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Abstract. In this paper a mathematical model of the population dynamics of
a bacteriophage-sensitive and a bacteriophage-resistant bacteria in a chemostat

where the resistant bacteria is an inferior competitor for nutrient is studied.
The focus of the study is on persistence and extinction of bacterial strains and

bacteriophage.

1. Introduction. Mathematical models of viral predation on bacteria (bacterio-
phagy) have been extensively studied since the pioneering work of Campbell [7]
and Levin, Stewart and Chao [16]. Recent work appears in both the ecological
[15, 28, 19, 6] and the biomathematical literature [1, 2, 3, 4, 20, 22, 17]. However, a
mathematically rigorous study providing sharp conditions for persistence/extinction
of both the virus and the bacteria has only very recently appeared and this study,
see [22], considered only the simplest scenario consisting of a single phage-sensitive
bacterial population and a population of virulent phages in the setting of a chemo-
stat.

Experimental studies of the interaction of bacteria and phages typically result
in the appearance of various mutants of both bacteria and phage. For example,
experimental studies by Chao, Levin, and Stewart [8] of bacteria-phage interaction
in continuous culture (chemostat), using a strain of E. coli bacteria and phage
T7 resulted in two distinct outcomes. In one of these, a mutant strain of E. coli,
resistant to phage infection, evolved within a few hundred hours and, later, a mutant
phage evolved that was capable of infecting both the original E. coli strain and the
resistant strain. In other replicates of the experiment, the same mutants appeared
as before, and in addition, a mutant bacterial strain evolved that was resistant to
both phage strains. Pairwise competition experiments between the phage-sensitive
bacterial strain and the resistant mutant strains in a virus-free chemostat, described
in [8], showed that the resistant mutants were inferior competitors relative to the
susceptible strain.

Bohannan and Lenski [6] note that bacterial resistance is generally due to loss
or modification of the receptor molecule to which a phage binds and that often this
receptor is involved in bacterial metabolism. This explains the observed tradeoff
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between resistance and competitive fitness. Based on experimental findings, Bohan-
nan and Lenski stress that establishment of the resistant bacterial population does
not cause extinction of the sensitive population or the extinction of phage provided
that, (1) the resistant mutant suffers some cost of resistance in the form of reduced
competitive ability for limiting resource with respect to the sensitive strain, and (2)
the mutant’s resistance to phage infection is absolute.

Our aim in this paper is to build on the work in [22] by studying a mathemati-
cal model of the interaction of a phage-sensitive bacteria, a virulent phage, and a
fully phage-resistant bacterial mutant which is an inferior competitor for nutrient
relative to the phage-sensitive bacteria, in a chemostat setting. We aim to confirm
the predictions of Bohannan and Lenski that sensitive bacteria and phage persist
in the presence of resistant bacteria provided (1) and (2) hold. Furthermore, we
examine whether (1) and (2) are sufficient for the persistence of a resistant bacte-
rial strain. Persistence is used here in the technical sense typically referred to as
uniform persistence or permanence, as described in [21].

Our main analytical findings based on (1) and (2) are the following:

1. Sharp criteria for persistence/extinction of the sensitive bacteria, obtained for
a model that did not include a resistant mutant in [22], are unaffected by the
presence of the resistant bacteria. The same is true for persistence/extinction
of the phages. Therefore, the evolution of a resistant bacteria cannot cause
extinction of sensitive bacteria or phages.

2. A necessary condition for the resistant mutant to persist is that the growth
rate advantage of the sensitive organism be, on average, balanced by the phage
adsorption rate to sensitive bacteria.

3. Sufficient conditions for persistence of the resistant organism in the chemostat
are that, (i) when it is absent, the phages and sensitive bacteria coexist in a
globally stable equilibrium, and (ii) the resistant bacteria can grow at the
equilibrium nutrient level set by this equilibrium.

4. If the resistant organism suffers no growth rate disadvantage relative to the
sensitive bacteria, then the phages are eliminated.

Obviously, our sufficient conditions for persistence of the resistant bacteria are
not optimal and they are difficult to verify. Numerical simulations suggest that
these conditions are satisfied for a large set of parameter values. We show that the
conditions for persistence of the resistant bacteria are met when the latent period
is sufficiently short.

It is well-known that predator-prey models, like those used to model phages and
bacteria, can lead to coexistence of predator and prey in a stable periodic solution
[1, 2, 4, 20] as well as a stable equilibrium. We find this to be the case in our model
as well. Numerical simulations and Hopf bifurcation calculations reveal attracting
periodic orbits with and without the resistant bacteria. These may oscillate strongly
such that bacteria and phages reach perilously low densities in parts of the cycle
and quite large levels at other times. Such strong oscillations indicate that while
phages and bacteria may persist in a technical mathematical sense, they are unlikely
to survive over long periods due to demographic stochasticity.

Our numerical simulations reveal interesting phenomena. We simulate the be-
havior of our ecosystem when all parameters except for the cost of resistance born
by the resistant bacteria and the virulence of the phages, as measured by the burst
size, are held constant. Then, fixing the cost of resistance, we find that the largest
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interval of burst size for which the resistant bacteria can persist in a stable equilib-
rium with phages and sensitive bacteria occurs for an intermediate value of the cost
of resistance. For burst sizes beyond the upper limit of this interval, oscillations
develop and their amplitude increases. Furthermore, if the cost of resistance is fixed
at a low value (20%) and virulence allowed to vary over a wide range, we find the
chemostat is dominated by bacteria, a majority being resistant and a minority being
sensitive, whose combined density is essentially at levels typical of the phage-free
system. Bacterial densities are controlled by nutrient levels which are reduced to
very low levels. If the cost of resistance is fixed at a relatively large value (60%)
and virulence ranges over a wide range, we observe that bacteria are controlled by a
much more numerous phage population, resistant bacteria are non-existent or rare
depending on virulence, resource is high and goes unused, and strong oscillations
may be present.

2. The model. Our model, an elaboration on the one in [22], includes phage P ,
phage-sensitive bacteria S that are uninfected, infected bacteria I, phage-resistant
bacteria M , and nutrient R supporting bacterial growth in a well-stirred chemostat
with dilution rate D and nutrient supply concentration R0. The resistant organism
is assumed to enjoy complete resistance to phage infection.

R′(t) = −DR(t)︸ ︷︷ ︸
dilution

+DR0︸︷︷︸
input

− γSfS(R(t))S(t)︸ ︷︷ ︸
consumption by S

− γMfM (R(t))M(t)︸ ︷︷ ︸
consumption by M

,

S′(t) = −DS(t)︸ ︷︷ ︸
dilution

+ fS(R(t))S(t)︸ ︷︷ ︸
growth

− kS(t)P (t)︸ ︷︷ ︸
adsorption

,

M ′(t) = −DM(t)︸ ︷︷ ︸
dilution

+ fM (R(t))M(t)︸ ︷︷ ︸
growth

I ′(t) = −DI(t)︸ ︷︷ ︸
dilution

+ kS(t)P (t)︸ ︷︷ ︸
adsorption

− k
∫ ∞

0

e−DτS(t− τ)P (t− τ)dν(τ)︸ ︷︷ ︸
lysis

,

P ′(t) = −DP (t)︸ ︷︷ ︸
dilution

− kS(t)P (t)︸ ︷︷ ︸
adsorption

+ k

∫ ∞
0

e−Dτ b(τ)S(t− τ)P (t− τ)dν(τ)︸ ︷︷ ︸
lysis

.

(1)

Yield constants γS and γM may be scaled out by using auxiliary variables S̃ =

γSS, M̃ = γMM , Ĩ = γSI, P̃ = γSP and k̃ = k/γS . Therefore, we will hereafter
assume that:

γi = 1, i = S,M (2)

fS(R) and fM (R) are the nutrient uptake functions for microbes S and M . They
are assumed to be continuously differentiable functions, vanishing at zero nutrient,
with positive derivative. We assume, for simplicity, that infected bacteria do not
uptake nutrient. As we do not wish to waste effort on trivial cases, we make the
following hypotheses:

(F1) fi(R0) > D, i = S,M .
(F2) fS(R) > fM (R), 0 < R ≤ R0.

Therefore, phage-sensitive bacteria can survive in the chemostat with nutrient feed
concentration R0 and dilution rate D in the absence of phages and resistant organ-
isms. The resistant bacteria suffers a cost of resistance to phage infection in the
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form of a reduced growth rate. It is assumed that its growth rate is not so reduced
as to be unable to survive in the chemostat with nutrient feed concentration R0

and dilution rate D in the absence of the sensitive strain because then it cannot
survive in the presence of sensitive bacteria, with or without the presence of phages.
Indeed, if either of the inequalities in (F1) are reversed, the corresponding bacteria
cannot survive in the chemostat.

A popular choice of fS and fM are Michaelis-Menten type functions given by
fi(R) = viR

ui+R
where vi, ui > 0 for i = S,M . Bohannan and Lenski [6] note that

bacterial resistance is generally due to loss or modification of the receptor mole-
cule to which a phage binds and that often this receptor is involved in bacterial
metabolism. It is plausible that uS < uM or that vM < vS or both. For mathemat-
ical simplicity, we will take fM = (1 − ε)fS for our numerical simulations, where
ε ∈ (0, 1) represents the cost of resistance.

Following [22], we describe variation in the latent period by a cumulative prob-
ability distribution η(τ). To be precise, for τ > 0, η(τ) is the probability that an
infected bacterium lyses during the time period [0, τ ] following infection. Mathemat-
ically, η(τ) = ν([0, τ ]) where ν is a probability measure on [0,∞) so

∫∞
0
dν(s) = 1.

b(τ) is the average burst size of phage with latent period τ . Generally an infected
bacterium releases more than 50 phage particles [9]. The average number of new
phages eventually released by an infected bacterium, B, (taking into account that
it could be washed out before doing so) is given by the Laplace transform of the
measure bν evaluated at D,

B =

∫ ∞
0

e−Dτ b(τ)dν(τ). (3)

We also assume there exists b0 > 1 such that b(τ) ≤ b0 for all τ ≥ 0.
Our theoretical results are derived for a general latent period distribution η and

burst-size function b(·); however, for our numerical simulations, we choose a gamma-
distributed latent period and a constant burst size, independent of the length of
the latent period. This allows the reduction of our model to ordinary differential
equations by the “linear chain trick”.

As shown in [22], the initial data for I must satisfy a constraint in order for
solutions to be positive. Moreover, the differential equation for I can be integrated
directly:

I(t) =

∫ ∞
0

(∫ t

t−τ
e−D(t−r)kS(r)P (r)dr

)
dν(τ)

=

∫ ∞
0

F(s)e−DskS(t− s)P (t− s)ds

where F is the sojourn function for the latency stage [27, Sec.12.1], i.e.,

F(s) =

∫ ∞
s

dν(τ) = 1− η(s) (4)

is the probability that an infected bacterium has not yet lysed s time units after
infection. As a consequence of (4), the equation for I can be dropped from our
system. However, it will occasionally be useful to include it. For example,

X(t) = R(t) + S(t) +M(t) + I(t) + P (t)/b0

satisfies the differential inequality

X ′ ≤ D(R0 −X), (5)
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and consequently

X(t) ≤ X(0)e−Dt +R0(1− e−Dt). (6)

Since (1) involves a potentially infinite distributed delay, the phase space must
be chosen very carefully. See e.g., [13] and [11]. Here we let B = C0×Cγ×C0×Cγ .
Here C0 is the space of all constant functions on (−∞, 0]. And Cγ is defined by
Cγ = {ϕ ∈ C((−∞, 0],R) : lim

s→−∞
eγsϕ(s) exists}, where γ > 0 is a fixed number.

To make the integral in the differential equation of P (t) in (1) valid, we also need
γ < D

2 . A norm on Cγ is defined as |ϕ|γ = sup{eγs|ϕ(s)| : −∞ < s ≤ 0}. B
is given the maximum norm ‖ · ‖. All biologically reasonable solutions should be
non-negative so we take the state space to be the positive cone B+ in B. More
precisely, the initial data is given by x = (R(0), S0,M(0), P0) ∈ B+.

More importantly, by using the framework developed in [13] and [11], we can
prove the local existence and uniqueness of solutions. With these preliminaries and
Theorem 9.1 in [12, Chap. 12], we can prove (1) has a compact global attractor K:

Theorem 2.1. Solutions of (1) corresponding to nonnegative initial data in B+

exists for all t ≥ 0 and are nonnegative. Moreover, there exists a maximal compact
invariant set K ⊂ B+ such that K attracts all bounded sets in B+.

3. Equilibria and local stability. Equilibria of (1) and their stability properties
are studied in this section. As the infected cell density is determined by the other
densities via (4), the state vector is taken as (R,S,M,P ).

Our assumptions (F1)–(F2) ensure that three equilibria without phage always
exist:

E0 = (R0, 0, 0, 0), ES = (RS , S, 0, 0), EM = (RM , 0,M, 0, ),

where fi(Ri) = D, i = S,M , S = R0 − RS , and M = R0 − RM . E0 and EM are
unstable; E0 is unstable to colonization by either S or M and EM is unstable to
invasion by S which can out compete M in the absence of phage by our assumptions
(F1)–(F2).

As noted in [22], the stability of ES is determined by the “Phage Reproduction
Number”. Define the “Phage Reproduction Number at bacteria density S” by:

PRN(S) =
BkS

D + kS
. (7)

The Phage Reproduction Number is PRN = PRN(S), the evaluation of PRN(S)
at S = S.

Lemma 3.1. ES is asymptotically stable if PRN < 1 and unstable if PRN > 1.

There are two more possible equilibria of (1) which include phage:

ESP = (R∗, S∗, 0, P ∗), ESMP = (RM , S
∗, M̂ , P̂ ).

It is intuitively evident that the total bacteria population cannot exceed the level

S supported in ES : M̂ + S∗ ≤ S. See Lemma 7.2.
Necessary and sufficient conditions for existence and positivity of equilibria are

summarized in the table below.
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Equilibrium existence conditions stability

ER = (R0, 0, 0, 0) none unstable by (F1)

ES = (RS , S, 0, 0) fS(R0)
D > 1 see Lemma 3.1

EM = (RM , 0,M, 0) fM (R0)
D > 1 unstable by (F2)

ESP = (R∗, S∗, 0, P ∗) PRN = BkS/(D + kS) > 1 see Theorem 3.2

ESMP = (RM , S
∗, M̂ , P̂ ) MRN = fM (R∗)/D > 1 unknown

The phage-susceptible bacterial density S∗ at ESP = (R∗, S∗, 0, P ∗) is character-
ized as the unique solution of PRN(S∗) = 1. R∗ < R0 satisfies DR∗+ fS(R∗)S∗ =
DR0 and kP ∗ +D = fS(R∗).

The resistant bacteria M can survive only in the presence of the phage so it is
natural to ask whether M can invade ESP . This is easily seen to be the case if and
only if

MRN = fM (R∗)/D > 1, (8)

where the nutrient level R∗ is determined by ESP . Indeed, ESMP exists and is
positive if and only if MRN > 1. Similarly as for PRN , MRN is the resistant
bacteria’s reproductive number in the ESP environment.

Notice that the nutrient density at ESMP is the same as at EM and ESMP has
the same density of sensitive bacteria as ESP . Phage density is determined by

D + kP̂ = fS(RM ) and density of the resistant organism satisfies D(RM + M̂) +
fS(RM )S∗ = DR0.

It is very difficult to give criteria for stability and instability of ESP and even more
so for ESMP . However, stability properties of ESP and the existence of ESMP are
linked. We say an equilibrium is linearly asymptotically stable if all characteristic
roots of the characteristic equation associated to the linearized system have negative
real part; it is said to be linearly unstable if a characteristic root has positive real
part. The next result is a consequence of the fact that the characteristic equation
associated to ESP factors with one factor representing the linearization of the system
without resistant bacteria and a simple linear factor measuring potential invasibility
by the resistent bacteria.

Theorem 3.2. ESP is linearly asymptotically stable for (1) if it is linearly asymp-
totically stable for the system without M and if MRN < 1. It is linearly unstable
for (1) if it is linearly unstable for the system without M or if MRN > 1.

It is well-known that ESP can lose stability through a supercritical Hopf bifur-
cation for the system without M (see [4, 20]) for the special case of fixed latent
period duration.

Figure 1 and Figure 2 illustrate the regions of stability of ESP , represented by
a pentagram, and ESMP , represented by a triangle, and the existence of periodic
orbits arising from Hopf bifurcation from these equilibria as two key parameters,
ε and b, are varied. The burst-size distribution is assumed constant (b(τ) ≡ b) so
that b represents a measure of phage virulence and resistent bacteria are assumed
to grow at rate fM = (1 − ε)fS so ε represents the cost of phage-resistance. All
other parameters are fixed. The latent period obeys a gamma distribution, allowing
us to use the linear chain trick to rewrite the system as a system of ODEs. See
section 5 for more details of the simulations. A solid symbol (pentagram or triangle)
indicates a locally asymptotically stable equilibrium and a hollow one indicates it
is unstable. Circles are periodic orbits, a solid circle represents a stable orbit and
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Figure 1. Equilibria, periodic orbits, and their stability in ε-b
parameter space. Small ε. Recall that ε is the fitness cost of
resistance to phage while b is the number of phage released when
an infected cell lyses. Black fill indicates stable equilibrium, unfilled
indicates unstable equilibrium; solid loop indicates stable periodic
orbit, dashed loop indicates an unstable one.

Figure 2. Equilibria, periodic orbits and their stability in ε-b pa-
rameter space. Blow-up of large ε.

the dashed line means it is unstable. In order to more clearly display the dynamics
for larger values of ε, we use two figures; Figure 2 is a continuation of Figure 1 for
larger ε and the ε-scale is expanded.

We proceed to describe the curves appearing in Figure 1 and Figure 2. The
horizontal line T1 in both figures is determined by PRN = 1; for values of b below
it, phage cannot survive so neither ESP nor ESMP exists. ESP exists above T1

and it is stable in the region immediately above T1. The other horizontal line, i.e.,
H1, is the line along which a periodic orbit appears with M = 0 as a result of a
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Hopf bifurcation from ESP as b is varied with fixed ε. It is computed numerically
using Mathematica to find purely imaginary roots of the characteristic equation
associated with ESP for the system with M = 0, so it is independent of ε. The
increasing curve T2 above T1 in Figure 1 is determined analytically by MRN = 1,
that is, by (1− ε)fS(R∗)/D = 1. ESMP bifurcates from ESP as b is increased with
fixed ε such that (ε, b) crosses above T2. In Figure 1, ESP is stable below T2 and
unstable above it while ESMP becomes stable, at least near the curve. Notice that
in Figure 2, H1 meets T2. At this point, which we designate Q = (εc, bc), the steady
state and Hopf bifurcation coincide. At Q, the characteristic equation associated
with ESP has a pair of purely imaginary roots and a zero root. ESMP may undergo
a Hopf bifurcation as well and curve H2 in Figure 1, terminating at Q, is determined
by this bifurcation. It is also computed numerically using Mathematica to find, for
each fixed ε, the critical value of b such that the characteristic equation associated
with ESMP has purely imaginary roots. Remarkably, H1 and H2, the curves along
which ESP and ESMP undergo Hopf bifurcation from their respective equilibria,
and the curve T2, along which ESMP bifurcates from ESP , meet at Q = (εc, bc).
Unfortunately, the fold-Hopf bifurcation that might be expected at this point is
degenerate.

If ε < εc is fixed and b is increased, according to the figures, bifurcations and
exchanges of stability occur as follows ES → ESP → ESMP → POM where POM
denotes a stable periodic orbit with M > 0 bifurcating from ESMP . Here, we have
ignored the unstable Hopf bifurcation from the unstable ESP . If εc < ε is fixed and
b is increased, according to Figure 2, bifurcations and exchanges of stability occur
as ES → ESP → PO where now PO denotes a stable periodic orbit with M = 0
bifurcating from ESP . However, as b is increased still further, PO becomes unstable
to “invasion by M” and a periodic orbit with small M -component bifurcates from
PO. This bifurcation occurs as the Floquet exponent of PO,

1

T

∫ T

0

(1− ε)fS(R(t))−Ddt,

changes sign. This “lift-off” bifurcation is described in Chapter 3, sec. 6 of [24] for
a food chain model. The curve T3, along which this Floquet multiplier vanishes,
also meets at Q. Finally, the vertical line V in Figure 2 represents the value of
ε at which (F1) ((1 − ε)fS(R0) > D) is violated. For values of ε exceeding this
threshold, M could not survive alone in the chemostat.

The curves described above partition parameter space into open regions in each
of which numerical simulations suggest that there is a unique attractor of positive
initial data indicated by solid pentagram or solid triangle or a periodic orbit with
solid circle surrounding pentagram or triangle. Notable among these regions is the
very large one in Figure 1 where ESMP is stable. Above it, for large values of b,
a stable periodic orbit with M > 0 exists. The boundary of this oscillatory region
consists of the ESMP Hopf bifurcation curve below and the curve along which the
periodic orbit merges with the periodic orbit in the M = 0 subspace on the right.
As one expects, when the cost of resistance is large, the region where ESP is stable
is larger and it gives way to a region above it where there is a stable periodic orbit
with no resistant bacteria present. As noted earlier, the oscillatory solutions may
oscillate so strongly that bacteria and phage reach perilously low densities in parts
of the cycle and quite large levels at other times. Such strong oscillations indicate
that while phages and bacteria may persist in a technical mathematical sense, they
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are unlikely to survive over long periods due to demographic stochasticity. There-
fore, we may regard the large region in which ESMP is stable as the region in which
coexistence of sensitive-bacteria, resistant-bacteria and bacteriophages is most sta-
ble. It is notable that this region reaches maximum height at intermediate cost of
resistance.

4. Persistence and extinctions. Our main results of an analytical nature are
contained in this section. The following result focuses on persistence and extinction.

Theorem 4.1. The following hold:

(a) Sensitive bacteria persist.
(b) If PRN < 1, then P (t) → 0; indeed, all solutions with S(0) > 0 converge to

equilibrium ES.
(c) Phage persist if S(0) > 0, P (0) > 0 and if PRN > 1.
(d) Resistant bacteria persist if either of the following hold:

(i) S(0) = 0, or
(ii) PRN > 1, MRN > 1, S(0) > 0, P (0) > 0, and ESP is asymptotically

stable and attracts all solutions with S(0) > 0, P (0) > 0 for system (1)
with M = 0.

More precisely, Theorem 4.1 (a) means that there exists εS > 0 such that

S(0) > 0⇒ lim inf
t→∞

S(t) > εS .

We emphasize that εS is independent of initial data satisfying S(0) > 0. Sensitive
bacteria satisfy S(t) > εS for all sufficiently large t. Theorem 4.1 (c) means that
there exists εP > 0

S(0) > 0 and P (0) > 0⇒ lim inf
t→∞

P (t) > εP .

Theorem 4.1 (d) gives conditions for persistence of the resistant bacteria. Obvi-
ously, resistant bacteria persist if they do not have to compete with phage-sensitive
microbes since they are immune to phage infection. More interestingly, they also
persist if both phage and sensitive microbes are present provided that ESP is asymp-
totically stable and attracts all solutions with S(0) > 0, P (0) > 0 of system (1) with
M = 0. Sufficient conditions for ESP to be asymptotically stable for the system
without M are known. See [4, 20]. In Theorem 7.4, we prove that in the special
case that the latent period is of fixed duration, then ESP attracts all solutions with
S(0) > 0, P (0) > 0 for system (1) with M = 0 provided that the latent period is
sufficiently small.

Persistence of the resistant bacteria clearly requires the presence of the phage
to counter its fitness disadvantage relative to the sensitive bacteria. The following
result merely phrases this in mathematical language.

Theorem 4.2. Let (R(t), S(t),M(t), P (t)) be a solution of (1) with initial condition
S(0) > 0,M(0) > 0 and suppose that there exists ε > 0 and T > 0 such that
M(t) > ε, t > T . Then

lim
t→∞

1

t

∫ t

0

fS(R(t))− fM (R(t))− kP (t)dt = 0 (9)

Equation (9) says the the growth rate advantage of the sensitive organism relative
to the resistant organism (fS − fM ) is, on average, balanced by the phage infection
rate (kP ) of sensitive bacteria.
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It is of interest to consider the special case that the resistant organism suffers no
loss of fitness relative to the phage sensitive organism. The phage cannot survive
in this case.

Theorem 4.3. Suppose that (F1) holds but (F2) is replaced by fS = fM . Let
R = f−1

S (D) = f−1
M (D), then system (1) has a line segment of equilibria:

L = {(R,S,M, 0) : S +M = R0 −R, S ≥ 0, M ≥ 0}.
Every solution with S(0) + M(0) > 0 converges to an equilibrium point on L. In
particular,

lim
t→∞

P (t) = 0.

Moreover, if PRN > 1 and P (0) > 0,M(0) > 0, then M persists uniformly, that
is, we have M(∞) := lim

t→∞
M(t) ≥ R0 −R− S∗ > 0.

5. Gamma distributed latent period and numerical results. An important
special case of (1) is the case that the latent period obeys a Gamma distribution,
namely,

η(τ) =

∫ τ

0

gm(s, a)ds =

∫ τ

0

amsm−1

(m− 1)!
e−asds,

where gm(s, a) is the probability density function with m ∈ Z+ and a > 0. The
mean of this distribution is m

a , which also represents the average latent period.
For simplicity, we assume b(τ) = b is a constant in this section.
By following the “linear chain trick” as discussed in [20] and [14], we can trans-

form (1) into an ODE system. To perform this procedure, we introduce some new
variables Ij for 1 ≤ j ≤ m:

Ij(t) =
k

a

∫ ∞
0

e−Dτgj(τ, a)S(t− τ)P (t− τ)dτ. (10)

Note that these equations also give the initial condition for each Ij .
Any solution of (1) gives rise, via (10), to a solution of

R′(t) = D(R0 −R(t))− fS(R(t))S(t)− fM (R(t))M(t),

S′(t) = (fS(R(t))−D)S(t)− kS(t)P (t),

M ′(t) = (fM (R(t))−D)M(t),

I ′1(t) = kS(t)P (t)− (a+D)I1(t),

I ′j(t) = aIj−1(t)− (a+D)Ij(t), 2 ≤ j ≤ m,
P ′(t) = −DP (t)− kS(t)P (t) + abIm(t),

(11)

and
I ′(t) = −DI(t) + kS(t)P (t)− aIm(t). (12)

Moreover, any solution of (11) which exists and is bounded on R is a solution of
(1). See Prop. 7.3 of [20].

We use the following parameter values from [5] for the simulations:

R0 = 0.178212, D = 0.2, k = 0.15.

We choose m = 5 and a = 10 as gamma distribution parameters, and consequently
the mean is 0.5 (the average latent period is 0.5 hour) and the variance is 0.05.
Also,

fS(R) =
0.7726R

0.0727 +R
.
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We also assume fM (R) = (1 − ε)fS(R), where ε ∈ (0, 1) is not so large that (F1)
fails to hold.

Two bifurcation diagrams, computed using XPP-AUTO, are presented using
burst size b as the bifurcation parameter. In Figure 3, we fix the cost of resistance
at the relatively low value ε = 0.2 and in Figure 4 it is ε = 0.61. Four plots
are shown in each figure for variables R,S,M,P . Burst size b is plotted on the
horizontal axis and max/min values of equilibria or periodic solutions are plotted
on the vertical axis. In these diagrams, thick lines are locally asymptotically stable
equilibria, thin lines are unstable ones. Hollow circles are unstable periodic orbits
and solid dots are stable ones.

Figure 3. Bifurcation diagram with burst-size parameter b where
the cost of resistance is 20%, i.e., ε = 0.2. Plots depict maximum
and minimum values of R top left, S top right, M bottom left, P
bottom right.

Starting from the left (b = 0) in Figure 3, when b is small PRN < 1 and ES is
stable; it has a low nutrient level R but S is large while both M and P vanish in ES .
As b increases, ESP becomes a stable equilibrium, from the R-plot and Figure 1, we
observe that ESP is stable when b is approximately between 10 and 14. For larger
b, ESMP becomes a positive equilibrium and it is stable. Since ESP and ESMP

share the same S-component, they are not distinguishable from the S-diagram. At
b ≈ 80, ESP undergoes a Hopf bifurcation, an unstable periodic orbit appears. Since
this orbit lies entirely in the subspace {M ≡ 0}, we see hollow circles on the b axis
in the M -plot. At b ≈ 190, there is another Hopf bifurcation at ESMP resulting
in a stable periodic orbit, and ESMP becomes unstable. It should be noted that
although in S and P plots the periodic orbits appear to have zero minima, they are
actually bounded away by uniform persistence (the lower bound is uniform for all
initial data but can be extremely small).
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We infer from Figure 3 that at low cost of resistance, the combined density of
bacteria is essentially at levels typical of the phage-free system, a majority being re-
sistant and a minority being sensitive. Bacterial densities are controlled by nutrient
levels which are reduced to very low levels rather than by phage predation.

Figure 4. Bifurcation diagram with burst-size parameter b as in
Figure 3 but with a 61% cost of resistance.

In Figure 4, when b is small, ES is stable. Then, as b increases, ESP becomes
stable, until at b ≈ 80, it undergoes a Hopf bifurcation and a stable period orbit
appears. Since both ES and ESP , as well as the periodic orbit, are in {M ≡ 0}, it is
easier to study these equilibria and periodic orbit in the R-plot. At b ≈ 110, ESMP

becomes a positive equilibrium (the rising curve in M -diagram). Interestingly, at
b ≈ 170, the periodic solution in theM = 0 hyperplane becomes unstable and a “lift-
off bifurcation” occurs as a stable periodic orbit with M > 0, but small, bifurcates
from the periodic solution in the M = 0 hyperplane. This lift-off bifurcation is
similar to that described for the food-chain model in Chapter 3, sec. 6 of [24]; it is
not a small amplitude orbit. It occurs as the Floquet multiplier associated with the
M -equation becomes unity as b is varied. For super-threshold values of b > 170, the
bifurcating periodic orbit has small but positive M values while for sub-threshold
b < 170 values the periodic orbit has small but negative M values. The particular
region in the M -plot shows the periodic orbit with negative M values, see dot-dash
lines, which is traced back to a Hopf point at ESMP , see dashed lines, which also
has a negative M -component.

In order to clarify this lift-off bifurcation phenomena, we provide two simulations,
one at the sub-threshold b = 150 and one at super-threshold b = 200. Initial data
are R(0) = 0.1, S(0) = 0.1,M(0) = 0.005, I1(0) = · · · = I5(0) = 0.001, P (0) = 1. At
sub-threshold b = 150, the only positive periodic orbit lies in the M = 0 hyperplane
and Figure 5 depicts M(t) converging to 0 as the solution approaches the periodic
orbit in the M = 0 hyperplane.



PHAGE-RESISTANT AND PHAGE-SENSITIVE BACTERIA IN A CHEMOSTAT 749

Figure 5. Numerical simulation with 61% cost of resistance and
burst size of b = 150.

At super-threshold b = 200, there are two periodic orbits, one in M = 0 and
one with small but positive M -component. These are shown in Figure 6. The one
with positive M -component is stable and the other one is unstable (though stable
in {M ≡ 0}). The simulation shows the solution is attracted by the stable periodic
orbit.

We infer from Figure 4 that at high cost of resistance, bacteria are controlled by
a much more numerous phage population, resistant bacteria are non-existent or rare
depending on virulence (b), available resource goes unused, and strong predator-prey
oscillations may be present.

6. Summary. The mathematical modeling of bacteriophage predation on bacteria
in the setting of the chemostat goes back to the classical work of Levin, Stewart
and Chao [16]. Unfortunately, our ability to analyze these highly nonlinear mod-
els with time-delays for virus latency in a mathematically rigorous way is lacking.
Recently, one of the authors, together with H. Thieme, has provided sharp suffi-
cient conditions for the persistence of both bacteria and phage in [22]. Essentially,
bacteria persist provided they can survive in the absence of phage and the phage
persist provided a basic phage reproductive number exceeds unity, implying that
phage can successfully invade the phage-free equilibrium. However, numerous ex-
perimental works, e.g. [8, 5, 6], show that the bacteria may evolve resistance to
phage infection via mutation to a phage-resistant phenotype, usually at some cost
to its fitness relative to the original phage-susceptible bacteria, such that the latter
can out-compete the resistant organism for limiting nutrient in the absence of the
phage. Our aim in this paper is to shed light on this trade-off between resistance to
infection and reduced ability to compete for nutrient by seeking sufficient conditions
for the persistence of the phage-resistant bacteria. Our analytical results provide
a set of sufficient conditions, namely: (1) the phage reproductive number must ex-
ceed unity, (2) phage-susceptible bacteria and phage coexist in a globally stable
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Figure 6. Numerical simulation with 61% cost of resistance and
burst size of b = 200.

(for positive initial data) equilibrium in the absence of the phage-resistant bacteria,
and (3) that there is sufficient nutrient for the phage-resistant bacteria to grow at
this equilibrium. Conditions (1) is clearly a necessary conditions for persistence
of the phage-resistant bacteria since they cannot survive without the presence of
the phage. Condition (2) is not a necessary condition for persistence of the phage-
resistant bacteria; we assume it because it allows us to verify the hypotheses of an
abstract persistence theorem. Given that condition (2) holds, then (3) is necessary
for persistence of the phage-resistant bacteria. Unfortunately, we are only able to
verify that (2) holds in the special case of small fixed delay, a result we defer to
Theorem 7.4 in Section 7. Our numerical simulations show that persistence of the
phage-resistant bacteria holds for a broad set of parameter values.

While this paper was under review, we learned of recent work of Northcott,
Imran, and Wolkowicz [17] which focuses on the same issue of persistence of phage-
susceptible and phage-resistent bacteria in a chemostat. These authors take a dif-
ferent modeling approach that makes their model more mathematically tractable.
They do not model phage directly; instead, they assume that phage infection of sus-
ceptible bacteria is mediated by phage-infected bacteria leading to an SIS infection
model for phage-susceptible bacteria. Furthermore, as there are no phage in their
model, there is no need to model virus latency, so they can avoid modeling with
delay differential equations. Northcott et. al. obtain sufficient conditions for the
persistence of the phage-resistant organism (and all other constituents) which are
essentially the same conditions that we find. Rather surprisingly, they find a richer
bifurcation scenario for their system than we do.

7. Proofs. This section contains all proofs of main lemmas and theorems in this
paper.

The last part of this section is devoted to a special case of (1). In this case, we
assume that the latent period is a fixed number τ , for each sufficiently small τ , we
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prove that M persist uniformly by using Theorem 4.1 (d) (ii). The main result of
this subsection is summarized by Theorem 7.4.

7.1. Preliminary results. Theorem 2.1 and local stability results are proved here.

Proof of Theorem 2.1. Proofs of existence and positivity of solutions are omitted
since they are similar to ones in [22]. Therefore, the solutions of (1) generate a
semiflow Φ : R+ × B+ → B+ defined by Φ(t, x) = (R(t), St,M(t), Pt) for x =
(R(0), S0,M(0), P0) ∈ B+. To show the existence of the compact attractor K for
Φ, by Theorem 9.1 [12, Chap 12], it suffices to show positive orbits of bounded sets
are bounded and Φ is point dissipative.

Recall that 2γ < D and define α = k
D−2γ . Then, by (4) and F(s) ≤ 1, for any

x ∈ B+,

I(0) ≤
∫ ∞

0

e−DskS(0− s)P (0− s)ds ≤ k
∫ ∞

0

e−(D−2γ)s‖S‖γ‖P‖γds ≤ α‖x‖2

Let U be an arbitrary bounded set in B+, so there exists L > 0 such that
‖x‖ < L,∀x ∈ U and I(0) ≤ αL2. If (R,S,M,P )(t) = Φ(t, x)(0) and Y = R+ S +
M + P/b0, then (6) implies

Y (t) ≤ X(t) ≤ (Y (0) + I(0)) +R0 ≤ L+ αL2 +R0.

Recall that for any ϕ ∈ Cγ ,

‖ϕ‖γ = sup{eγs|ϕ(s)| : −∞ < s ≤ 0},

thus for any t0 < 0,

‖ϕ‖γ = max

{
sup

t0<s≤0
eγs|ϕ(s)|, sup

−∞<s≤t0
eγs|ϕ(s)|

}
≤ sup
t0<s≤0

eγs|ϕ(s)|+ sup
−∞<s≤t0

eγs|ϕ(s)|

≤ sup
t0<s≤0

|ϕ(s)|+ sup
−∞<s≤0

eγ(s+t0)|ϕ(s+ t0)| ≤ sup
t0<s≤0

|ϕ(s)|+ eγt0‖ϕt0‖γ ,

where ϕt0 ∈ Cγ is defined as ϕt0(r) = ϕ(r + t0) for all r ≤ 0.
Therefore, for any fixed t ≥ 0, each component of Φ(t, x)(0) is less than b0Y (t)

(recall b0 > 1),

‖Φ(t, x)‖ ≤ sup
0≤s≤t

b0Y (s) + e−γt‖x‖ ≤ (b0 + 1)L+ αb0L
2 + b0R0.

Hence positive orbits of bounded subsets of B+ are bounded.
To show Φ is point dissipative, we prove that there exists a bounded set V that

attracts all points in B+. Let x ∈ B+ be an arbitrary point. Note that (5) also
implies that there exists some T1 > 0 such that X(t) ≤ R0 + 1 for all t > T1.
Therefore, Y (t) ≤ X(t) ≤ R0 + 1 when t > T1. Also there exists T2 > 0 such that
e−γt‖x‖ < 1 for all t > T2. Let T = max{T1, T2}, we have

‖Φ(t, x)‖ ≤ sup
0≤s≤t

b0Y (s) + e−γt‖x‖ ≤ b0R0 + b0 + 1

for all t > T . Define V = {x ∈ B+ : ‖x‖ ≤ b0R0 + b0 + 1} then Φ(t, x) → V , and
the proof is complete.
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Proof of Lemma 3.1. The linearization of (1) about ES is given by

R′(t) = −(D + Sf ′S(RS))R(t)−DS(t)− fM (RS)M(t)

S′(t) = f ′S(RS)SR(t)− kSP (t)

M ′(t) = (fM (RS)−D)M(t)

P ′(t) = −DP (t)− kSP (t) + kS

∫ ∞
0

b(τ)e−DτP (t− τ)dν(τ).

(13)

Setting (R,S,M,P ) = xeλt we find that λ and x must satisfy A(λ)x = 0 where
A(λ) is given by

−D − f ′S(RS)S − λ −D −fM (RS) 0
Sf ′S(RS) −λ 0 −kS

0 0 fM (RS)−D − λ 0

0 0 0 −D − kS − λ+ kSB̃


and B̃ = b̂ν(λ+D) is the Laplace transform of bν.

Because (RS , S) is asymptotically stable in the linear approximation for the
subsystem with M,P = 0 and because

fM (RS)−D < fS(RS)−D = 0,

it is easily seen that the stability analysis is reducible to the following scalar “phage
invasion equation”:

P ′(t) = −(D + kS)P (t) + kS

∫ ∞
0

b(τ)e−DτP (t− τ)dν(τ). (14)

The characteristic equation associated with (14) is obtained by inserting the ansatz
P = eλt. The equation for λ is

λ+D + kS = kS

∫ ∞
0

b(τ)e−(D+λ)τdν(τ). (15)

It has a positive real root if PRN > 1. To see this simply plot both sides of (15)
and note that they intersect for positive λ precisely when PRN > 1 holds. On
the other hand, if there is a root λ of (15) with <λ ≥ 0 then it is easy to see that
PRN ≥ 1. Indeed, if <λ ≥ 0 then

D + kS ≤ |λ+D + kS| = |kS
∫ ∞

0

b(τ)e−Dτe−λτdν(τ)| ≤ BkS

Therefore, <λ < 0 for all roots of (15) if PRN < 1. The stability assertions now
follow from standard results for delay equations: for finite delays, see [12], and for
infinite delay see [18].

Proof of Theorem 3.2. We again calculate the linearization of (1) about ESP and
set (R,S,M,P ) = xeλt, then λ and x satisfy A(λ)x = 0, where A(λ) is
−D − f ′S(R∗)S∗ − λ −fS(R∗) −fM (R∗) 0

S∗f ′S(R∗) −λ 0 −kS∗
0 0 fM (R∗)−D − λ 0

0 kP ∗(B̃ − 1) 0 −D − kS∗(1− B̃)− λ


and B̃ = b̂ν(λ+D).

If ESP is asymptotically stable for the system without M , then the linearized
stability of ESP with M is determined by the characteristic root fM (R∗) −D. In
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this case, MRN < 1 is equivalent to fM (R∗) −D < 0 and all roots have negative
real parts.

If MRN > 1 or if ESP is unstable for the system without M , then there must
be at least one characteristic root λ such that <λ > 0 so ESP is unstable for the
system with M .

7.2. Proof of Theorem 4.1. Before proving the statements of Theorem 4.1, we
need the following lemma:

Lemma 7.1. Let πP : B+ → Cγ be the projection map defined by πP (x) = P (·) for
x = (R,S(·),M, P (·)). If πP (Φ(t, x))(0)→ 0 and S(0) > 0, then Φ(t, x)→ ES.

Proof. It is easy to see πP (Φ(t, x))(0)→ 0 is equivalent to P (t)→ 0.
Now we consider the following 3-dimensional non-autonomous ODE system by

taking P (t) as a time-dependent function:

R′(t) = D(R0 −R(t))− fS(R(t))S(t)− fM (R(t))M(t),

S′(t) = (fS(R(t))−D)S(t)− kS(t)P (t),

M ′(t) = (fM (R(t))−D)M(t).

(16)

By Corollary 4.3 in [26], since P (t) → 0, (16) is an asymptotically autonomous
system with limiting system:

R′(t) = D(R0 −R(t))− fS(R(t))S(t)− fM (R(t))M(t),

S′(t) = (fS(R(t))−D)S(t),

M ′(t) = (fM (R(t))−D)M(t).

(17)

By Theorem 3.2 in [24], all trajectories of (17) are attracted by one of its equilibria:
E0 = (R0, 0, 0), ES = (RS , S, 0) or EM = (RM , 0,M). By Corollary 4.3 in [26],
every solution of (16) is attracted by an equilibrium of (17).

On the other hand, the formal solution of S(t) is given by

S(t) = S(t0) exp

(∫ t

t0

fS(R(s))−D − kP (s)ds

)
. (18)

Suppose R(t) → RM > RS = f−1
S (D), i.e., the solution is attracted by EM , then

S(t)→ 0. Since P (t)→ 0, we can find a δ > 0 and T > 0 such that fS(R(t))−D−
kP (t) > δ when t > T . Also, S(T ) > 0 because S(0) > 0, hence

S(t) > S(T )eδ(t−T ) →∞

as t→∞, which contradicts that S(t)→ 0. Thus the solution cannot be attracted
by EM . Similarly, it cannot converge to E0 either. Therefore, ES attracts the
solution.

Now we proceed to the proof of Theorem 4.1. For simplicity, we prove each
statement of Theorem 4.1 separately.

Proof of Theorem 4.1 (a). In this proof we show S∞ := lim sup
t→∞

S(t) ≥ min{S, D
Bk
}

for all solutions with S(0) > 0. Thus S persists uniformly weakly, and by Theorem
4.13 in [21], S persists uniformly.

Suppose S(0) > 0 but S∞ < D
Bk . Fix ε > 0. By suitably translating the solution,

we may assume that S(t) < S∞ + ε and P (t) < P∞ + ε for all t ≥ 0. By the
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fluctuation argument, we can choose {tj}∞j=1 in R+ such that tj →∞, P ′(tj)→ 0,
and P (tj)→ P∞. Then

P ′(tj) ≤ −DP (tj) + k

∫ ∞
0

e−Dτ b(τ)S(tj − τ)P (tj − τ)dν(τ)

= −DP (tj) + k

∫ ∞
0

e−Dτ b(τ)(S∞ + ε)(P∞ + ε)dν(τ).

Therefore
0 ≤ −DP∞ +Bk(S∞ + ε)(P∞ + ε).

Since ε > 0 is arbitrary,
0 ≤ −DP∞ +BkS∞P∞.

By the assumption, S∞ < D
Bk , thus P∞ = 0. By Lemma 7.1, S(t)→ S.

Therefore, either S∞ ≥ D
Bk or S(t)→ S, and S∞ ≥ min{S, DBk} follows.

To prove statement (b) and (c) in Theorem 4.1, we adapt the method used in [22]
involving the Laplace transform. The Laplace transform of function f(t) is defined
as

f̂(λ) =

∫ ∞
0

e−λtf(t)dt,

for all λ ≥ 0. If f(t) is a non-negative function, then its Laplace transform f̂(λ) is
also a non-negative function.

We take the Laplace transform of both sides of the P ′(t) equation to obtain

(λ+D)P̂ (λ) = P (0)− kŜP (λ)

+ k

∫ ∞
0

e−λt
∫ ∞

0

b(τ)e−DτS(t− τ)P (t− τ)dν(τ)dt.
(19)

Since P̂ (λ) and ŜP (λ) both exist, the integral exists. And by the Fubini-Tonelli
Theorem (Theorem 2.37 in [10]), we can interchange the order of the iterated inte-
gral. Thus

(λ+D)P̂ (λ) = P (0)− kŜP (λ)

+ k

∫ ∞
0

b(τ)e−Dτ
∫ ∞

0

e−λtS(t− τ)P (t− τ)dtdν(τ)

= P (0)− kŜP (λ)

+ k

∫ ∞
0

b(τ)e−Dτ
∫ ∞
−τ

e−λ(r+τ)S(r)P (r)drdν(τ)

= P (0)− kŜP (λ) + kC0 + kŜP (λ)

∫ ∞
0

b(τ)e−(λ+D)τdν(τ),

(20)

where, as 2γ < D,

C0 =

∫ ∞
0

b(τ)e−(λ+D)τ

(∫ 0

−τ
e−λrS(r)P (r)dr

)
dν(τ)

≤
∫ ∞

0

b(τ)e−(λ+D)τ
(
τe(λ+2γ)τ‖S‖γ‖P‖γ

)
dν(τ)

≤ b0‖S‖γ‖P‖γ
∫ ∞

0

τe−(D−2γ)τdν(τ) <∞.

We need the auxiliary estimate S∞ ≤ S.
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Lemma 7.2. The total population of bacteria in the chemostat satisfies (S +M +
I)∞ ≤ S.

Proof. Define Y = (S +M + I), note

Y ′(t) = fS(R(t))S(t) + fM (R(t))M(t)−DY (t)

− k
∫ ∞

0

e−Dτ b(τ)S(t− τ)P (t− τ)dν(τ)

≤ fS(R(t))(S(t) +M(t))−DY (t) ≤ (fS(R(t))−D)Y (t).

By (6), (Y +R)∞ ≤ X∞ ≤ R0. Hence by the fluctuation lemma,

0 ≤ (fS((R+ Y )∞ − Y∞)−D)Y∞ ≤ (fS(R0 − Y∞)−D)Y∞.

So either Y∞ = 0 or fS(R0 − Y∞) ≥ D; the latter case is equivalent to Y∞ ≤
R0 −RS = S. Therefore, in both cases we obtain Y∞ ≤ S.

Now we are ready to prove statement (b) and (c) of Theorem 4.1.

Proof of Theorem 4.1 (b). By the previous lemma, S∞ ≤ S, so for any ε > 0, there
exists a T > 0 such that for all t > T , S(t) < S+ε. Thus we can assume S(t) < S+ε
for all t ≥ 0 after a time-shift.

Note λ ≥ 0 and P̂ (λ) ≥ 0 imply that e−(λ+D)τ ≤ e−Dτ and thus

DP̂ (λ) ≤ (λ+D)P̂ (λ) ≤ P (0) + kC0 + k(B − 1)ŜP (λ).

If k(B−1) ≤ 0, DP̂ (λ) ≤ P (0)+kC0 so P̂ (λ) is bounded for λ ≥ 0. If k(B−1) > 0,

ŜP (λ) ≤ (S + ε)P̂ (λ) and

(D − k(B − 1)(S + ε))P̂ (λ) ≤ P (0) + kC0

Since PRN < 1, we can pick ε small enough to make D − k(B − 1)(S + ε) > 0.

Therefore, in both cases, P̂ (λ) is uniformly bounded for λ ≥ 0. Let λ → 0 and

apply the monotone convergence theorem to get P̂ (0) =
∫∞

0
P (t)dt < ∞. Since

P ′(t) is bounded, P (t) is uniformly continuous and P (t)→ 0 as t→∞. Lemma 7.1
implies that the solution converges to ES .

Proof of Theorem 4.1 (c). We will use Theorem 8.17 in [21] and follow the notation
therein. Define the state space as X = {x ∈ B+ : πS(x)(0) > 0}, where πS : B+ →
Cγ is the projection map from X to Cγ defined by πS(x) = S(·). Note that X
is positively invariant for Φ. Because S persists uniformly and our semiflow has a
compact attractor of bounded sets in B+, the restriction of Φ to X has a compact
attractor of points in X.

Let ρ : X → [0,∞), defined as ρ(x) = πP (x)(0), be our persistence function.
Define X0 = {x ∈ X : ρ(Φ(t, x)) = 0, ∀t ≥ 0}. It is easy to see X0 is not empty
because C0×Cγ ×C0×{0} ⊂ X0, where 0 represents the 0 function in Cγ . In X0,
since P (t) ≡ 0 for all t ≥ 0, system (1) becomes (17). Since S(0) > 0, by Theorem
3.2 in [24] and P (t) ≡ 0, (R(t), S(t),M(t), P (t)) → ES = (RS , S, 0, 0) as t → ∞.
This implies that ES , viewed as an element of X, attracts all orbits starting in X0.

We also need to show {ES} is compact, invariant, weakly ρ-repelling, isolated in
X and acyclic. The proof of the first two properties is trivial.

Suppose {ES} is not a weak ρ-repeller, that is, there exists some x0 ∈ X such
that ρ(x0) > 0 and Φ(t, x0) → ES . Then, for arbitrary ε ∈ (0, S), we can assume,
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after a time shift of the solution Φ(t, x0), that S − ε ≤ S(t) ≤ S + ε for all t ≥ 0.
Now we apply these inequalities in the final inequality of (20) to obtain

(D + λ)P̂ (λ) ≥ (−k(S + ε) + k(S − ε)
∫ ∞

0

b(τ)e−(λ+D)τdν(τ))P̂ (λ)

Since P (t) > 0 for t > 0, P̂ (λ) is positive and finite for λ > 0 so we conclude that

(D + λ) ≥ −k(S + ε) + k(S − ε)
∫ ∞

0

b(τ)e−(λ+D)τdν(τ)

Letting λ→ 0 we find that D + kS − kBS ≥ −kε(1 +B). Since ε > 0 is arbitrary,
this contradicts that PRN > 1 so {ES} is weakly ρ-repelling.

Now we show {ES} is isolated in X and acyclic in X0. First, {ES} is isolated
in X0 since in X0 our system reduces to the ODEs (17) and ES is asymptotically
stable for (17). This also shows that ES is acyclic in X0.

To show {ES} is isolated in X, we choose a neighborhood Uε of {ES} as the
ε-ball centered at ES in X. By picking ε small enough, we can make Uε ∩X0 be an
isolating neighborhood of {ES} in X0.

Suppose K is a compact invariant set in Uε other than {ES}. If K ∩X0 is not
empty, by the forward invariance of X0, K ⊂ X0. However, since Uε ∩ X0 is an
isolating neighborhood of {ES} in X0, we have K ∩X0 is empty. So K ⊂ X\X0.
But then we can use the same argument that established that ES is ρ-repelling to
obtain a contradiction to PRN > 1. Thus, no such compact invariant set K ⊂ Uε,
distinct from ES , exists and {ES} is isolated in X.

By Theorem 8.17 in [21], Φ is uniformly weakly ρ-persistent, and by Theorem
4.13 in [21], P persists uniformly as claimed.

Proof of Theorem 4.1 (d). If S(0) = 0, S(t) = 0 for all t ≥ 0 and P (t) → 0, thus
our system reduces to

R′(t) = D(R0 −R(t))− fM (R(t))M(t),

M ′(t) = (fM (R(t))−D)M(t),

By Theorem 3.2 in [24], all trajectories with M(0) > 0 converge to (RM ,M). Thus
M persists uniformly.

Now we assume that S(0) > 0, P (0) > 0, PRN > 1,MRN > 1, and that ESP
attracts all solutions with S(0) > 0, P (0) > 0 and M(0) = 0. Then, S(t), P (t) > 0
for all t > 0.

Let X = {x ∈ B+ : πS(x)(0) > 0, πP (x)(0) > 0}. Because S and P persist
uniformly, by parts (a) and (c), and Φ has a compact attractor of bounded sets in
B+, it follows that the restriction of Φ to X has a compact attractor of points, as
required for Theorem 8.17 in [21].

Define ρ : X → [0,∞) as ρ(x) = πM (x) = M(0). Let X0 = {x ∈ X : ρ(Φ(t, x)) =
0,∀t ≥ 0} = {x ∈ X : M(t) = 0, t ≥ 0}. By assumption, ESP attracts all solutions
in X0. {ESP } is clearly compact, invariant and acyclic in X0.
ESP is also weakly ρ-repelling. Suppose there exists x0 ∈ X such that ρ(x) > 0

and Φ(t, x0) → ESP , then R(t) = πR(Φ(t, x)) → R∗. Since MRN > 1, fM (R∗) >
D, so there exists some T > 0 and ε > 0 such that for all t > T , fM (R(t))−D > ε.
This implies that M(t)→∞ as t→∞, a contradiction. Hence there is no x0 ∈ X
with ρ(x) > 0 satisfying Φ(t, x0)→ ESP .

As ESP is asymptotically stable in X0, it is isolated and acyclic in X0. It is also
isolated in X because if there is an entire trajectory in X, in a sufficiently small
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neighborhood of ESP , with M(0) > 0, then as R(t)−R∗ is small, so fM (R(t))−D >
ε for some positive ε. This is a contradiction to the boundedness of M .

By Theorem 8.17 and Theorem 4.13 in [21], M persists uniformly.

7.3. Proof of Theorem 4.2 and Theorem 4.3.

Proof of Theorem 4.2. Let Y = S
M , then

Y ′(t) = (fS(R(t))− fM (R(t))− kP (t))Y (t),

Since S∞ > 0 and M > ε when t > T , Y (t) is bounded and Y∞ > 0. Thus

(lnY (t))′ =
Y ′(t)

Y (t)
= fS(R(t))− fM (R(t))− kP (t).

And

lim
t→∞

1

t

∫ t

0

(lnY (s))′ds = lim
t→∞

1

t
(lnY (t)− lnY (0)) = 0,

because | lnY (t)| is bounded. Consequently,

lim
t→∞

1

t

∫ t

0

fS(R(s))− fM (R(s))− kP (s)ds = 0

as claimed.

To prove Theorem 4.3, we need the following lemma, also used in [22].

Lemma 7.3. Suppose h(t) is a non-negative and continuously differentiable func-
tion on [0,∞) and |h′(t)| is bounded, then h∞ > 0 implies

∫∞
0
h(s)ds =∞.

And now we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Since fS(R) and fM (R) are identical, we write f(R) as the
uptake function. Now let Y = I + 1

b0
P . We divide the proof into a few steps below.

Step 1: Both I and P converge to 0.
Suppose that P∞ > 0, so

∫∞
0
P (s)ds = ∞ by Lemma 7.3. Formal solutions of

S(t) and M(t) imply that

S(t) =
S(0)

M(0)
M(t) exp

(
−k
∫ t

0

P (s)ds

)
. (21)

By the boundedness of M(t), we have S(t)→ 0. Note

Y ′(t) = −DY (t) +
b0 − 1

b0
kS(t)P (t)

+ k

∫ ∞
0

e−Dτ
(
b(τ)

b0
− 1

)
S(t− τ)P (t− τ)dν(τ)

≤ −DY (t) +
b0 − 1

b0
kS(t)P (t).

By an application of fluctuation argument, we have 0 ≤ −DY∞, and by non-
negativity of solutions, Y∞ = 0. This contradiction shows that P∞ = 0 and
consequently, I∞ = 0.

Step 2: Every solution with S(0),M(0) > 0 converges to a point on L.
We consider the following 2-dimensional non-autonomous system by taking P (t)

as a time-dependent function:

R′(t) = D(R0 −R(t))− f(R(t))(S +M)(t),

(S +M)′(t) = (f(R(t))−D)(S +M)(t)− kS(t)P (t).
(22)
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It is asymptotically autonomous and its limiting equation is

R′(t) = D(R0 −R(t))− f(R(t))(S +M)(t),

(S +M)′(t) = (f(R(t))−D)(S +M)(t).
(23)

This is a classical chemostat model, every solution of (23) converges to E0 = (R0, 0)
or E∗ = (R,R0−R). In particular, E∗ attracts all solutions with S(0) > 0,M(0) >
0. By Corollary 4.3 in [26], every solution of (22) converges to an equilibrium of
(23). However, no trajectory with (S + M)(0) > 0 converges to (R0, 0) because if
so, there exists T0 > 0 such that for all t ≥ T0, R(t) > 1

2 (R0 +R) > R and thus

(S +M)(t) = (S +M)(t0) exp

(∫ t

t0

f(R(t))−Dds
)

> (S +M)(t0) exp

(∫ t

t0

f

(
1

2
(R0 +R)

)
−Dds

)
→∞

as t → ∞, which contradicts (S + M)(t) → 0. So all solutions of (22) with (S +
M)(0) > 0 are attracted by (R,R0 −R).

Note
S(t)

M(t)
=

S(0)

M(0)
exp

(
−k
∫ t

0

P (s)ds

)
,

the integral is an increasing function of t, thus it either diverges to ∞ or converges
to a finite limit. In both cases,

lim
t→∞

S(t)

M(t)
=

S(0)

M(0)
lim
t→∞

exp

(
−k
∫ t

0

P (s)ds

)
exists. Together with lim

t→∞
(S+M)(t) = R0−R, both lim

t→∞
S(t) and lim

t→∞
M(t) exist.

Therefore, every solution of (1) with S(0) > 0,M(0) > 0 is attracted by a point
on L.

Step 3: S� := lim
t→∞

S(t) > 0 and M� := lim
t→∞

M(t) > 0.

Suppose M� = 0, then S� = R0 − R. By (21) and non-negativity of P (t), we

have S� ≤ S(0)
M(0)M

� = 0, which forms a contradiction. Thus M� > 0.

Now suppose S� = 0, note 1
b0
P (t) ≤ Y (t), thus

Y ′(t) ≤ −DY (t) +
b0 − 1

b0
kS(t)P (t) ≤ −DY (t) + (b0 − 1)kS(t)Y (t).

Since S(t) → 0, we can assume S(t) < D
2(b0−1)k after a time-shift, thus Y ′(t) ≤

−D2 Y (t), and consequently,∫ ∞
0

P (s)ds ≤ b0
∫ ∞

0

Y (s)ds ≤ b0
∫ ∞

0

Y (0)e−
D
2 sds =

2b0
D
Y (0).

Since the integral of P is a finite number, by taking the limit of both sides of (21),

S� > S(0)
M(0)M

� exp(− 2k
Db0

Y (0)) > 0, which contradicts the assumption that S◦ = 0.

Step 4: S does not persist uniformly. If PRN > 1 and P (0),M(0) > 0, M
persists uniformly.

For any ε > 0, without loss of generality, assume ε < R0 − R. Let S(0) = ε
and M(0) = R0 − R − ε, P (0) > 0, then by (21), since the integral of P is strictly

positive, S�

M� <
S(0)
M(0) . However, S�+M� = S(0)+M(0) = R0−R, so S� < S(0) = ε.

Therefore, for any ε > 0, we can always find a trajectory such that S� < ε.
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By Laplace transform (20),

(λ+D)P̂ (λ) ≥ −kŜP (λ) + kŜP (λ)

∫ ∞
0

b(τ)e−(λ+D)τdν(τ).

Since S(t) → S�, for any ε > 0, we can assume S(t) > S� − ε after a possible
time-shift. Therefore,

(λ+D)P̂ (λ) ≥ k(S� − ε)P̂ (λ)

(∫ ∞
0

b(τ)e−(λ+D)τdν(τ)− 1

)
.

By taking λ→ 0, and dividing both sides by P̂ (0) > 0, we have D ≥ k(B−1)(S�−ε).
Since this inequality holds for any ε > 0, we let ε→ 0 and get

D ≥ k(B − 1)S�. (24)

And (24) is exactly S� ≤ S∗. Therefore, M� ≥ R0−R−S∗. Note R0−R−S∗ > 0
if and only if PRN > 1 and the proof is complete.

7.4. Small delay case. In this section we consider a special case of (1), i.e, when
the latent period is a single fixed delay τ for some τ ≥ 0. In this case (1) becomes

R′(t) = −DR(t) +DR0 − fS(R(t))S(t)− fM (R(t))M(t),

S′(t) = −DS(t) + fS(R(t))S(t)− kS(t)P (t),

M ′(t) = −DM(t) + fM (R(t))M(t),

I ′(t) = −DI(t) + kS(t)P (t)− ke−DτS(t− τ)P (t− τ),

P ′(t) = −DP (t)− kS(t)P (t) + kbe−DτS(t− τ)P (t− τ),

(25)

where b > 1 is a constant.
For system (25), we will show that when τ > 0 is small, M persists uniformly.

The main conclusion of this section is summarized below:

Theorem 7.4. If bkS > D + kS, then there exists τ0 > 0 such that for each
τ ∈ [0, τ0], we can find ετ > 0 satisfying

lim inf
t→∞

M(t) > ετ

provided S(0) > 0, P (0) > 0 and M(0) > 0.

This is a direct application of part (d) of Theorem 4.1, if we can show ESP
attracts all orbits in {M ≡ 0} with positive initial data. To see that this sufficient
condition is true, we first prove that ESP is “globally” stable in {M ≡ 0} when
τ0 = 0, and then analyze the stability of ESP for small τ > 0 by a perturbation
argument. Without loss of generality, we assume τ0 ≤ 1.

System (25) can be obtained by letting the probability distribution of the latent
period be a Delta distribution. All results regarding equilibria, boundedness, posi-
tivity and persistence obtained for (1) still hold for (25). Since components of ESP
depend on τ , we write EτSP to emphasize that it is an equilibrium of (25) with the
given delay parameter τ . Since E0 and ES remain the same for all τ ≥ 0, we skip
the superscript to simplify notation. Nevertheless, it is worth mentioning that the
phage reproduction number now becomes

PRN =
e−Dτ bkS

D + kS
.
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Again, since I(t) can be solved by its formal solution, we omit the differential
equation of I(t) in (25) hereafter. Our main focus is the stability of ESP given that
M ≡ 0, so it suffices to consider the following system:

R′(t) = −DR(t) +DR0 − fS(R(t))S(t)− fM (R(t))M(t),

S′(t) = −DS(t) + fS(R(t))S(t)− kS(t)P (t),

P ′(t) = −DP (t)− kS(t)P (t) + kbe−DτS(t− τ)P (t− τ),

(26)

Let the phase space of (26) be

C = R+ × C × C,

where C = C([−1, 0],R+) equipped with the supremum norm ‖ · ‖∞. Moreover, let
C take the maximum norm.

Let Ψτ : R+ × C → C be the semiflow induced by (26) on C with the given
delay parameter τ . Define two projection maps π̃S , π̃P : C → C as: for each
x = (R,S(·), P (·)) ∈ C, π̃S(x) = S(·) and π̃P (x) = P (·). Define π̃R : C → R+ as
π̃R(x) = R.

The first lemma shows that ESP attracts all orbits in {M ≡ 0} with positive
initial data if τ = 0.

Lemma 7.5. Suppose bkS > D + KS and τ = 0, then E0
SP attracts all orbits of

(26) with S(0) > 0 and P (0) > 0.

Proof. Given that τ = 0, (26) is reduced to

R′(t) = −D(R(t)−R(0))− fS(R(t))S(t),

S′(t) = (fS(R(t))−D)S(t)− kS(t)P (t),

P ′(t) = −DP (t) + (b− 1)kS(t)P (t).

(27)

Define an auxiliary variable Y = R + S + 1
b−1P . Then it is easy to see Y ′(t) =

D(R0−Y (t)), thus Y (t)→ R0 as t→∞. By writing R(t) = Y (t)−S(t)− 1
b−1P (t)

in the differential equation of S(t), as treated in [24], it suffices to consider the
following limiting system

S′(t) =

[
fS

(
R0 − S(t)− 1

b− 1
P (t)

)
−D

]
S(t)− kS(t)P (t),

P ′(t) = −DP (t) + (b− 1)kS(t)P (t).

(28)

Let F = (FS , FP )T be the vector field of (28) on the open set {(S, P ) ∈ R2
+ : S >

0, P > 0}. Then we have

div

(
FS
SP

,
FP
SP

)
= −

f ′S(R0 − S − 1
b−1P )

P
,

which does not change sign because f ′S > 0. By the Poincaré-Bendixson theorem
and the Dulac criteria, there are no periodic orbits in this open set and hence every
solution is attracted by E0

SP .

To show this is true for all small delays, we need the following lemma.

Lemma 7.6. For each given τ ∈ [0, 1], let

Cτ =

{
x = (R,S(·), P (·)) ∈ C : 0 ≤ R+ S(0) + I(0) +

P (0)

b
≤ R0 + 1

}
,
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where

I(0) =

∫ τ

0

e−DsS(−s)P (−s)ds.

Then

W :=
⋃

τ∈[0,1]

Ψτ (2, Cτ )

has a compact closure in C.

Proof. First let τ be fixed. In (25), let Y (t) = R(t) + S(t) + I(t) + P (t)/b. As
M(t) ≡ 0, we have

Y ′(t) ≤ D(R0 − Y (t)).

Therefore, Cτ is forward invariant for Ψτ and it attracts all orbits.
Now, if y = (R,φ(·), ψ(·)) is an arbitrary point in W , then there exists some τ > 0

and x ∈ Cτ such that y = Ψτ (2, x). Since Cτ is forward invariant, Ψτ (s, x) ∈ Cτ
for all s ∈ [0, 2]. Note that for all θ ∈ [−1, 0], we have

φ(θ) = π̃S(Ψτ (2 + θ, x))(0) ≤ R0 + 1,

and

ψ(θ) = π̃P (Ψτ (2 + θ, x))(0) ≤ b(R0 + 1).

So ‖φ‖∞ ≤ R0 + 1 and ‖ψ‖∞ ≤ b(R0 + 1). That is, by using the fact b > 1,
‖y‖ ≤ b(R0 + 1).

Moreover,

φ′(θ) = S′(2 + θ) = (fS(R(2 + θ))−D)S(2 + θ)− kS(2 + θ)P (2 + θ),

ψ′(θ) = P ′(2 + θ)

= −DP (2 + θ)− kS(2 + θ)P (2 + θ) + bke−DτS(2 + θ − τ)P (2 + θ − τ).

Let

L := max {fS(R0 + 1) +D + kb,D + kb(b+ 1)} (R0 + 1)2.

Since R0 + 1 < (R0 + 1)2, we have that both φ and ψ are Lipschitz continuous on
[−1, 0] with constant L.

Note that y ∈ W is arbitrary and both the upper bound b(R0 + 1) and the
Lipschitz constant L are independent from the choice of y, τ , and x. Thus W
is uniformly bounded and equicontinuous. By the Arzelà-Ascoli theorem, W has
compact closure in C.

Part (a) and (c) of Theorem 4.1 claim that for each fixed τ > 0, S and P persist
uniformly for all positive initial condition. The following lemma shows that the
lower bound on the limit inferior can be chosen to be independent of the parameter
τ , provided it is small.

Lemma 7.7. Let bkS > D + kS. Let U = {x ∈ C : π̃S(x)(0) > 0, π̃P (x)(0) > 0}
and ∂U = C\U . Define ρ : C → R+ as ρ(x) = min{π̃S(x)(0), π̃P (x)(0)}. Then there
exists ε0 ∈ (0, 1] such that

lim inf
t→∞

ρ(Ψτ (t, x)) > ε0

for all τ ∈ [0, ε0) and x ∈ U .
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Proof. We use Theorem 5 in [25] to prove this lemma.

Let τmax = min{1,− 1
D ln D+kS

bkS
}.

Ψτ (t, x) is continuous in (τ, t, x) because of the continuous dependence of solu-
tions of (26), both in parameters and initial data. Every positive orbit of Ψτ has a
compact closure in C. For each given τ and x ∈ C, let ωτ (x) be the omega-limit set
of x. We claim that

W1 :=
⋃

τ∈[0,τmax],x∈C

ωτ (x)

has a compact closure in C. Since ωτ (x) is invariant, ωτ (x) = Ψτ (2, ωτ (x)). Thus
we can rewrite W1 as

W1 =
⋃

τ∈[0,τmax]

Ψτ

(
2,
⋃
x∈C

ωτ (x)

)
We have already noted that ωτ (x) ⊂ Cτ . By Lemma 7.6, W1 has a compact closure.

We must verify hypothesis (B1) of Theorem 5 in [25]. By Theorem 2.1, Ψ0 has a
global attractor. Moreover, for every x ∈ ∂U , Ψ0(t, x) either converges to E0 or ES .
Note that {{E0}, {ES}} is acyclic in ∂U and both {E0} and {ES} are isolated in C.
Moreover, both stable manifolds W s(E0) and W s(ES) are disjoint from ρ−1(0,∞).
Therefore, hypothesis (B1) is verified.

Now we turn to hypothesis (B2) of Theorem 5 in [25]. In the proof of part (a) of
Theorem 4.1, we have shown S∞ ≥ min{S, D

e−Dτ bk
}, hence S∞ ≥ min{S, Dbk} > 0,

and this inequality is independent from τ . So as a consequence,

lim sup
t→∞

‖Ψτ (t, x)− E0‖ ≥ S∞ ≥ min{S, D
bk
} > 0.

for all τ ∈ [0, τmax] and x ∈ U .
For ES , we would like to show there exists ε0 ∈ (0, τmax] such that for any

τ ∈ (0, ε0) and any x ∈ U ,

lim sup
t→∞

‖Ψτ (t, x)− ES‖ ≥ ε0 > 0. (29)

If this is not true, then for any n ∈ N, there exists τn ∈ (0, 1
n ) and xn ∈ U such that

lim sup
t→∞

‖Ψτn(t, xn)− ES‖ <
1

n
. (30)

After a suitable time shift, we may assume that Sn(t) = π̃S(Ψτn(t, xn))(0) satisfies
Sn(t) > S̄ − 1

n for all t ≥ 0. Let Pn(t) = π̃P (Ψτn(t, xn))(0) for t ≥ 0. In the proof
of part (c) of Theorem 4.1, we used the Laplace transform of P to show that ES
is a repeller for phage P and we would like to use a similar argument to show that
(30) is impossible.

Taking the Laplace transform of the Pn equation in (26), we find that

(λ+D)P̂n(λ) ≥ kŜnPn(λ)
[
be−(λ+D)τ − 1

]
.

Letting λ→ 0 gives

DP̂n(0) ≥ kŜnPn(0)
[
be−Dτ − 1

]
.

For each n ∈ N, by (30), after a possible time-shift, we have

DP̂n(0) ≥ k(S − 1

n
)P̂n(0)

[
be−Dτn − 1

]
,
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that is,

D ≥ k(S − 1

n
)
[
be−Dτn − 1

]
,

because P̂n(0) > 0. However, for n large enough, τn <
1
2τmax and hence

D ≥ k(S − 1

n
)
[
be−

1
2Dτmax − 1

]
.

Since this inequality is true for all large n, we take n→∞ and get

D ≥ kS
[
be−

1
2Dτmax − 1

]
> kS

[
be−Dτmax − 1

]
= D,

which is a contradiction. Thus (29) is true.
All hypotheses of Theorem 5 in [25] have been verified and the conclusion of the

lemma is an application of this theorem.

Now we are ready to show that the global stability of EτSP holds for all small
τ > 0.

Lemma 7.8. There exists some τ0 > 0 such that for every τ ∈ [0, τ0) fixed, EτSP
attracts all orbits of (26) with S(0) > 0 and P (0) > 0.

Proof. This claim follows from Theorem 2.2 in [23].
Let B(E0

SP , δ) be the open ball of radius δ about ESP in C and Λ = [0, ε0),
where ε0 ≤ 1 is the same as in Lemma 7.7. Recall that U = {x ∈ C : π̃S(x)(0) >
0, π̃P (x)(0) > 0}.

We can find δ > 0 such that B(E0
SP , δ) ∈ U and DxΨτ (t, x) exists for (t, x, τ) ∈

[0,∞)×B(E0
SP , δ)×Λ and it is continuous on B(E0

SP , δ)×Λ. Since E0
SP is a locally

asymptotically stable equilibrium of (26), Ψ0(t, E0
SP ) = E0

SP and DxΦ0(t, E0
SP ) has

a negative growth bound −ω. Moreover, Ψ0(t, x) → E0
SP as t → ∞ for x ∈ U by

Lemma 7.5.
Define

Vτ =
{
x ∈ U ∩ Cτ : min {π̃S(x)(0), π̃P (x)(0)} > ε0

2

}
.

By Lemma 7.7, for each τ ∈ Λ and x ∈ U fixed, Ψτ (t, x) ∈ Vτ for all large t.
Moreover, by Lemma 7.6,

W2 :=
⋃
τ∈Λ

Ψτ (2, Vτ )

is compact in C.
It remains to show W2 ⊂ U . For any x ∈

⋃
τ∈Λ Ψτ (2, Vτ ), there exists some

τ ∈ Λ and y ∈ Vτ such that x = Ψτ (2, y). Let y = (R,S(·), P (·)), then

S′(t) > −DS(t)− kS(t)P (t) ≥ −S(t)(D + kb(R0 + 1)),

so S(0) > ε0
2 implies that S(t) > ε0

2 e
−2q for 0 ≤ t ≤ 2, where q = D + kb(R0 + 1).

Thus π̃S(x)(0) = S(2) is bounded away from 0 by a constant independent from
τ . The parallel result holds for P as well. Therefore, W2 ⊂ U and it is relatively
compact in U .

By Theorem 2.2 in [23], there exists τ0 > 0 and a continuous map x̂ : [0, τ0)→ U
such that x̂(0) = E0

SP , Ψτ (t, x̂(τ)) = x̂(τ) for t ≥ 0 and Ψτ (t, x)→ x̂(τ) for all x ∈ U
and τ ∈ [0, τ0). However, for every τ ∈ [0, τ0), since EτSP is the only equilibrium
in U , we conclude that x̂(τ) = EτSP . Moreover, for every given τ ∈ [0, τ0), EτSP
attracts all points in U .
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