the ith subgroup. eij , i, j∈{r,m}, i6=j,
represents the migration rate of recovery/treated individuals from the jth subgroup
to the ith subgroup. pi, i∈{r,m, u}, is the fraction of the newly infected individ-
uals who progress to infectious TB cases within the first two years after infection
in the ith subgroup. ki, i∈{r,m, u}, represents the reactivation rate to the infec-
tious TB cases in the ith subgroup. αi, i∈{r,m, u}, is the disease-induced death
rate of the infectious individuals in the ith subgroup. γi, i∈{r,m, u}, is the re-
moval/treatment rate in the ith subgroup. All these parameters are positive and
0 < pi < 1, i∈{r,m, u}.

Clearly, the right hand side of system (1) is continuously differentiable on the
domain R12

+ . By [39, Theorem 5.2.1], it follows that for any initial value in R12
+ ,

there is a unique nonnegative solution on its maximal interval of existence. Adding
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Figure 1. The schematic diagram of TB transmission involving
migrant workers.

the first twelve equations of system (1) gives

dN

dt
= Λr + Λu − µN − αrIr − αmIm − αuIu≤Λr + Λu − µN. (2)

ThenN(t)≤N(0)e−µt+(Λr+Λu)(1−e−µt)/µ≤N(0)+(Λr+Λu)/µ,∀ t≥0. Therefore,
all the solutions of system (1) exist globally on the interval [0,+∞). Since the
equations for Rr, Rm, and Ru are decoupled from other equations of system (1), it
suffices to study the following subsystem:

dSr

dt = Λr − βrrSrIr − (µ+ amr)Sr + armSm,
dSm

dt = −βmmSmIm − βmuSmIu − (µ+ arm)Sm + amrSr,
dSu

dt = Λu − βuuSuIu − βumSuIm − µSu,
dEr

dt = (1− pr)βrrSrIr − (µ+ kr + bmr)Er + brmEm,
dEm

dt = (1− pm)Sm(βmmIm + βmuIu)− (µ+ km + brm)Em + bmrEr, (3)
dEu

dt = (1− pu)Su(βuuIu + βumIm)− (µ+ ku)Eu,
dIr
dt = prβrrSrIr + krEr − (µ+ αr + γr + cmr)Ir + crmIm,
dIm
dt = pmSm(βmmIm + βmuIu) + kmEm − (µ+ αm + γm + crm)Im + cmrIr,
dIu
dt = puSu(βuuIu + βumIm) + kuEu − (µ+ αu + γu)Iu.
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In order to determine the basic reproduction number R0 of system (3), we first
consider the following system:

dSr

dt = Λr − (µ+ amr)Sr + armSm,
dSm

dt = −(µ+ arm)Sm + amrSr, (4)
dSu

dt = Λu − µSu.

It is easy to see that system (4) has a unique positive equilibrium S̃∗ = (S∗r , S
∗
m, S

∗
u),

where

S∗r =
Λr(µ+ arm)

µ2 + µ(arm + amr)
, S∗m =

Λramr
µ2 + µ(arm + amr)

, S∗u =
Λu
µ
,

and S̃∗ is globally asymptotically stable for system (4) in R3
+. Thus, system (3) has

a unique disease-free equilibrium P0 = (S∗r , S
∗
m, S

∗
u, 0, 0, 0, 0, 0, 0).

According to the definitions of the next generation matrix and the basic repro-
duction number [42], we define

F1 =


0 0 0 (1− pr)βrrS∗r 0 0
0 0 0 0 (1− pm)βmmS

∗
m (1− pm)βmuS

∗
m

0 0 0 0 (1− pu)βumS
∗
u (1− pu)βuuS

∗
u

0 0 0 prβrrS
∗
r 0 0

0 0 0 0 pmβmmS
∗
m pmβmuS

∗
m

0 0 0 0 puβumS
∗
u puβuuS

∗
u

 ,

and

V1 =


l1 −brm 0 0 0 0
−bmr l2 0 0 0 0

0 0 µ+ ku 0 0 0
−kr 0 0 l3 −crm 0

0 −km 0 −cmr l4 0
0 0 −ku 0 0 l5

 ,
where l1 = µ+ kr + bmr, l2 = µ+ km + brm, l3 = µ+ αr + γr + cmr, l4 = µ+ αm +
γm + crm, and l5 = µ+ αu + γu.

Therefore, the basic reproduction number is defined as R0 = ρ(F1V
−1
1 ), where

ρ(M) denotes the spectral radius of matrix M . The proof of [42, Theorem 2] implies
the following result.

Lemma 2.1. Let M1 = F1 − V1 and s(M1) be the maximum real part of all the
eigenvalues of the matrix M1. Then s(M1) < 0 if and only if R0 < 1, and s(M1) > 0
if and only if R0 > 1.

3. The threshold dynamics. In this section, we show that the disease-free equi-
librium P0 is globally asymptotically attractive when R0 < 1 and the disease is
uniformly persistent when R0 > 1. Furthermore, we show that when R0 > 1, the
system has a unique globally attractive endemic equilibrium provided the migra-
tion rates of migrant workers from villages to towns/cities and of infectious migrant
workers from towns/cities to villages are very small.

For convenience, the solution (Sr(t), Sm(t), Su(t), Er(t), Em(t), Eu(t), Ir(t), Im(t),
Iu(t)) of system (3) is denoted by (S(t), E(t), I(t)). Let Φt : R9

+→R9
+ be the solu-

tion semiflow of system (3), that is, Φt(S(0), E(0), I(0)) = (S(t), E(t), I(t)) is the
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solution of system (3) with the initial value (S(0), E(0), I(0)). It is easy to see that
the compact set

Ω : = {(Sr, Sm, Su, Er, Em, Eu, Ir, Im, Iu)∈R9
+ : Sr + Er + Ir

+Sm + Em + Im≤
Λr
µ
, and Su + Eu + Iu≤

Λu
µ
}

is positively invariant for Φt, and attracts all forward orbits of Φt in R9
+.

Theorem 3.1. If R0 < 1, P0 is globally asymptotically stable; while if R0 >
1, P0 is unstable and there exists a positive constant ζ such that every solution
(S(t), E(t), I(t)) of system (3) with initial value (S(0), E(0), I(0))∈R3

+×Int (R6
+)

satisfies

lim inf
t→∞

Ei(t)≥ζ, lim inf
t→∞

Ii(t)≥ζ, i∈{r,m, u},

and system (3) admits at least one endemic equilibrium.

Proof. We first consider the case of R0 < 1. By [42, Theorem 2], P0 is locally
asymptotically stable if R0 < 1. Thus, it is sufficient to prove the global attractivity
of P0 when R0 < 1. In view of system (3), we have

dSr

dt ≤Λr − (µ+ amr)Sr + armSm,
dSm

dt ≤− (µ+ arm)Sm + amrSr, (5)
dSu

dt ≤Λu − µSu.
By the aforementioned conclusion for system (4) and the comparison principle

of cooperative systems [40, Theorem B.1], it follows that for any ε > 0, we have
Si(t) < S∗i + ε, i∈{r,m, u}, for sufficiently large t. Thus, if t is sufficiently large, we
get

dEr

dt < (1− pr)βrr(S∗r + ε)Ir − (µ+ kr + bmr)Er + brmEm,
dEm

dt < (1− pm)(S∗m + ε)(βmmIm + βmuIu)− (µ+ km + brm)Em + bmrEr,
dEu

dt < (1− pu)(S∗u + ε)(βuuIu + βumIm)− (µ+ ku)Eu,
dIr
dt < prβrr(S

∗
r + ε)Ir + krEr − (µ+ αr + γr + cmr)Ir + crmIm, (6)

dIm
dt < pm(S∗m + ε)(βmmIm + βmuIu) + kmEm

−(µ+ αm + γm + crm)Im + cmrIr,
dIu
dt < pu(S∗u + ε)(βuuIu + βumIm) + kuEu − (µ+ αu + γu)Iu.

Thus, it suffices to prove that the solutions of the following auxiliary system

dÊr

dt = (1− pr)βrr(S∗r + ε)Îr − (µ+ kr + bmr)Êr + brmÊm,

dÊm

dt = (1− pm)(S∗m + ε)(βmmÎm + βmuÎu)− (µ+ km + brm)Êm + bmrÊr,

dÊu

dt = (1− pu)(S∗u + ε)(βuuÎu + βumÎm)− (µ+ ku)Êu,

dÎr
dt = prβrr(S

∗
r + ε)Îr + krÊr − (µ+ αr + γr + cmr)Îr + crmÎm, (7)

dÎm
dt = pm(S∗m + ε)(βmmÎm + βmuÎu) + kmÊm

−(µ+ αm + γm + crm)Îm + cmr Îr,

dÎu
dt = pu(S∗u + ε)(βuuÎu + βumÎm) + kuÊu − (µ+ αu + γu)Îu,
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tend to zero as t approaches to infinity. Let M2 be the matrix defined by

M2 =


0 0 0 (1− pr)βrr 0 0
0 0 0 0 (1− pm)βmm (1− pm)βmu
0 0 0 0 (1− pu)βum (1− pu)βuu
0 0 0 prβrr 0 0
0 0 0 0 pmβmm pmβmu
0 0 0 0 puβum puβuu

 .

Since R0 < 1, Lemma 2.1 implies s(M1) < 0. By the continuity of s(M1+εM2) in ε,
we can choose ε small enough so that s(M1 +εM2) < 0. Consequently, the solutions
of system (7) tend to zero as t goes to infinity. By the comparison principle of cooper-
ative systems [40, Theorem B.1], we have (Er(t), Em(t), Eu(t), Ir(t), Im(t), Iu(t))→0
as t→∞. By the theory of asymptotically autonomous systems [41, Theorem 1.2],
it then follows that lim

t→∞
Si(t) = S∗i , i∈{r,m, u}.

In the case where R0 > 1, it follows from [42, Theorem 2] that P0 is unstable.
Define

X = {(Sr, Sm, Su, Er, Em, Eu, Ir, Im, Iu) : Si≥0, Ei≥0, Ii≥0, i = r,m, u},
X0 = {(Sr, Sm, Su, Er, Em, Eu, Ir, Im, Iu)∈X : Ei > 0, Ii > 0, i = r,m, u},
and ∂X0 = X\X0.

We first prove system (3) is uniformly persistent with respect to X0. Note that
X and X0 are positively invariant sets, X0 is relatively open in X, and ∂X0 is
relatively closed in X. Since solutions of system (3) are ultimately bounded and
uniformly bounded, Φt has a global compact attractor in X. Set

M∂ := {(S(0), E(0), I(0))∈∂X0 : Φt(S(0), E(0), I(0))∈∂X0,∀t≥0}.
We now show that

M∂ = {(S, 0, 0) : S≥0}. (8)

Clearly, {(S, 0, 0) : S≥0}⊂M∂ . Assume that (S(0), E(0), I(0))∈M∂ . It suffices
to show that (E(t), I(t)) = 0,∀t≥0. Suppose it is not true. Then there exists a
t̂1≥0 such that (E(t̂1), I(t̂1)) > 0, that is, (E(t̂1), I(t̂1)) ∈ R2

+ \ {0}. Next, we

prove that for the initial value (S(t̂1), E(t̂1), I(t̂1))∈X, there is an m∗ > 0 such that
S(t)≥m∗,∀t∈[t̂1, t̂1 + 1]. Integrating both sides of the third equation of (3) gives

Su(t) = e
−

∫ t
t̂1
a(s1)ds1

(
Su(t̂1) + Λu

∫ t

t̂1

e
∫ s2
t̂1

a(s1)ds1ds2

)
≥ Λue

−
∫ t
t̂1
a(s1)ds1

∫ t

t̂1

e
∫ s2
t̂1

a(s1)ds1ds2, ∀t∈[t̂1, t̂1 + 1],

where a(t) = µ + βuuIu(t) + βumIm(t). Thus, there exists an m1 > 0 so that
Su(t)≥m1,∀t∈[t̂1, t̂1 + 1]. By the first equation of (3), we get

dSr(t)

dt
≥Λr − (µ+ amr + βrrIr(t))Sr(t), ∀t∈[t̂1, t̂1 + 1].

By a similar procedure, we know that there is an m2 > 0 so that Sr(t)≥m2,
∀t∈[t̂1, t̂1 + 1]. The second equation of system (3) gives

dSm(t)

dt
≥amrm2 − (µ+ arm + βmmIm(t) + βmuIu(t))Sm(t), ∀t∈[t̂1, t̂1 + 1].
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A similar procedure implies that there exists an m3 > 0 such that Sm(t)≥m3,
∀t∈[t̂1, t̂1 + 1]. Denote m∗ := min{m1,m2,m3}, then m∗ > 0 and S(t)≥m∗,
∀t∈[t̂1, t̂1 + 1]. For any t∈[t̂1, t̂1 + 1], system (3) yields

dEr

dt ≥(1− pr)βrrm∗Ir − (µ+ kr + bmr)Er + brmEm,
dEm

dt ≥(1− pm)m∗(βmmIm + βmuIu)− (µ+ km + brm)Em + bmrEr,
dEu

dt ≥(1− pu)m∗(βuuIu + βumIm)− (µ+ ku)Eu, (9)
dIr
dt ≥prβrrm∗Ir + krEr − (µ+ αr + γr + cmr)Ir + crmIm,
dIm
dt ≥pmm∗(βmmIm + βmuIu) + kmEm − (µ+ αm + γm + crm)Im + cmrIr,
dIu
dt ≥pum∗(βuuIu + βumIm) + kuEu − (µ+ αu + γu)Iu.

For any t∈[t̂1, t̂1 + 1], consider the following auxiliary system

dÊr

dt = (1− pr)βrrm∗Îr − (µ+ kr + bmr)Êr + brmÊm,

dÊm

dt = (1− pm)m∗(βmmÎm + βmuÎu)− (µ+ km + brm)Êm + bmrÊr,

dÊu

dt = (1− pu)m∗(βuuÎu + βumÎm)− (µ+ ku)Êu, (10)

dÎr
dt = prβrrm

∗Îr + krÊr − (µ+ αr + γr + cmr)Îr + crmÎm,

dÎm
dt = pmm

∗(βmmÎm + βmuÎu) + kmÊm − (µ+ αm + γm + crm)Îm + cmr Îr,

dÎu
dt = pum

∗(βuuÎu + βumÎm) + kuÊu − (µ+ αu + γu)Îu,

with the initial value (E(t̂1), I(t̂1)) > 0. Note that the Jacobian matrix of the
right hand side of system (10) is cooperative and irreducible. Then [39, Theorem

4.1.1] implies that (Ê(t), Î(t))� 0, ∀t∈(t̂1, t̂1 + 1]. By [40, Theorem B.1], it follows
that the solution of system (9) with the initial value (E(t̂1), I(t̂1)) > 0 satisfies
(E(t), I(t))� 0, ∀t∈(t̂1, t̂1 +1]. Thus, we have (S(t), E(t), I(t))∈X0, ∀t∈(t̂1, t̂1 +1],
and hence, (S(t), E(t), I(t)) ∈ X0, ∀t > t̂1, which contradicts the assumption that
(S(t), E(t), I(t)) ∈ ∂X0, ∀t ≥ 0. This proves (8). Clearly, there is exactly one
equilibrium P0 which is globally asymptotically attractive in M∂ .

Since R0 > 1 implies s(M1) > 0, we can choose η > 0 small enough so that
s(M1 − ηM2) > 0. We consider the following perturbed system associated with
system (4):

dSr

dt = Λr − (µ+ amr + βrrε1)Sr + armSm,
dSm

dt = −(µ+ arm + βmmε1 + βmuε1)Sm + amrSr, (11)
dSu

dt = Λu − (µ+ βuuε1 + βumε1)Su.

Note that system (11) admits a unique globally asymptotically stable equilibrium

S̃∗(ε1) = (S∗r (ε1), S∗m(ε1), S∗u(ε1)), where

S∗r (ε1) =
Λr(µ+ arm + ε1(βmm + βmu))

µ2 + µ(arm + amr) + ε1B
, S∗m(ε1) =

Λramr
µ2 + µ(arm + amr) + ε1B

,

B := (µ+amr)(βmm+βmu+βrr)+ε1βrr(βmm+βmu), S∗u(ε1) =
Λu

µ+ ε1(βuu + βum)
,

and S̃∗(ε1) is continuous in ε1 and S̃∗(ε1)→S̃∗ as ε1→0+. Thus, we can fur-

ther restrict ε1 small enough so that S̃∗(ε1) > S̃∗ − (η, η, η). For any solution
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(S(t), E(t), I(t)) with initial value (S(0), E(0), I(0))∈X0 of system (3), we further
claim that

lim sup
t→∞

max
i∈{r,m,u}

{Ei(t), Ii(t)} > ε1. (12)

Suppose that there exists a T > 0 such that Ei(t)≤ε1, Ii(t)≤ε1, i∈{r,m, u}, for all
t≥T . Then for all t≥T , we have

dSr

dt ≥Λr − (µ+ amr + βrrε1)Sr + armSm,
dSm

dt ≥− (µ+ arm + βmmε1 + βmuε1)Sm + amrSr, (13)
dSu

dt ≥Λu − (µ+ βuuε1 + βumε1)Su.

Since the equilibrium S̃∗(ε1) of system (11) is globally asymptotically stable and

S̃∗(ε1) > S̃∗− (η, η, η), there is a T1 > T such that the solution S(t) of system (13)

satisfies S(t)≥S̃∗ − (η, η, η) for all t≥T1. Indeed, for all t≥T1, there holds

dEr

dt ≥(1− pr)βrr(S∗r − η)Ir − (µ+ kr + bmr)Er + brmEm,
dEm

dt ≥(1− pm)(S∗m − η)(βmmIm + βmuIu)− (µ+ km + brm)Em + bmrEr,
dEu

dt ≥(1− pu)(S∗u − η)(βuuIu + βumIm)− (µ+ ku)Eu,
dIr
dt ≥prβrr(S∗r − η)Ir + krEr − (µ+ αr + γr + cmr)Ir + crmIm, (14)
dIm
dt ≥pm(S∗m − η)(βmmIm + βmuIu) + kmEm

−(µ+ αm + γm + crm)Im + cmrIr,
dIu
dt ≥pu(S∗u − η)(βuuIu + βumIm) + kuEu − (µ+ αu + γu)Iu.

Note that the matrix M1 − ηM2 is irreducible and has nonnegative off-diagonal
elements. By [40, Theorem A.5], s(M1 − ηM2) is a positive simple eigenvalue of
matrix M1 − ηM2 with a positive eigenvector v. Thus, the comparison principle
[40, Theorem B.1] implies that for sufficiently small ε̄ > 0 and any initial value
(E(0), I(0))T with (E(0), I(0))T≥ε̄v, we have

(E(t), I(t))T≥ε̄ves(M1−ηM2)t, ∀t ≥ 0.

Therefore, Ei(t)→∞, Ii(t)→∞ as t→∞, i∈{r,m, u}. It then follows that inequality
(12) holds.

In view of the above-mentioned claim, P0 is an isolated invariant set in X and
W s(P0)∩X0 = φ. Further, every orbit in M∂ approaches P0, and P0 is acyclic
in M∂ . By the continuous-time version of [48, Theorem 1.3.1 and Remark 1.3.1],
there is some ζ > 0 so that lim inf

t→∞
d(Φt(x), ∂X0) > ζ,∀x∈X0. Thus, for the ζ >

0, the solution (S(t), E(t), I(t)) associated with system (3) with the initial value
(S(0), E(0), I(0))∈X0 satisfies

lim inf
t→∞

Ei(t) > ζ, lim inf
t→∞

Ii(t) > ζ, i∈{r,m, u},

that is, Φt is uniformly persistent with respect to X0. Since the semiflow Φt :
X→X is point dissipative and compact for each t > 0, [48, Theorem 1.3.7] implies
that system (3) has at least one equilibrium (S∗∗, E∗∗, I∗∗) ∈ X0. Clearly, E∗∗ >
0, and I∗∗ > 0. Suppose, by contradiction, that S∗∗r = 0. Then from the first
equation of system (3), we get 0 = Λr + armS

∗∗
m≥Λr > 0. Thus, we have S∗∗r > 0.

By similar contradiction arguments, we can further prove S∗∗m > 0 and S∗∗u > 0.
Therefore, (S∗∗, E∗∗, I∗∗)∈Int(R9

+).
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In the case where arm = brm = crm = cmr = 0, our model system (3) reduces to
the model with immigration and cross-infection, which was analyzed in [22]. The
only difference is that we consider the treatment of the infectious individuals. Ac-
cording to [22], we can define the basic reproduction number for the rural population
as

R0r =
βrr

µ+ αr + γr

Λr
µ+ amr

(
pr + (1− pr)

kr
µ+ kr + bmr

)
.

If R0r < 1, there is another basic reproduction number for the migrant population
and urban population R0mu = ρ(F2V

−1
2 ), where

F2 =


0 0 (1− pm)βmmS̈

∗
m (1− pm)βmuS̈

∗
m

0 0 (1− pu)βumS̈
∗
u (1− pu)βuuS̈

∗
u

0 0 pmβmmS̈
∗
m pmβmuS̈

∗
m

0 0 puβumS̈
∗
u puβuuS̈

∗
u

 ,

V2 =


µ+ km 0 0 0

0 µ+ ku 0 0
−km 0 µ+ αm + γm 0

0 −ku 0 µ+ αu + γu

 ,
S̈∗m = amrΛr

µ(µ+amr) , and S̈∗u = Λu/µ.

If we define R̂0 = max{R0r,R0mu} as the basic reproduction number for the
whole population, the direct calculation shows that if arm = brm = crm = cmr = 0,
then R0≡R̂0. By the main theorem in [22], we have the following result.

Lemma 3.2. Assume arm = brm = crm = cmr = 0. If R0 < 1, the system (3)
has only one disease-free equilibrium which is globally asymptotically stable; while
if R0 > 1, the system (3) has a unique endemic equilibrium (Ŝ∗∗, Ê∗∗, Î∗∗) which is
globally asymptotically stable.

Theorem 3.3. Let Λ = R4
+, λ = (arm, brm, crm, cmr)∈Λ, λ0 = (0, 0, 0, 0), and R0λ

be the basic reproduction number of system (3) with parameter λ. If R0 > 1, then
there exists an ε̂ > 0 such that for any λ∈Λ satisfying ||λ − λ0||≤ε̂, system (3)
admits a unique endemic equilibrium (S∗∗λ , E

∗∗
λ , I

∗∗
λ ) such that lim

t→∞
(S(t)−S∗∗λ ) = 0,

lim
t→∞

(E(t)− E∗∗λ ) = 0, and lim
t→∞

(I(t)− I∗∗λ ) = 0 for every (S(0), E(0), I(0))∈X0.

Proof. Since R0 > 1, there exists an ε̂0 > 0 such that R0λ > 1 for each λ∈Λ with
||λ − λ0||≤ε̂0. We denote Λ0 := {λ∈Λ : ||λ − λ0||≤ε̂0}. Lemma 2.1 implies that

s(M1) > 0. Then there is a sufficiently small δ̂0 > 0 such that s(M1 − δ̂0M2) > 0.

The similar proof of Theorem 3.1 implies that there exists some ζ̂0 > 0 and ε̂1∈(0, ε̂0]
such that

lim sup
t→∞

d(Φλt (x), P0)≥ζ̂0, ∀x∈X0, λ∈Λ1 := {λ∈Λ : ||λ− λ0||≤ε̂1},

where Φλt : X→X is the solution semiflow of system (3) with parameter λ.
Note that Φλt (X0)⊂X0 for all t ≥ 0 and λ∈Λ1. It is easy to see that solutions

of system (3) in X are uniformly bounded and ultimately bounded for each λ∈Λ1.
Thus, Φλt admits a global attractor Aλ⊂X0 for each λ∈Λ1. By the continuous-time
version of [48, Theorem 1.4.2] on uniform persistence uniform in parameters, there

exists some ζ̂1∈(0, ζ̂0] and ε̂2∈(0, ε̂1] such that

lim inf
t→∞

d(Φλt (x), ∂X0)≥ζ̂1, ∀x∈X0, λ∈Λ2 := {λ∈Λ : ||λ− λ0||≤ε̂2}.
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Clearly, the ultimate boundedness of solutions of system (3) implies that there is a

bounded and closed set Ω∗⊂X0 such that Aλ⊂Ω∗, ∀λ∈Λ2. Since ∪λ∈Λ2
Φλt (Aλ) =

∪λ∈Λ2
Aλ⊂Ω∗ = Ω∗⊂X0, ∪λ∈Λ2

Φλt (Aλ) is compact in X0. Lemma 3.2 implies that

when λ = 0, system (3) admits a unique endemic equilibrium (Ŝ∗∗, Ê∗∗, Î∗∗) which
is globally asymptotically stable in X0. By the continuous-time version of [48,
Theorem 1.4.1], there is an ε̂3∈(0, ε̂2] such that for each λ∈Λ with ||λ − λ0||≤ε̂3,
system (3) has a unique endemic equilibrium (S∗∗λ , E

∗∗
λ , I

∗∗
λ ) with (S∗∗0 , E∗∗0 , I∗∗0 ) =

(Ŝ∗∗, Ê∗∗, Î∗∗), and (S∗∗λ , E
∗∗
λ , I

∗∗
λ ) is globally attractive in X0.

Theorems 3.1 and 3.3 imply that the basic reproduction number R0 plays an im-
portant role for model (1) and is a threshold parameter to determine the persistence
or eradication of TB. Fig. 2 shows such a case where there exists a unique global
attractive endemic equilibrium when R0 = 1.1910 > 1. Our intensive simulations in
a wide range of plausible parameter ranges show this global attractivity of a unique
positive equilibrium.

4. A case study. In this section, we conduct some numerical simulations based
on the available data relevant to the mega city of Beijing and its major sources
of migrant workers. In our general analysis of the model (1), we used different
migration rates arm, brm, and erm. However, it is difficult to distinguish susceptible
migrant workers, exposed/latent migrant workers, and recovered/treated migrant
workers, and to control their migration rates between their villages and towns/cities.
Thus, in the simulations below, we use arm = brm = erm. Similarly, we suppose
that amr = bmr = emr.

4.1. Initial values and model parameters. We fix the year 2000 as the initial
time and the time unit will be one year. From the web site of the National Bureau
of Statistic of China [32], the number of urban residents residing in Beijing for
longer than six months P1, the number of permanent urban residents in Beijing P2,
the number of the total migrant workers in China P3, and the number of the rural
population in China P4 can be obtained from 2000 to 2008 (Table 1). Clearly, the
migrant workers in Beijing P5 corresponds to the difference of urban residents in
Beijing longer than six months and permanent urban residents in Beijing. Therefore,
the migrant workers in Beijing accounts for 2.913% of the total migrant workers in
China. The rural population residing in villages longer than six months during one
year P6 corresponds to the difference of the rural population and the total migrant
workers in China. Thus, the number of the rural population residing in villages
longer than six months during one year corresponding to the migrant workers P7

should be the product of the rural population residing in villages longer than six
months during one year P6 and the average fraction of the migrant workers in
Beijing in the whole migrant workers in China.

From the web site of the National Bureau of Statistic of China [32], we can get
the average birth rates of the whole population B1 from 2000 to 2008 (see Table 2),
therefore, the recruitment rate RR1 of P7 is the product of B1 and P7 (see Table
2). Thus, the average recruitment rate Λr of those nine years is taken to be 237770.
By [32], we can obtain the average birth rates B2 of permanent urban residents in
Beijing from 2000 to 2008 (see Table 2), therefore, the recruitment rate RR2 of P2

is the product of B2 and P2 (see Table 2). Thus, the average recruitment rate Λu
of those nine years is fixed to be 76691. The average life expectancy of uninfected
individuals is 71.4 years and hence µ = 1/71.4 [32].
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Figure 2. Global attractivity of the unique endemic equilibrium
of system (3) when R0 = 1.1910. We choose Λr = 3, Λu = 2,
µ = 0.5, amr = 0.5, arm = 0.1, bmr = 0.4, brm = 0.15, cmr = 0.01,
crm = 0.09, kr = 2, km = 2.5, ku = 1.5, pr = 0.02, pm = 0.03, pu =
0.01, αr = 1.5, αm = 2, αu = 1, γr = 10, γm = 8, γu = 12, βrr =
3.0556, βmm = 5.5, βmu = 0.7333, βuu = 1.75, and βum = 1. The
three sets of the initial values of (Sr, Sm, Su, Er, Em, Eu, Ir, Im, Iu)
are chosen like these: (3.2, 2.28, 3.8, 0.01, 0.1, 0.09, 0.002, 0.027,
0.0057), (3.05, 2.05, 3.93, 0.003, 0.03, 0.05, 0.001, 0.015, 0.008),
and (3.35, 2.35, 3.72, 0.007, 0.18, 0.17, 0.0015, 0.036, 0.018), re-
spectively.

Table 1. The numbers of seven kinds of people in China(Unit: thousand)

Year P1 P2 P3 P4 P5 P6 P7

2000 1363.6 1107.5 8840 80837 256.1 71997 2097.3
2001 1385.1 1122.3 8961 79563 262.8 70602 2056.6

2002 1423.2 1136.3 10488 78241 286.9 67753 1973.6
2003 1456.4 1148.8 11390 76851 307.6 65461 1906.9

2004 1492.7 1162.9 11823 75705 329.8 63882 1860.9
2005 1538 1180.7 12473.3 74544 357.3 62071 1808.1
2006 1581 1197.6 13181 73742 383.4 60561 1764.1

2007 1633 1213.3 13611 72750 419.7 59139 1722.7

2008 1695 1229.9 14041 72135 465.1 58094 1692.3
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Table 2. The birth rates and the recruitment rates

Year B1 RR1 B2 RR2

2000 0.01403 294250 0.006 66450

2001 0.01338 275180 0.0061 68460

2002 0.01286 253810 0.0066 75000
2003 0.01241 236640 0.0051 58590

2004 0.01229 228700 0.0061 70940

2005 0.01240 224210 0.0063 74380
2006 0.01209 213280 0.00626 74970

2007 0.01210 208450 0.00832 10095
2008 0.01214 205440 0.00817 10048

From [30], in 2000, the detection rate of infectious TB cases was 41.4%, 98.9% of
detected infectious TB cases were treated, and the normal treatment rate was 27.3%.
If the DOTS strategy is used to treat the infectious TB cases, the infectious period
of infectious TB cases is thought of as about two months. Thus, approximately, we
have

γr = γu =
12

2
×41.4%×98.9%×27.3%'0.6707.

Note that the infectious migrant workers may not be able to get treated at all in
towns/cities unless they return to their home villages, because subsidized manage-
ment of tuberculosis is only available through facilities in the area where they were
registered at birth [25, 38]. The infectious migrant workers return to their homes
to get treated only when they are detected. For the infectious migrant workers
who do not return to homes, the removal rate is thought of as self-removal rate but
not because of getting antituberculosis drugs. The infectious period of infectious
migrant workers is five years [14] and γm = 0.2.

Adding the first four equations of system (1) for rural residents and the second
four equations of system (1) for migrant workers, we get the following system:

dNr

dt = Λr + armNm − (µ+ amr)Nr + (amr − cmr − αr)Ir + (crm − arm)Im,
dNm

dt = amrNr − (µ+ arm)Nm + (arm − crm − αm)Im + (cmr − amr)Ir.
To get the estimates of amr, and arm, we drop out the terms involving Ir and Im
(infectious TB cases account for a very small proportion of the rural population).
We then have the following system:

dNr

dt 'Λr + armNm − (µ+ amr)Nr,
dNm

dt 'amrNr − (µ+ arm)Nm.

By the least square method, fitting the rural residents corresponding to the
migrant workers and the total migrant workers data, respectively (see Fig. 3), we
derive that Nr(0) = 20603000, Nm(0) = 1878400, amr = 0.0231, and arm = 0.005.
We assume that the migration rate of infectious migrant workers moving from their
home villages to towns/cities is very small, cmr = 0.00231, and the migration rate
of infectious migrant workers moving from towns/cities to their home villages is
larger, crm = 0.05.

From [24, 47], the numbers of infectious migrant workers and infectious urban
residents in Beijing can be summarized in Table 3. By applying the known parame-
ter values and the least square method to fit the data of infectious migrant workers
and infectious urban residents in Beijing, we can get the other initial values and
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Figure 3. The fitted curves of rural population and migrant workers.

Table 3. The numbers of TB cases registered in Beijing from 2000
to 2006

Year 2000 2001 2002 2003 2004 2005 2006

Infectious migrant workers 819 923 1075 1168 1387 1266 1638
Infectious permanent residents 2312 2155 2204 2102 2437 2328 2450

Table 4. The initial values of the model.

Symbol Interpretation Value (persons)
Sr(0) Initial value of susceptible rural residents 15300000
Sm(0) Initial value of susceptible migrant workers 2304900
Su(0) Initial value of susceptible urban population 9900000

Er(0) Initial value of exposed/latent rural residents 1700000
Em(0) Initial value of exposed/latent migrant workers 100334
Eu(0) Initial value of exposed/latent urban population 614580

Ir(0) Initial value of infectious rural residents 2996
Im(0) Initial value of infectious migrant workers 887
Iu(0) Initial value of infectious urban population 2043
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Figure 4. The yearly numbers of infectious migrant workers and
infectious urban residents (the blue stars) and their fitted curves.

parameter values, which are summarized in Table 4 and Table 5, respectively. The
fitted curves are seen in Fig. 4.

Notice that if the governments encourage more and more migrant workers to
go back home, and provide them opportunities to facilitate their working at their
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Figure 5. Simulations about the impact of reducing the migration
rates from the villages to towns/cities. In the first three panels, the
green curve corresponds to amr = 0.0231, the red curve corresponds
to amr = 0.01617, the black curve corresponds to amr = 0.00924,
and the pink curve corresponds to amr = 0.00231.

villages, amr will rapidly get smaller and arm will be substantially bigger. If gov-
ernments and/or companies improve the migrant workers’ housing and living con-
ditions, provide migrant workers free health examination periodically, and/or treat
exposed/latent migrant workers with antituberculosis drugs, the reactivation rate
km of exposed/latent migrant workers will become lower. Otherwise, the reactiva-
tion rate of migrant workers may remain high. Thus, amr, arm, and km are thought
of as control parameters and are used as varying parameters in the following simu-
lations.

4.2. Control measures.

4.2.1. Building a new type of countryside. If the governments make greater efforts
to educate and train farmers and to facilitate their working at their home villages,
there may be less and less migrant workers to leave the countryside for the wage
economy in towns/cities [38]. As a consequence, the parameter amr can thus be
reduced, and correspondingly arm can be increased.

Fig. 5 and Fig. 6 show the impacts of these measures in reducing amr and in-
creasing arm on the numbers of new TB cases, the total infectious cases, infectious
migrant workers, and infectious permanent urban residents, respectively. From the
first three panels of Fig. 5, the numbers of total infectious cases and infectious mi-
grant workers may be substantially decreased as amr is decreased. However, the
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Figure 6. Simulations about the impact of increasing the rates
of migrants returning to their villages. The green, red, black, and
pink curves are correspondingly to arm =0.005, 0.02, 0.035, and
0.05, respectively in the first three panels.

number of new TB cases may be increased as amr is decreased. If amr is decreasing,
there will be less and less migrant workers working in the towns/cities, resulting
in the reduction of the number of the total infectious cases and infectious migrant
workers. The numbers of new TB cases, total infectious cases and infectious migrant
workers may increase over time. The trends of infectious urban population as amr
changes are addressed by our consideration of the sensitivity coefficient (some de-
tails about sensitivity coefficients can be seen in subsection 4.3) of infectious urban
population on amr because the number of infectious urban population has a very
small change as amr decreases. From Fig. 5d, the sensitivity coefficient of infectious
urban population will increase over time.

Fig. 6 also indicates that the change of arm yields great effects on new TB cases,
total infectious cases, infectious migrant workers, and infectious urban population.
The numbers of total infectious cases and infectious migrant workers may decrease,
while the number of new TB cases is increasing as arm increases. If arm increases,
there are more and more migrant workers to return to their villages again. Thus,
the numbers of total infectious cases and infectious migrant workers may decrease.
From Fig. 6, the sensitivity coefficient of infectious urban population is decreasing
over time, but arm has just minor influence on the infectious urban population.

4.2.2. More attention to migrant workers. Despite the current huge progress of Chi-
nese health-system reforms in tuberculosis control, the issue of migrant workers has
not received its deserved attention [38, 43]. The migrant workers always live and
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Figure 7. Simulations about the impact of decreasing the reac-
tivation rate of exposed/latent migrant workers. km is replaced,
from top to bottom, by 0.0025, 0.002467, 0.002434, and 0.0024 in
the first three panels.

work in those environments that promote transmission of tuberculosis and impede
effective diagnosis and treatment [38]. Further, migrant workers have no access to
treatment in towns/cities as they have to return home for treatment if they get
tuberculosis [38]. A better prevention and treatment program for migrant workers
will benefit the whole society, not only because migrant workers contribute to the
growing economy but also they are exposed to the great risk of TB infection and
they can pass on the infection to the entire population.

If governments at all levels and/or companies take some actions such as free access
to regular health examination, improvement of living and working conditions, and
speedy treatment, there will be less exposed migrant workers to progress quickly
to infectious TB cases and/or newly infected migrant workers. If some actions are
taken, km will be reduced. From the first three panels of Fig. 7, the numbers of new
TB cases, total infectious TB cases, and infectious migrant workers will dramatically
decrease as km is becoming smaller and smaller.

4.3. Sensitivity analysis. Sensitivity analysis of parameters is not only critical
to model verification and validation in the process of model development and re-
finement, but also provides insight to the robustness of model results when making
decision [35]. We use sensitivity coefficient to show sensitivity analysis. The sen-
sitivity coefficient SCY y of some variable Y on parameter y can be defined as the
difference of Y divided by the difference of y. If SCY y is positive, 4Y (4Y is the
difference of Y ) and 4y share the same change direction; while if SCY y is negative,
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Figure 8. The comparison of sensitivity coefficients.

they have the opposite change direction. The bigger the absolute values of SCY y,
the greater the impact of parameter y on the variable Y . Thus, parameter y plays
an important role in changing Y . The sensitivity coefficient of Y on parameter y
can be also interpreted as the percentage change in the number of Y for 1% change
in the parameter y.

Fig. 8 gives sensitivity coefficients of new TB cases (infectious TB cases, infectious
migrant workers, or infectious urban population) on parameters amr, arm, and km,
respectively. The red curve, the green curve, and the blue curve correspond to amr,
arm, and km, respectively. And the red dotted curve implies the absolute value
of sensitivity coefficient of new TB cases (infectious TB cases, infectious migrant
workers, or infectious urban population) on parameters amr changes over time.

Parameters km has the greatest influence on new TB cases (infectious TB cases,
infectious migrant workers, or infectious urban population) and the number of new
TB cases (infectious TB cases, infectious migrant workers, or infectious urban pop-
ulation) is most sensitive to parameters km. As such, km is the most sensitive
parameter and plays the most important role in determining the number of new
TB cases (infectious TB cases, infectious migrant workers, or infectious urban pop-
ulation). amr is more sensitive than arm, in deciding the number of new TB cases
(infectious TB cases, infectious migrant workers, or infectious urban population).
We conclude that more special attention should be paid to reducing the reactiva-
tion rate km of exposed migrant workers or the migrant rate amr. Effective actions
should be taken to slow down the progress of exposed/latent migrant workers to
infectious TB cases, and more farmers should be encouraged stay at their villages.
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Table 5. The parameter values used in the simulations.

Symbol Value Interpretation References

Λr 237770 Recruitment rate in the rural areas See text

Λu 76691 Recruitment rate in the urban areas See text
µ 1/71.4 Natural death rate [32]

amr 0.0231 Migration rate of susceptible people from rural areas Fit

to urban areas
arm 0.005 Migration rate of susceptible people from urban areas Fit

to rural areas
bmr 0.0231 Migration rate of latent people from rural areas Fit

to urban areas

brm 0.005 Migration rate of latent people from urban areas Fit
to rural areas

cmr 0.00231 Migration rate of infectious people from rural areas See text

to urban areas
crm 0.05 Migration rate of infectious people from urban areas See text

to rural areas
emr 0.0231 Migration rate of removed people from rural areas Fit

to urban areas

erm 0.005 Migration rate of removed people from urban areas Fit
to rural areas

kr 0.0024 Reactivation rate of exposed/latent rural residents Fit

km 0.0025 Reactivation rate of exposed/latent migrant workers Fit
ku 0.0024 Reactivation rate of exposed/latent urban population Fit
pr 0.03 Fraction of new infections that become TB disease in Fit

rural areas
pm 0.035 Fraction of new infections that become TB disease in Fit

migrant workers

pu 0.028 Fraction of new infections that become TB disease in Fit
urban areas

αr 0.075 Disease-induced death rate of the infectious rural Fit

residents
αm 0.0806 Disease-induced death rate of the infectious migrant Fit

workers
αu 0.065 Disease-induced death rate of the infectious urban Fit

population
γr 0.6707 Removal rate of infectious rural residents See text
γm 0.2 Removal rate of infectious migrant workers See text

γu 0.6707 Removal rate of infectious urban population See text

βrr 5.501×10−7 Transmission coefficient from infectious rural Fit
residents to susceptible rural population

βmm 5.9172×10−7 Transmission coefficient from infectious migrant Fit
workers to susceptible migrant workers

βuu 5×10−7 Transmission coefficient from infectious urban Fit

residents to susceptible urban population

βmu 10−8 Transmission coefficient from infectious urban Fit
population to susceptible migrant workers

βum 5×10−9 Transmission coefficient from infectious migrant Fit
workers to susceptible urban population

5. Discussion. In the present paper, a TB model incorporating migration was de-
veloped. The whole population is classified into three subgroups, rural population,
migrant workers, and urban population. In each subgroup, there are four classes of
subpopulation depending on their disease status. The basic reproduction number
R0 is given according to [42]. It is shown that TB disease dies out and model (1) has
only one disease-free equilibrium which is globally asymptotically stable if R0<1;
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while TB disease persists in the population and model (1) has at lease one endemic
equilibrium if R0 > 1. Furthermore, if the migration rates of migrant workers from
villages to towns/cities and infectious migrant workers from towns/cities to villages
are very small, model (1) has exactly one endemic equilibrium which is globally
attractive provided R0 > 1. Numerical simulation (Fig. 2) suggests that there is a
globally stable endemic equilibrium for all parameter values when R0 > 1.

If governments and/or companies effectively improve migrant workers’ housing
and living conditions, substantially treat exposed/latent migrant workers by provid-
ing them free antituberculosis drugs such as INH, and/or provide migrant workers
free health examination in order to slow down their reactivation to active TB cases,
the spread of TB may be dramatically lowered. Propagandizing the knowledge
about TB to migrant workers, encouraging migrant workers stay at home for a new
countryside economy, and providing them more technological knowledge and funds
to construct their new villages may be substantially helpful to reduce the number of
new TB cases (infectious TB cases, infectious migrant workers, or infectious urban
population).
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