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Abstract. In this paper, a simple parasite-host model proposed by Ebert et

al.(2000) is reconsidered. The basic epidemiological reproduction number of

parasite infection (R0) and the basic demographic reproduction number of in-
fected hosts (R1) are given. The global dynamics of the model is completely

investigated, and the existence of heteroclinic and homoclinic orbits is the-

oretically proved, which implies that the outbreak of parasite infection may
happen. The thresholds determining the host extinction in the presence of

parasite infection and variation in the equilibrium level of the infected hosts

with R0 are found. The effects of R0 and R1 on dynamics of the model are
considered and we show that the equilibrium level of the infected host may

not be monotone with respect to R0. In particular, it is found that full loss of
fecundity of infected hosts may lead to appearance of the singular case.

1. Introduction. Parasites can reduce host density and induce host population
extinction in some cases. In order to understand how six microparasites regulate
Daphnia populations and drive the populations to extinction, Ebert et al.[1] formu-
lated the following epidemiological microparasite model{

dx
dt = a(x+ θy)

(
1− x+y

K

)
− dx− βxy,

dy
dt = βxy − (d+ α)y,

(1)
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where x(t) and y(t) represent the densities of uninfected (susceptible) and infected
(infective) hosts at time t, respectively; a is the maximum per capita birth rate of
uninfected hosts; θ(0 ≤ θ ≤ 1) is the relative fecundity of an infected host; K is
the carrying capacity of the environment for the host population; d is the parasite-
independent host background mortality; β is the constant infection rate, and α is
the parasite-induced excess death rate.

In model (1), the microparasite transmission is assumed via a mass action process,
the fecundity of uninfected host is density-dependent, and the fecundity of infected
host may be reduced due to being infected compared with that of uninfected host.
Here, θ = 0 means that infected hosts completely lose fecundity; θ = 1 means that
the fecundity of infected hosts is not affected by parasite infection; 0 < θ < 1 means
that the fecundity of infected hosts is reduced, but they still have certain fecundity.
For model (1), there is always equilibrium O(0, 0), which is a saddle when a > d.
This implies that extinction of host is impossible when a > d, that is, host always
persists when a > d. But, in [1], the simulation for the stochastic model indicates
that extinction of host likely occurs in certain parameter regions.

By carefully examining the infection term βxy, Hwang and Kuang [2] replaced the
mass action incidence function βxy with a standard incidence function βxy/(x+y),
and obtained the following model{

dx
dt = a(x+ θy)

(
1− x+y

K

)
− dx− βxy

x+y ,
dy
dt = βxy

x+y − (d+ α)y,
(2)

where β represents the maximum number of infections that an infected host can
cause per unit time. Subsequently, based on model (2), some higher dimensional
epidemiological models were presented and analyzed[3, 4, 5].

Since model (2) is not differentiable at the origin, Hwang and Kuang [2] initially
transformed model (2) into the form of a Gause-type predator-prey system by mak-
ing the change of variables (x, y)→ (u, y) with u = x/y, and then, by investigating
the transformed system, they showed that the transformed system can exhibit the
parasite induced host extinction. This theoretically complements the findings in [1].
However, Hwang and Kuang [2] did not consider dynamical behaviors of model (2)
directly, some complicated and interesting dynamics of model (2) were missed.

In [6], Berezovsky et al. incorporated the emigration of uninfected hosts into
model (2), and then obtained the following model{

dx
dt = a(x+ θy)

(
1− x+y

K

)
− (d+m)x− βxy

x+y ,
dy
dt = βxy

x+y − (d+ α)y,
(3)

where m is the per capita emigration rate of uninfected hosts. They mathematically
studied it as an epidemiological model, and found a family of homoclinic orbits by
investigating the local dynamics of the model near the origin. But the effect of the
related parameters on dynamical behaviors of the model is not discussed completely.
In particular, the case θ = 0 is not considered. Note that model (2) and model (3)
are dynamically equivalent.

In this paper, we reconsider model (2) by rescaling it and completely analyzing
the global dynamics of the rescaled model. The initial objective is to fully under-
stand the asymptotic behavior of model (2) and theoretically prove the existence
of its heteroclinic and homoclinic orbits. In particular, we investigate the effect
of the basic epidemiological reproduction number of parasite (R0) and the basic
demographic reproduction number of infected hosts (R1) on the survival of hosts,



GLOBAL ANALYSIS OF A PARASITE-HOST MODEL 769

and analyze the change of the level of infected hosts with the basic reproduction
number of parasite infection (R0).

The organization of this paper is as follows. In the next section, we initially
rescale model (2) and then introduce the primary results on the rescaled system. In
Sections 3 and 4, we theoretically analyze the rescaled system with cases 0 < θ ≤ 1
and θ = 0, respectively, and prove the existence of heteroclinic and homoclinic
orbits of the rescaled system. Dynamic behaviors of system (2) are demonstrated in
Section 5, where the effect of R0 and R1 on dynamics of the model is investigated.
The effect of R0 on the level of infected hosts is also considered in Section 6. We
conclude with a discussion of the results in Section 7.

2. Rescaling and primary results. Rescaling model (2) by letting

x̄ = x/K, ȳ = y/K, and t̄ = at,

and removing the bars leads to the rescaled system{
dx
dt = (x+ θy) [1− (x+ y)]− δx− sxy

x+y =: P (x, y),
dy
dt = sxy

x+y − (δ + r)y =: Q(x, y),
(4)

where

s = β/a, δ = d/a, r = α/a. (5)

It follows from (4) that

d(x+ y)

dt
= (x+ θy)[1− (x+ y)]− δ(x+ y)− ry.

Since 0 ≤ θ ≤ 1, then

d(x+ y)

dt
≤ (1− δ)(x+ y) for x ≥ 0 and y ≥ 0,

which gives that limt→+∞(x(t), y(t)) = (0, 0) for δ ≥ 1. So, in the rest of this
paper, we shall assume δ < 1, which implies that a > d for (2). For convenience of
discussion hereafter, we give the following results about (4).

Lemma 2.1. (i) The x-axis is an invariant set of (4). And limt→+∞ x(t) = 1− δ
for the initial value (x(0), 0) with x(0) > 0; limt→−∞ x(t) = 0 for the initial value
(x(0), 0) (where 0 < x(0) < 1− δ).

(ii) The set D1 =
{

(x, y) ∈ R2
+ : x+ y ≤ 1− δ

}
is always positively invariant to

(4).
(iii) The set D2 =

{
(x, y) ∈ R2

+ : θy ≥ (s− r − 1)x, x+ y ≤ 1− δ
}

is positively
invariant to (4) when s > r + 1 and θ 6= 0.

Proof. Lemma 2.1 (i) and (ii) can be proved easily, so we omit it. To prove (iii) we
get from (4),

d
dt

(
y
x

)
= y

x2 {[(s− r − 1)x− θy] + (x+ θy)(x+ y)}
> y

x

[
(s− r − 1)− θy

x

]
, for x > 0, y > 0,

then lim inft→+∞ y(t)/x(t) ≥ (s− r − 1)/θ as s > r+1. Hence, the set
{

(x, y) ∈ R2
+ :

θy > (s− r − 1)x} is positively invariant to (4) when s > r+ 1. Therefore, accord-
ing to Lemma 2.1(ii), the set D2 =

{
(x, y) ∈ R2

+ : θy ≥ (s− r − 1)x, x+ y ≤ 1− δ}
is positively invariant to (4) when s > r + 1.
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According to Lemma 2.1, we henceforth do our mathematical analysis on the
set D1. For the case s > r + 1, the feasible region may be limited on the set
D2(D2 ⊂ D1).

On the other hand, if we choose B(x, y) = 1/(xy) as a Dulac function, it follows
from (4) that

∂(BP )

∂x
+
∂(BQ)

∂y
= −1

y
− θ(1− y)

x2
< 0, for (x, y) ∈ intD1.

Therefore, we have

Lemma 2.2. In the interior of the set D1, there is no closed orbit to (4).

3. Mathematical analysis for system (4) with 0 < θ ≤ 1. In this section, we
consider dynamical behaviors of the rescaled system (4) with 0 < θ ≤ 1, that is, the
infected hosts have certain fecundity.

3.1. The existence and stability of equilibria. It is easy to see that E0(1−δ, 0)
is always an equilibrium of system (4). Direct calculation shows that, when s > δ+r
and θ(s− δ − r) > (δ + r)(s− r − 1), system (4) has a unique positive equilibrium
E∗(x∗, y∗), where

x∗ = (δ+r)[θ(s−δ−r)−(δ+r)(s−r−1)]
s[θs+(1−θ)(δ+r)] ,

y∗ = [s−(δ+r)][θ(s−δ−r)−(δ+r)(s−r−1)]
s[θs+(1−θ)(δ+r)] .

Here, E0 represents that host has not been infected, E∗ implies that host is infected
chronically. About the local stability of E0 and E∗, we have

Theorem 3.1. The boundary equilibrium E0 is locally asymptotically stable on the
set D1 if s ≤ δ+ r, and unstable if s > δ+ r. The positive equilibrium E∗ is locally
asymptotically stable if s > δ + r and θ(s− δ − r) > (δ + r)(s− r − 1).

Proof. From the Jacobian matrices of (4) at E0 and E∗, it is easy to know that
E0 is locally asymptotically stable on the set D1 for s < δ + r, and unstable for
s > δ + r. And the positive equilibrium E∗ is locally asymptotically stable if it is
feasible.

When s = δ + r, equilibrium E0 is a higher order one. To discuss its locally
stability on the set D1, we make the change of variables: u = x − (1 − δ), v = y,
which moves E0 in the xy-plane to the origin in the uv-plane, then (4) becomes{

du
dt = −(1− δ)u+ [(1 + θ)δ − 1− s]v − (u+ θv)(u+ v) + sv2

(1−δ)+u+v ,
dv
dt = − sv2

(1−δ)+u+v .
(6)

Letting w = (1− δ)u− [(1 + θ)δ − 1− s]v, system (6) yields dw
dt = −(1− δ)

{
w + [w+(θδ−s)v][w+(δ+θ−1−s)v]

(1−δ)2 − (s−θδ)sv2
(1−δ)2+w+(θδ−s)v

}
,

dv
dt = − (1−δ)sv2

(1−δ)2+w+(θδ−s)v .
(7)

It follows from dw
dt = 0 that

w +
[w + (θδ − s)v][w + (δ + θ − 1− s)v]

(1− δ)2
+

(s− θδ)sv2

(1− δ)2 + w + (θδ − s)v
= 0. (8)

Direct calculation shows that, for the implicit function w = w(v) defined by (8),
dw
dv |(0,0) = 0, which implies w = o(v). Substituting it into the second equation of
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(7) gives dv/dt = −sv2/(1− δ) + o(v2). Thus, according to Theorem 7.1 in [7],
s/(1 − δ) > 0 implies that E0 is locally asymptotically stable on the set D1 for
s = δ + r.

To consider the global stability of E0 and E∗ of (4) on the positively invariant
set D1, we first need to discuss the dynamical behaviors of (4) near the origin in
the first quadrant since it may be complex.

Lemma 3.2. (i) When s ≤ r+1, orbits of system (4) starting from near the origin
in the interior of D1 move away from the origin as t increases;

(ii) When s > r + 1 and θ(s − δ − r) > (δ + r)(s − r − 1), orbits of system (4)
initiating from near the origin in the interior of D2 move away from the origin as
t increases.

Proof. Let dt = (x+ y)dτthen (4) becomes{
dx
dτ = {(x+ y)[(1− δ)x+ θy]− sxy} − (x+ θy)(x+ y)2,
dy
dτ = y [(s− δ − r)x− (δ + r)y] .

(9)

Using the polar coordinates x = ρ cosϕ, y = ρ sinϕ, (9) becomes{
dρ
dτ = ρ2H(ϕ)− ρ3 cosϕ(cosϕ+ θ sinϕ)(cosϕ+ sinϕ)2,
dθ
dτ = ρG(ϕ) + ρ2 sinϕ(cosϕ+ θ sinϕ)(cosϕ+ sinϕ)2,

(10)

where

H(ϕ) = cosϕ {(cosϕ+ sinϕ)[(1− δ) cosϕ+ θ sinϕ]− s cosϕ sinϕ}
+ sin2 ϕ[(s− δ − r) cosϕ− (δ + r) sinϕ].

G(ϕ) = ρ sinϕ(cosϕ+ sinϕ)[(s− r − 1) cosϕ− θ sinϕ].
(11)

(i) When s ≤ r+ 1, G(ϕ) < 0 for 0 < ϕ < π
2 . So system (9) has no characteristic

direction in the first quadrant, which implies that all orbits of (4) starting from near
the origin move in the clockwise direction. Since dx/dτ |y=0 > 0 for 0 < x < 1− δ,
then, according to the dependence of continuity of solutions on the initial conditions,
all the orbits of (4) starting from near the origin in the interior of D1 move away
from the origin as t increases.

(ii) When s > r + 1 and θ(s − δ − r) > (δ + r)(s − r − 1), for (x, y) sufficiently
close to the origin, we have

dx

dt

∣∣∣∣
θy=(s−r−1)x

=
x {[θ(s− δ − r)− (δ + r)(s− r − 1)]− (s− r)(x+ y)}

s+ θ − r − 1
> 0,

and

dy

dt

∣∣∣∣
θy=(s−r−1)x

=
y

s+ θ − r − 1
[θ(s− δ − r)− (δ + r)(s− r − 1)] > 0.

Thus, according to dependence relationship of solutions of (4) on the initial values,
orbits of (4) initiating from near the line θy = (s − r − 1)x sufficiently close to
the origin move away from the origin. And, for points in the interior of D2, the
inequality (s− r − 1) cosϕ < θ sinϕ always holds, which implies G(ϕ) < 0. Similar
to the case s ≤ r + 1, (9) has no characteristic direction in the interior of D2 for
this case. Therefore, when s > r+ 1 and θ(s− δ − r) > (δ + r)(s− r− 1), orbits of
system (4) starting from near the origin in the interior of D2 move away from the
origin as t increases.
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According to Lemma 3.2, when s ≤ r + 1 or s > r + 1 and θ(s − δ − r) >
(δ + r)(s − r − 1), no orbit of (4) starting from the first quadrant approaches the
origin as t→ +∞.

Notice that when δ+r < s ≤ r+1, the inequality θ(s−δ−r) > (δ+r)(s−r−1)
holds. So equilibrium E∗ exists when δ + r < s ≤ r + 1. Therefore, according to
Lemma 2.2, we have the following conclusion about the global stability of E0 and
E∗.

Theorem 3.3. For system (4), when s ≤ δ + r, equilibrium E0 is globally stable
on the set D1; when s > δ+ r and θ(s− δ− r) > (δ+ r)(s− r− 1), equilibrium E∗

is globally stable in the interior of the set D1.

3.2. Heteroclinic and homoclinic orbits. According to the results obtained in
Section 3.1, the global dynamical behaviors of (4) have been understood clearly for
the following cases:

s ≤ δ + r; s > δ + r and θ(s− δ − r) > (δ + r)(s− r − 1).

Notice that the inequality θ(s − δ − r) > (δ + r)(s − r − 1) always holds for
δ + r < s ≤ r + 1, then, in the following, we consider dynamics of (4) in a case of
s > 1 + r and θ(s− δ − r) ≤ (δ + r)(s− r − 1).

We initially discuss the vertical isocline L of (4). Denote

g(x, y) := (1− δ)x2 + θy2 + (θ + 1− δ − s)xy,
then, it follows from dx/dt = 0 that the vertical isocline L of (4) is defined by
equation

g(x, y) = (x+ θy)(x+ y)2. (12)

Obviously,

θ(s−δ−r) ≤ (δ+r)(s−r−1)⇔ f(r) := r2−(s+θ−δ−1)r+[δ(1−θ)−s(δ−θ)] ≤ 0.

Since f(r) is a quadratic function of r, then f(r) ≤ 0 implies that the discriminant
of equation f(r) = 0 is positive, that is, ∆ := (θ + 1− δ − s)2 − 4θ(1− δ) ≥ 0.

Notice that the discriminant of equation g(1, u) = 0 of u is also ∆. On the other
hand, from θ(s− δ− r) ≤ (δ+ r)(s− r− 1) and s− δ− r > s− r− 1 > 0, we easily
have that θ < δ + r, i.e., r > θ − δ. So it follows from s > r + 1 that s > θ + 1− δ,
that is, θ+ 1− δ− s < 0. Thus, when s > r+ 1 and θ(s− δ− r) ≤ (δ+ r)(s− r−1),
equation g(1, u) = 0 has two distinct positive roots,

k± =
(s+ δ − θ − 1)±

√
∆

2θ
. (13)

Therefore, for this case, g(x, y) can be rewritten as g(x, y) = θ(y − k+x)(y − k−x).
Furthermore, (12) can be rewritten as

(y − k−x)(y − k+x) =

(
y +

1

θ
x

)
(y + x)2. (14)

By applying Lemma 7.1 in Appendix to (14), we have the following Lemma with
respect to the vertical isocline L of system (4).

Lemma 3.4. When s > r + 1 and θ(s − δ − r) ≤ (δ + r)(s − r − 1), the vertical
isocline L of (4) defined by (12) (or (14)) consists of two branches, which have the
following properties:
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(i) The two branches intersect with two coordinate axes at points (1 − δ, 0) and
(0, 1), respectively.

(ii) The two branches are located in the regions D3 =
{

(x, y) ∈ R2
+ : y < k−x

}
and D4 =

{
(x, y) ∈ R2

+ : y > k+x
}

, respectively.
(iii) One of the two branches in the region D3 is concave down, while the other

in the region D4 is concave left.

According to Lemma 3.4, the two branches of the vertical isocline L of (4) are
shown in Figure 1.

x

y

 

L

L

y = k−x

y = k+x

Figure 1. The vertical isocline L of (4) as s > r + 1 and θ(s −
δ − r) ≤ (δ + r)(s− r − 1).
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Figure 2. The heteroclinic and homoclinic orbits of (4). The
thick closed curve is a heteroclinic closed orbit, the thin curves
surrounded by the closed curve are all homoclinic orbits. Here,
θ = 0.2, δ = 0.4, r = 0.5, and s = 1.8. All the orbits of (4) starting
from the first quadrant approach the origin along the direction
ϕ = arctan 1.5 as t tends to positive infinity.
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Theorem 3.5. When s > r + 1 and θ(s − δ − r) ≤ (δ + r)(s − r − 1), for (4) we
have the following results:

(i) There is a heteroclinic closed orbit of (4) on the set D1;
(ii) There is a family of homoclinic orbits of (4), which are full of the domain

surrounded by the heteroclinic closed orbit(Fig. 2);
(iii) All the orbits of (4) starting from the first quadrant approach the origin

along the direction ϕ = arctan(s− r − 1)/θ as t tends to positive infinity.

Proof. (i) We initially prove that there is a heteroclinic orbit L1 of (4) in the interior
of D1, where limt→+∞(x(t), y(t)) = (0, 0) and limt→−∞(x(t), y(t)) = (1 − δ, 0) for
(x(t), y(t)) ∈ L1.

Since s > r + 1 implies s > δ + r, it follows from the Jacobian matrix of (4) at
E0 that E0 is a saddle. Hence, there is a saddle separatrix L1 of E0 in the first
quadrant, whose slope at E0 is

k1 =
(1− δ) + (s− δ − r)

(1 + θ)δ − 1− s
. (15)

It is easy to know that L1 is an unstable manifold of E0, that is, limt→−∞(x(t), y(t))
= E0 for (x(t), y(t)) ∈ L1.

By Lemma 3.4, the vertical isocline L of (4) passes through E0. And direct
calculation shows that the tangential slope of L at E0 is

k2 =
1− δ

(1 + θ)δ − 1− s
. (16)

Using θ(s− δ − r) ≤ (δ + r)(s− r − 1) yields

(1 + θ)δ − 1− s ≤ − T

s− δ − r
,

where T = (s − r − 1)2 + (1 − δ)[(δ + 3 + r)(s − r − 1) + (2 + r − δ)]. Obviously,
T > 0 for s > r + 1. So (1 + θ)δ − 1 − s < 0. Thus, it follows from (15) and (16)
that −1 < k1 < k2 < 0, which implies that the separatrix L1 near E0 is located
between the line x+ y = 1− δ and the vertical isocline L.

According to Lemma 2.1, when s > r+1, the separatrix L1 must pass through the
line y = (s−r−1)x/θ and enter the region D2 in a finite time. Again, s > r+1 and

θ(s− δ− r) ≤ (δ+ r)(s− r−1) imply 0 < k− <
s−(δ+r)
δ+r ≤ s−r−1

θ < k+, so it follows

from Lemma 3.4 that system (4) has no equilibrium in the setD2\{O}, then L1 must
approach the origin as t tends to positive infinity, that is, limt→+∞(x(t), y(t)) = O
for (x(t), y(t)) ∈ L1.

The above inference shows that L1 ⊂ D1 is a heteroclinic orbit of (4) connecting
equilibrium E0 and the origin O.

On the other hand, by Lemma 2.1 (i) the line segment L2 = {(x, y) : 0 <
x < 1 − δ, y = 0} is also a heteroclinic orbit of (4) connecting E0 and O, and
limt→−∞(x(t), y(t)) = O, limt→+∞(x(t), y(t)) = E0. Therefore, the closed curve
consisting L1, L2, E0 and O is a closed heteroclinic orbit of (4) on the set D1.

(ii) Since (4) has no positive equilibrium in the set D1 and ϕ = 0 is a character-
istic direction of (4) according to expression (11), it is easy to know that there is a
family of homoclinic orbits of (4) full of the interior of the heteroclinic closed orbit.

(iii) To further understand dynamics of (4) for s > 1 + r and θ(s − δ − r) ≤
(δ + r)(s − r − 1), by introducing the change of variables (x, y) → (x, u) for (4),
where u = y/x, then (4) becomes
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{
x′ = x

{
(1 + θu)[1− x(1 + u)]− δ − su

1+u

}
,

u′ = u {s− r − (1 + θu)[1− x(1 + u)]} .
(17)

We claim that the set

D̄ = {(x, u) : x ≥ 0, u ≥ 0, x(1 + u) ≤ 1− δ, u ≤ (s− δ − r)/θδ}
is positively invariant to (17).

In fact, it follows from (17) that

d[x(1 + u)]

dt
= x {(1 + θu)[1− x(1 + u)]− δ − (δ + r)u} .

When x(1 + u) > 1 − δ, [x(1 + u)]′ ≤ −xu [(1− θ)δ + r] < 0 for x > 0 and u > 0.

So any trajectory of system (17) starting from the set R2
+ \ D̂ will enter the set D̂

in a finite time, where D̂ =
{

(x, u) ∈ R2
+ : x(1 + u) ≤ 1− δ

}
.

Furthermore, from the first equation of (17), u′ ≤ u [(s− δ − r)− θδu] for x(1 +
u) ≤ 1− δ. Then it follows that lim supt→+∞ u(t) ≤ (s− δ − r)/θδ. Therefore, the
claim holds.

Again, system (17) has three nonnegative equilibria: Ō(0, 0), Ē0(1 − δ, 0), and
Ē1(0, (s−r−1)/θ) for this case. They are all on the boundary of the region D̄. From
the Jacobian matrices of (17) at equilibria Ō, Ē0 and Ē1, it is easy to get that Ō is an
unstable node, Ē0 is a saddle, and Ē1 is a stable node. Since (17) has no equilibrium
in the interior of the set D̄, the equilibrium Ē1 is globally stable on the set D̄ for this
case. Therefore, for (4), limt→+∞ x(t) = 0 and limt→+∞(y(t)/x(t)) = (s− r− 1)/θ.
It implies that all the orbits of (4) starting from the first quadrant approach the
origin along the direction ϕ = arctan(s− r− 1)/θ as t tends to positive infinity.

4. Mathematical analysis for system (4) with θ = 0. In this section, we
consider dynamical behaviors of the rescaled system (4) in the case θ = 0, which
implies that the fecundity of infected hosts is completely lost.

When θ = 0, system (4) becomes
dx
dt = x

[
(1− δ)− (x+ y)− sy

x+y

]
,

dy
dt = y

[
sx
x+y − (δ + r)

]
.

(18)

Similar to the previous argument for the case of 0 < θ ≤ 1, for system (18) the
first two items of Lemma 2.1 hold true, and so is Lemma 2.2. Wit respect to the
existence and stability of equilibria of system (18), we have the following results.

Theorem 4.1. System (18) always has the infection-free equilibrium E0(1− δ, 0),
which is globally stable on the set D1 when s ≤ δ + r; when δ + r < s < r + 1,
system (18) has a unique positive equilibrium E∗1 (x∗1, y

∗
1), which is globally stable in

the interior of the set D1, where

x∗1 =
(δ + r)(r + 1− s)

s
, y∗1 =

(s− δ − r)(r + 1− s)
s

.

In the following, we consider dynamics of system (18) for the case s ≥ r + 1.
When s ≥ r+1, it is easy to know that, in the first quadrant, the vertical isocline

of (18) defined by 1−δ = (x+y)+sy/(x+ y) is above its horizontal isocline defined
by sx = (δ+ r)(x+ y), and they intersect only at the origin. Especially for the case
s = r+1, they are tangent at the origin. So system (18) has no positive equilibrium
as s ≥ r + 1. And equilibrium E0 is a saddle as s ≥ r + 1.
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Notice that both x-axis and y-axis are solution curves of system (18). For system
(18) we can have the following results similar to Theorem 3.5.

Theorem 4.2. When s ≥ r + 1, system (18) has a heteroclinic closed orbit on
the set D1, and a family of homoclinic orbits is full of the interior the heteroclinic
closed orbit(Figure 3).

For system (18), function G(ϕ) defined in (11) becomes

G(ϕ) = ρ(s− r − 1) sinϕ cosϕ(cosϕ+ sinϕ),

then, when s > r+ 1, ϕ = 0 and ϕ = π/2 are the characteristic directions of system
(18); when s = r+ 1, G(ϕ) ≡ 0, which is the singular case. Therefore, for dynamics
of system (18) near the origin O we have

Corollary 1. When s > r + 1, any orbit of system (18) starting from the first
quadrant approaches the origin along the y-axis as t tends to positive infinity, and
any orbit leaving the origin moves along the x-axis as t increases(Figure 3(a));

however, when s = r + 1, along any direction except for ϕ = arctan s−(δ+r)
δ+r , there

is a unique orbit of system (18) which either tends to or leaves the origin(Figure
3(b)) as t increases.
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Figure 3. The heteroclinic and homoclinic orbits of (18). The
thick closed curve is a heteroclinic closed orbit, the thin closed
curves surrounded within the heteroclinic closed orbit are all ho-
moclinic orbits. Figure 3(a) corresponds to the case s > r + 1,
where δ = 0.4, r = 0.5, and s = 1.8. Figure 3(b) corresponds to the
case s = r + 1, where δ = 0.4, r = 0.5, and s = 1.5..

5. Dynamic behaviors of system (2). In sections 3 and 4, we have completely
analyzed the rescaled system (4). In this section, we will discuss dynamical behav-
iors of model (2) according to the above results, and explain these results epidemi-
ologically.

We first summarize the main results on system (4) in Table 1, which shows that
system (4) has four types of dynamical behaviors:
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For Case (C1) defined in Table 1, the global stability of the origin O implies that
hosts (including uninfected and infected hosts) go to extinction eventually. The
host extinction in such case is not due to the parasite infection but demographic
decline feature of hosts themselves.

For Case (C2), the global stability of E0 implies that parasite infection dies out
eventually in the host population, while uninfected host population approaches a
positive constant as t tends to infinity.

For Case (C3), the parasite infection keeps present persistently. The sizes of both
uninfected and infected hosts stabilize to positive constants eventually as t tends to
infinity.

For Case (C4), the parasite infection leads to host extinction due to parasite
regulation, whereas hosts do not extinct in the absence of parasite infection, which
is different from Case (C1). Here, the existence of homoclinic orbits shows that the
outbreak of parasite infection is possible. Whether the infected hosts can reproduce
may lead to various phenomena. For θ 6= 0, that is, the infected hosts can certainly
reproduce, by Theorem 3.5 we have limt→∞ y(t)/x(t) = (s − r − 1)/θ, which im-
plies that in the process of host extinction the ratio between sizes of infected and
uninfected hosts tends to a constant. However, for θ = 0, that is, the infected hosts
can not reproduce, the change of the ratio is complex according to Corollary 1.

To describe the obtained results with the original parameters in model (2) and
demonstrate them epidemiologically, we introduce three new parameters with the
original parameters:

R0 =
β

d+ α
, R1 =

θa

d+ α
, R2 =

a

d
.

Since 1/d and 1/(d + α) are the average periods that the uninfected and infected
hosts stay in their compartments, respectively. a and θa are the per capita maximum
birth rates of uninfected and infected hosts, respectively. Then R0 is referred to
as the basic epidemiological reproduction number of parasite infection, that is,
average of number of secondary infections induced by a single infected host in a
whole susceptives during infectious period. Whereas, R1 and R2 are the basic
demographic reproduction numbers of infected and uninfected hosts, respectively.

For simplicity, we define the following two parameters

γ =
d

d+ α
, R̄0 =

{
1 + γ(R2−1)

1−R1
, for R1 6= 1;

+∞, for R1 = 1,

where γ represents the ratio between the average life spans of infected and uninfected
hosts, R̄0 is a threshold determining the existence of hosts in the presence of parasite,
which will be understood in the following discussion.

By using expressions (5) and the new parameters defined above, the inequality
θ(s− δ − r) > (δ + r)(s− r − 1) is equivalent to the inequality

(R2 − 1)γ > (R0 − 1)(1−R1). (19)

Obviously, (19) holds true for R0 > 1 and R2 > 1 when R1 ≥ 1. However, when
R1 < 1, from (19) we have

R0 < 1 +
γ(R2 − 1)

1−R1
= R̄0.

Notice that, R1, R2γ and R2 satisfy the relations R1 ≤ R2γ < R2 since θ ≤ 1.
Thus, Table 1 can be re-expressed with Table 2, in which Case (C3) in Table 1 is
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Cases Conditions Results
(C1) δ ≥ 1 O is globally stable.
(C2) δ < 1, s ≤ δ + r E0 is globally stable.

(C3)
δ < 1, s > δ + r,
θ(s− δ − r) > (δ + r)(s− r − 1) E∗ is globally stable.

(C4) δ < 1, s > δ + r,
θ(s− δ − r) ≤ (δ + r)(s− r − 1)

O is globally attractive, and
there are a family of homoclinic
orbits of system (4).

Table 1. The complete global results of system (4).

Cases Conditions Results
(C1) R2 ≤ 1 O is globally stable.
(C2) R2 > 1, R0 ≤ 1 E0 is globally stable.

(C3)
(C31) R2 > 1, 1 ≤ R1 ≤ R2γ,

R0 > 1 E∗ is globally stable.

(C32)
R2 > 1 > R1, R1 ≤ R2γ,
1 < R0 < R̄0

(C4) R2 > 1 > R1, R1 ≤ R2γ,
R0 ≥ R̄0

O is globally attractive, and
there are a family of homoclinic
orbits of model (2).

Table 2. The complete global results of model (2)

Cases Conditions Results
(C1) R2 ≤ 1 O is globally stable.
(C2) R2 > 1, R0 ≤ 1 E0 is globally stable.
(C3) R2 > 1, 1 < R0 < 1 + γ(R2 − 1) E∗ is globally stable.

(C4) R2 > 1, R0 ≥ 1 + γ(R2 − 1)
O is globally attractive, and
there are a family of homoclinic
orbits of system (18).

Table 3. The complete global results of system (18).

then divided into two subcases, and accordingly,

x∗ =
K(R1 − 1)(R0 − R̄0)

R0[R1(R0 − 1) +R2γ]
, y∗ = K

(
1− 1

R0

)
(R1 − 1)(R0 − R̄0)

R1(R0 − 1) +R2γ
.

Especially, when θ = 0, that is, R1 = 0, Table 2 can become Table 3, where

x∗ =
K[γ(R2 − 1) + 1−R0]

R0R2γ
, y∗ =

K(R0 − 1)[γ(R2 − 1) + 1−R0]

R0R2γ
.

Since R2 ≤ 1 implies that the basic demographic reproduction number of unin-
fected hosts is not greater than 1, then, corresponding to Case (C1), the extinction
of hosts is natural in the absence of parasite infection. Therefore, in the following
we only discuss the case R2 > 1, which implies that hosts can persist forever in the
absence of parasite infection.

In order to understand the dependence of dynamics of model (2) on the param-
eters R0 and R1 for the given parameters R2 (R2 > 1) and γ (γ < 1), we partition
the feasible regions of R0 and R1 into some subregions according to Table 2. These
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regions are shown in Figure 4. Figure 4(a) and (b) correspond to two cases: R2γ ≥ 1
and R2γ < 1, respectively.

In Figure 4(a) we define the region Ω2 = {(R1, R0) : 0 ≤ R1 ≤ R2γ, 0 < R0 ≤ 1}
corresponding to Case (C2), the region Ω31 = {(R1, R0) : 1 ≤ R1 ≤ R2γ,R0 > 1}
corresponding to Case (C31), the region Ω32 =

{
(R1, R0) : 0 ≤ R1 < 1, 1 < R0 < R̄0

}
corresponding to Case (C32), and the region Ω4 =

{
(R1, R0) : 0 ≤ R1 < 1, R0 ≥ R̄0

}
corresponding to Case (C4). In Figure 4(b), Case (C31) does not exist for R1 ≤
R2γ < 1. The region Ω′2 = {(R1, R0) : 0 ≤ R1 ≤ R2γ, 0 < R0 ≤ 1} is associate with
Case (C2), the region Ω′32 = {(R1, R0) : 0 ≤ R1 ≤ R2γ, 1 < R0 < R̄0

}
is associ-

ated with Case (C32), and the region Ω′4 =
{

(R1, R0) : 0 ≤ R1 ≤ R2γ,R0 ≥ R̄0

}
is

related to Case (C4).

R2γ R2γ1 1R1 R1

R0
R0

1
1

(a) (b)

Ω2

Ω31

Ω32

Ω4

Ω′
2

Ω′
32

Ω′
4

l1
l1

l2

l2

l3
l3

l4
l4

Figure 4. The division of the feasible region of R0 and R1 corre-
sponding to the different dynamics of model (2), where the curve
l1 : R0 = 1 + γ(R2− 1)/(1−R1)(= R̄0); l2 : R1 = R2γ; l3 : R1 = 1;
and l4 : R0 = 1. Here, Figure 4(a) corresponds to the case R2γ ≥ 1;
Figure 4(b) corresponds to the case R2γ < 1.

In the region Ω2(or Ω′2), the basic reproduction number of parasite infection R0

is less than unity, which implies the parasite infection dies out eventually in the
host population. The uninfected host population tends to K(a− d)/a as t tends to
infinity.

In the regions Ω31,Ω32 and Ω4(or Ω′32 and Ω′4), the basic reproduction number
of parasite infection is greater than 1, which indicates that the parasite infection
keeps persistently. However, for the different values of R1, there are some essential
differences between the associated dynamical behaviors of (2).

In the region Ω31, R1 ≥ 1 implies that infected hosts can reproduce sufficient
uninfected hosts to maintain the supply of uninfected hosts being infected. In such
case, parasite infection can not regulate the host population even if R0 is sufficiently
large. Whereas, in Ω32(or Ω′32), R1 < 1 implies that infected hosts’ reproduction
is not large enough to induce various dynamics, depending on relation of R0 and
R1. In such scenario, parasite infection can not regulate the host population unless
R0 ≥ R̄0.

In the region Ω4(or Ω′4) where R0 ≥ R̄0 and R1 < 1, a combination of large
epidemiological reproduction number and small demographic reproduction number
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of infected hosts results in ultimate extinction of both uninfected and infected hosts
due to parasite regulation. However, according to Theorem 3.5 and Corollary 1,
the trend of the extinction of uninfected and infected hosts is different for the cases
R1 6= 0 and R1 = 0. When R1 6= 0,

lim
t→∞

y(t)

x(t)
=

1

R1
[R0 − 1− γ(R2 − 1)] ,

which implies that the extinction of uninfected and infected hosts is along certain di-
rection. Whereas, when R1 = 0, the limit (i.e., the direction of extinction) depends
on the initial values of (2).

We initially consider the effect of R0 on dynamics of the system for various
R1. When R1 < 1, the dynamics of system (2) go through extinction of parasite
infection (i.e., global stability of disease-free equilibrium for R0 ≤ 1), persistence
of both parasite infection and host population (i.e., global stability of the endemic
state for 1 < R0 < R̄0), and hosts extinction while infection persistence (i.e., global
attractiveness of the origin forR0 ≥ R̄0) as the epidemiological reproduction number
R0 increases. Whilst R1 ≥ 1, the first two kinds of dynamics of system (2) certainly
occur, but the third kind - parasite regulation does not happen. For fixed R0 (either
R0 < 1 or 1 < R0 < 1 + γ(R2 − 1)), global extinction or persistence of parasite
infection is independent on R1. However, for relatively large R0 (R0 ≥ 1+γ(R2−1)),
increasing R1 would change the dynamics of system (2) from host extinction to host
persistence while keeping infection present.

6. The effect of R0 on the equilibrium level of infected hosts. For classical
parasite-host models, virus dynamical models and epidemic models, the level of
infected hosts(virus, individuals) often increases with increase of the associated basic
reproduction number when the positive equilibrium is feasible. But, for system (2)
the dependence of the level of infected hosts on the associated basic reproduction
number is not such simple. In the following we consider the change of the equilibrium
level of infected hosts with the basic reproduction number of parasite infection(R0).

To show the dependence of the level of infected hosts y∗ on R0, we denote y∗ =
y∗(R0), then direct calculation shows that

dy∗

dR0
=

Kφ(R0)

R2
0 [R1(R0 − 1) +R2γ]

2 ,

where
φ(R0) = c0(R1)R2

0 + c1(R1)R0 + c2(R1),
c0(R1) = R2

1 − (1− γ)R1 − γR2,
c1(R1) = 2R1 [(1− γ) + (R2γ −R1)] > 0,
c2(R1) = (γR2 −R1) [(1− γ) + (R2γ −R1)] > 0,

with R1 ≤ R2γ and γ < 1 being used. It is easy to see that there exists a unique
positive zero of quadratic function c0(R1), R̄1 = [(1− γ) +

√
(1− γ)2 + 4R2γ]/2,

such that c0(R1) < 0 as 0 ≤ R1 < R̄1 and c0(R1) > 0 as R1 > R̄1. Since
c0(1) = γ(1−R2) < 0 for R2 > 1, it follows that R̄1 > 1.

Further, c1(R1) > 0, c2(R1) > 0, and φ(R0) is a quadratic function of R0, then,
when c0(R1) ≥ 0, φ(R0) > 0 for R0 > 1; when c0(R1) < 0, function φ(R0) has a
unique zero R̄′0 greater than 1 since φ(1) = (R2 − 1)R2γ

2 > 0 for R2 > 1, which
implies that φ(R0) > 0 for 1 < R0 < R̄′0 and φ(R0) < 0 for R0 > R̄′0. Therefore,
according to the sign of function c0(R1), we have that, when R1 ≥ R̄1, dy∗/dR0 > 0
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regions of parameters existence of y∗ effect of R0 on y∗

R1 ≤ R2γ < 1 Case (C32) Figure 5(a)

1 ≤ R2γ < 2− γ
R1 < 1 Case (C32) Figure 5(a)

1 ≤ R1 ≤ R2γ Case (C31) Figure 5(b)

R2γ ≥ 2− γ
R1 < 1 Case (C32) Figure 5(a)

1 ≤ R1 < R̄1 Case (C31) Figure 5(b)
R̄1 ≤ R1 ≤ R2γ Case (C31) Figure 5(c)

Table 4. Classification of the existence of E∗(x∗, y∗) and the
effect of R0 on y∗.

for R0 > 1; when 0 ≤ R1 < R̄1, dy∗/dR0 > 0 for 1 < R0 < R̄′0, and dy∗/dR0 < 0
for R0 > R̄′0.

On the other hand, c0(R2γ) = R2γ(R2γ+γ−2), then R̄1 ≤ R2γ as R2γ+γ−2 ≥
0, and R̄1 > R2γ as R2γ+γ−2 < 0. Since the existence of the positive equilibrium
E∗ corresponds to cases (C31) and (C32) in Table 2, then, for R0 > 1 and R2 > 1,
we list a table (Table 4) to classify the feasible regions of parameters and the
associated effect of R0 on the level of infected hosts which are shown in Figure 5.
Figure 5(a) shows the fact that y∗ increases for 1 < R0 < R̄′0 and decreases for
R̄′0 < R0 < R̄0 < +∞, and limR0→R̄0

y∗ = 0; Figure 5(b) is similar to Figure 5(a),

but the limit of y∗ as R0 → R̄0 is K(R1 − 1)/R1; Figure 5(c) represents that y∗

increases monotonously, and limR0→∞ y∗ = K(R1 − 1)/R1.
Comparing Figures 5 (a), (b) and (c) suggests the common feature is that the

equilibrium level of the infected host (y∗) increases monotonously as R0 increases
initially. This can be easily understood epidemiologically. However, as R0 keeps
increasing various trends of y∗ can observed, depending on R1. In fact, Figures 5
(a), corresponding to R1 < 1, shows the more R0 and the less the equilibrium level
of the infected hosts. That is because the size of uninfected hosts reproduced by
infected ones is small, which leads to the shortage of uninfected hosts. Then large R0

causes more infected hosts and consequently more disease-induced death, and hence
host extinction due to parasite infection may happen. For large R1 (R1 ≥ R̄1), the
infected hosts can reproduce sufficient uninfected ones to not only maintain supply
of resource being infected but also balance disease-induced death, which suggests
that y∗ persistently increases and stabilizes at a fixed level with increasing R0, as
shown in Figures 5 (c). For middle values of R1 (1 ≤ R1 ≤ min

{
R2γ, R̄1

}
), the

equilibrium level of the infected hosts initially reaches a maximum and then decline
to a certain level as R0 increases. In addition, it follows from Figure 5 (a) and (b)
that R̄0 is a threshold in the sense of monotonicity of y∗.

7. Conclusion and discussion. In this paper, by rescaling parasite-host model
(2), we mathematically analyzed the global dynamics on the feasible region, and
theoretically proved the existence of heteroclinic and homoclinic orbits which implies
that the infection may break out in the process of host extinction.

According to the obtained results on model (2), we demonstrated the effect of the
basic epidemiological reproduction number (R0) and the demographic reproduction
number of infected hosts (R1) on the dynamics of the model and the level of infected
hosts. Here, we obtained two new findings: one is that a combination of R0 and
R1 may cause the complexity of dynamics of the model, the other is that, for the
different range of R1, variation in the equilibrium level of the infected host (y∗) with
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R0

y∗ y∗ y∗

R0R0

y∗ y∗
(a) (b) (c)

1 1 1

Figure 5. Variation in the equilibrium level of the infected hosts
y∗ with R0 for (a): R1 < 1; (b): 1 ≤ R1 < min

{
R2γ, R̄1

}
; (c):

R1 ≥ R̄1.

R0 may not be monotone, which is different from the classical models accepted by
mathematicians and epidemiologists. In addition, when the fecundity of infected
hosts is lost fully (i.e., θ = 0), the appearance of the singular case implies that the
trends of host extinction may depend on the initial state of the model.

Note that in our model the standard incidence function βxy/(x+y) plays an im-
portant role in coming up with rich dynamics from the point view of mathematics.
In fact, standard incidence is indeed based on the epidemiological meanings, where
finite contacts of an individual making in a unit time are observed due to finite and
often slow movement in large populations, and more details can be found in [2]. We
model the growth of host population with logistic growth function to describe the
density-constraint growth within host population (or intra-species competition for
resources). Hence, our model is reasonable to describe the realities in both biology
and epidemiology. Further, our main results show that parasite infection could die
out or persist in certain conditions, which is similar to those for other simple models
[8]. However, it is interesting to note that our model (2) exhibits some novelties
because of introduction of standard incidence. In particular, host extinction can
be induced by either demographic decline feature of hosts themselves or parasite
regulations. During host going to extinction parasite infection may outbreak and
persist eventually, which is different from that for the models with bilinear inci-
dence. Hence, the model examined here describes biological/epidemiological phe-
nomena more reasonably and our conclusions show the dynamics and the biological
implications more extensively.

Appendix.

Lemma 7.1. For m > n > 0 and p > 0, the part of curve L̄ in the first quadrant
defined by equation

(y −mx)(y − nx) = (y + px)(y + x)2 (20)

consists of two branches, which are in the regions D̄1 =
{

(x, y) ∈ R2
+ : y < nx

}
and

D̄2 =
{

(x, y) ∈ R2
+ : y > mx}, respectively. Except for the origin, the two branches

intersect with two coordinate axes at points (mn/p, 0) and (0, 1), respectively. One
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of the two branches in the region D̄1 is concave downwards, the other in the region
D̄2 is concave leftwards.

Proof. From (20), the polar coordinates equation of the curve L̄ is given by

ρ =
(sinϕ−m cosϕ)(sinϕ− n cosϕ)

(sinϕ+ p sinϕ)(sinϕ+ cosϕ)2
.

Since polar radius is nonnegative, then, it is easy to see that in the first quadrant
L̄ consists of two branches, which correspond to 0 < ϕ < arctann and arctanm <
ϕ < π/2, respectively. ϕ = arctann and ϕ = arctanm represent two straight lines
y = nx and y = mx, respectively, so the two branches are located in the regions D̄1

and D̄2, respectively.
Direct calculation shows that, except for the origin, the two branches intersect

with two coordinate axes at points (mn/p, 0) and (0, 1), respectively.
Using Maple software, the second derivative of implicit function y = y(x) defined

by (20) is given by

d2y
dx2 = − 2mn−2y−2px−4(y+x)p

2y−nx−mx−2(y+x)(y+px)−(y+x)2

+
2[m(y−nx)+(y−mx)n+2(y+x)(y+px)+(y+x)2p][m+n+4y+2px+2(y+x)p−2x]

[2y−nx−mx−2(y+x)(y+px)−(y+x)2]2

− 2[m(y−nx)+(y−mx)n+2(y+x)(y+px)+(y+x)2p]
2
(1−3y−px−2x)

[2y−nx−mx−2(y+x)(y+px)−(y+x)2]3
.

From (20), we have

p =
1

x

[
(y −mx)(y − nx)

(y + x)2
− y
]
.

Substituting it into the second derivative yields

d2y

dx2
=

2(y + x)(y −mx)(y − nx)T2

x2T 3
1

,

where

T1 = (y + x)3 − x[(1 +m)(y − nx) + (1 + n)(y −mx)],
T2 = x(y + x)3 [(1 +m)(y − nx) + (1 + n)(y −mx)]

−(y −mx)(y − nx)
[
(1 +m)(1 + n)x2 − (y + x)(2y −mx− nx)

]
−(y + x)2

[
(y −mx)2 + (y − nx)2

]
.

n < m implies that y < mx as y < nx, so T1 > 0 and T2 < 0 for y < nx. Hence,
d2y/dx2 < 0 for y < nx. This implies that the part of the curve L̄ in the region D̄1

is concave downwards.
To show that the part of the curve L̄ in the region D̄2 is concave leftwards, we

make the change of variables:

x =
mn

p
v, y =

mn

p
u,

then (20) becomes (
v − u

m

)(
v − u

n

)
=

(
v +

u

p

)
(v + u)2. (21)

Since 1/n > 1/m, then, according to the above inference for the case y < nx, the
part of the curve L̄′ defined by (21) in the region D′2 =

{
(u, v) ∈ R2

+ : v < u/m
}

is
concave towards the u-axis.
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Notice that v < u/m is equivalent to y > mx, then the region D′2 on the (u, )v-
plane corresponds to the region D̄2 on the (x, y)-plane. Thus, the part of the curve
L̄ in the region D̄2 is concave leftwards.
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