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ABSTRACT. Some key features of a mathematical description of an immune
response are an estimate of the number of responding cells and the manner
in which those cells divide, differentiate, and die. The intracellular dye CFSE
is a powerful experimental tool for the analysis of a population of dividing
cells, and numerous mathematical treatments have been aimed at using CFSE
data to describe an immune response [30, 31, 32, 37, 38, 42, 48, 49]. Re-
cently, partial differential equation structured population models, with mea-
sured CFSE fluorescence intensity as the structure variable, have been shown
to accurately fit histogram data obtained from CFSE flow cytometry experi-
ments [18, 19, 52, 54]. In this report, the population of cells is mathematically
organized into compartments, with all cells in a single compartment having
undergone the same number of divisions. A system of structured partial differ-
ential equations is derived which can be fit directly to CFSE histogram data.
From such a model, cell counts (in terms of the number of divisions undergone)
can be directly computed and thus key biological parameters such as popula-
tion doubling time and precursor viability can be determined. Mathematical
aspects of this compartmental model are discussed, and the model is fit to a
data set. Asin [18, 19], we find temporal and division dependence in the rates
of proliferation and death to be essential features of a structured population
model for CFSE data. Variability in cellular autofluorescence is found to play
a significant role in the data, as well. Finally, the compartmental model is
compared to previous work, and statistical aspects of the experimental data
are discussed.

1. Introduction. The human immune response is a complex process in which the
behavior of individual cells in the lymphatic system is altered by a multitude of
intra- and extracellular signals. The mathematical analysis of lymphocyte activation
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and division can be performed on a wide range of scales, from the molecular level
(antigen presentation and recognition) to the population level. This report focuses
on the latter. To that end, one can look at the total number of divisions a cell has
undergone since activation and how cells in different generations differ in phenotype.

The development by Lyons and Parish [55] of the intracellular dye carboxyfluo-
rescein succinimidyl ester (CFSE) for use in proliferation assays has resulted in an
essential experimental tool for researchers studying these complex processes. CFSE
is nonradioactive and provides long-lasting, bright, and relatively uniform labeling
of all cells in a population without adversely affecting the internal machinery of the
cells. When cells divide, the dye is partitioned approximately in half. Thus, when
labeled cells are stimulated to divide, the CFSE content of individual cells in the
population can be assessed via flow cytometry and the number of divisions a cell has
undergone can be determined by comparing the measured fluorescence intensity of a
cell to the measured fluorescence intensity of an undivided cell [56, 55, 62, 64, 75, 77].
When individual cell fluorescence intensity measurements for all cells in a given pop-
ulation are binned into a histogram, each generation of cells appears as a “peak”
in the histogram data. The data set used in this report is the same as that from
[18, 71] and the experimental protocol is discussed at length there. The data is
depicted in Figure 1.

While the quantitative modeling of CFSE data has traditionally focused on the
deconvolution of the data into numbers of cells per generation [30, 31, 32, 37, 38, 59],
recent efforts [18, 19, 52, 54] have used a structured population model in order to fit
the CFSE histogram data directly. Using this technique, we have produced a strong,
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FIGURE 1. Data set for a CFSE-based proliferation assay. Note
that the data is presented in the logarithmic coordinate z =
log,o(x), in units log UL As cells divide, CFSE is diluted and the
initially unimodal population density becomes multimodal. While
it is easy to distinguish the various peaks in the data, the overlap
between peaks results in some systematic error when attempting
to identify a region of the horizontal axis with a specific division
number. In addition to this overlap, the slow drift to the left over
time (as a result of intracellular turnover of CFSE) further weakens
the correlation.
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physically and biologically motivated model which is quite capable of replicating the
observed CFSE histogram data obtained via flow cytometry. We remark that the
idea of fitting CFSE histogram data directly is not new in itself. Hawkins et al.,
suggested the reconstruction of CFSE histograms from cell numbers as a means
of calibrating their cyton model [42, SI Text], and Hyrien et al., [45, 46] have
proposed a branching process model which can be directly fit to histogram profiles.
The novelty of the current approach is in the direct modeling of the underlying
biophysical and cellular processes (intracellular label degradation, dilution of dye
by mitosis, cellular autofluorescence) which give rise to the observed fluorescence
intensities. As a result, these structured population models do not depend on any
parametric forms (e.g., normal density functions) for the distribution of fluorescence
intensities in a given generation of cells, nor do they depend on the even spacing
of subsequent generations of cells in the histogram data. As such, these models
provide a fit to histogram data which is accurate and unbiased.

The most recent partial differential equation (PDE) model is a fragmentation
equation which relates the structured population density n(t,x) to the rates of
proliferation «(t,x) and death §(t,2) under the assumption of Gompertz decay of
label and is given by

on(t,x) ce_ktﬁ[(at — zg)n(t, )]

ot Ox
= —(a(t,z) + B(t,x))n(t, ) + X[z, 2 14(t, 22 — z4)n(t, 22 — z4). (1)

The structure variable z is the fluorescence intensity (in arbitrary units of intensity,
UI) of the cells. Because this fluorescence intensity arises primarily from CFSE
within the cell, we refer to this as a label structured population model (as opposed
to age or size structure, etc. [58]). It is known that cells lose FI in time even in the
absence of division as a result of the natural decay of CFSE and the turnover of
intracellular proteins to which the fluorescent conjugates bind. The advection term
in the equation above accounts for this phenomenon using a Gompertz [39] decay
velocity v(t,z) = —c(x — x4)e " with characteristic parameters ¢ and k, which has
been shown [18] to accurately describe the biphasic decay [57, 62, 75] of CFSE FI
observed in data sets. The parameter z, represents the natural autofluorescence
intensity of cells in the absence of CFSE, assumed for the moment in (1) to be
constant across the cell population.

The goal of such a mathematical model is to provide biologists with simple yet
intuitive and meaningful parameters with which a population of dividing cells can
be described. In particular, information such as average rates of division and cell
viability are essential to the analysis of the effects of changing experimental condi-
tions (e.g., differences in donors, differences between diseased and healthy cells) on
proliferative behavior. The motivation for the use of FI as a structure variable is
that the serial dilution of CFSE by cell division creates a correlation between mea-
sured FI and the number of divisions a cell has undergone. Thus the proliferation
and death rate functions «(t,z) and S(¢,z), which are estimated in terms of the
structure variable x as well as time, can be used to compute average division rates
in terms of the number of divisions undergone [18]. (For instance, if > 1000 UI
corresponds to undivided cells, then the average proliferation rate, as a function of
time, for undivided cells is the average value of a(t, z) in the region x > 1000.)

This motivating assumption is accurate to a degree, as one can clearly discern
the distinct generations of cells in the data set depicted in Figure 1. However, the
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peaks corresponding to particular generations of cells overlap slightly and drift to
the left in time (as a result of CFSE decay), thus weakening the correlation between
the state variable and division number. In [7, 18], it is shown that the proliferation
and death rates can be parameterized with respect to a ‘translated variable’ which
accounts for the loss of measured FI in time, and that this translated variable is
more strongly correlated with division number than the original structure variable
x. Yet, the overlap between distinct peaks in the data remains problematic, and it
is not clear how much error may be introduced into the estimated proliferation and
death rates by this overlap of distinct generations.

Furthermore, while the model (1) is advantageous in being able to estimate av-
erage proliferation and death rates without any deconvolution of the data into cell
numbers, it cannot be used to accurately assess the number of cells in a particular
generation. This information could be approximated by integrating the structured
density n(t,z) over a region [z1, 3] (corresponding approximately to the location
of a given peak in the histogram data), but this approximation is limited by the ex-
tent to which distinct generations of cells in the histogram data overlap. Traditional
deconvolution techniques (such as fitting peaks with normal or lognormal curves)
impose particular forms on the experimental data which may bias the computed
number of cells in each generation.

While all these efforts to date correspond to several iterations in an iterative
modeling process (for a philosophical discussion see [21, Chapter 1]) to attempt to
understand cell proliferation using CFSE labeling of populations, we clearly have
not yet reached a satisfactory understanding of the complex phenomena involved.
The fragmentation models used with the CFSE data can be considered as what
have been termed Aggregate Data/Aggregate Dynamics or Type 11 inverse problems
as presented in [1, Chapter 14] and [5]. Such problems are also common in inves-
tigations with models for electromagnetic propagation in inhomogeneous dielectric
materials including biotissue [13, 14], vibrational dissipation in viscoelastic materi-
als [16], and HIV cellular progression models [1, 4, 5]. To better understand rates at
the generation number cohort or division number cohort level, one should attempt
to develop individual (cohort) dynamics to investigate the CFSE data in a Type I
framework of Aggregate Data/Individual (Cohort) Dynamics inverse problems such
as those discussed in [1, Chapter 14] and [5]. Similar approaches have been suc-
cessfully pursued in marine and insect population models [3, 6, 10, 12, 22] as well
as in physiologically based pharmacokinetics (PBPK) models in toxicology [5, 17].
Fortunately, a simple reformulation of (1) allows such an approach and permits
both the accurate quantification of total cells per division number and the accurate
estimation of proliferation and death rates in terms of division number in such a
framework. Rather than modeling the population with a single differential equation,
one can model each individual generation of cells with a single equation,

on; n Ou(t, z)n;(t,x)]

ot ox N
with the generations linked through the division mechanism R;(¢,x) as a source
term (see the next section). This is a common technique in existing ordinary and
delay differential equations models for dividing cells (see [26, 30, 31]). Because
each generation of cells is assigned to a particular compartment (indexed by ¢) with
unique proliferation and death rates, it is not necessary to estimate these rates in
terms of the structure variable x, so that peak overlap and label decay no longer
affect the accuracy of the estimated rates. This is in contrast to previous work

—(ai(t) + Bi(t))ni(t, =) + Ri(t, ),
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[18, 19] in which considerable space is devoted to answering the question of how to
parameterize the structural dependence of the proliferation and death rates. As an
added advantage, the number of parameters necessary for the parameterizations of
the proliferation and death rates is reduced (because there is no longer a need to pa-
rameterize the functions «; and §; in terms of the structure variable). Furthermore,
the existence of multiple compartments makes it possible to accurately determine
cell numbers in terms of divisions undergone, even though the computed densities
(for the distinct compartments) will still overlap when placed simultaneously on the
x axis. Because this model does not rely upon any assumptions as to the shape
(normal, lognormal, etc.) of the generation peaks (instead starting from an initial
condition and fitting directly to the CFSE histogram data) systematic bias should
be avoided.

In this presentation we begin with a careful formulation of a division-dependent
compartmental model, hereafter called simply the compartmental model. The solu-
tion to this model is then presented and computational aspects are discussed. Next
we establish an inverse problem for the estimation of the AutoFI and Gompertz
parameters, as well as the proliferation and death rate functions «;(t) and B;(t). As
in previous work [18, 19], multiple parameterizations of the proliferation and death
rate functions are considered with the goal of determining how these rates depend
on both division number and on time. After presenting results which demonstrate
the enhanced capabilities of the compartmental model, the statistical properties of
the flow cytometry data are considered and ramifications for the quantification of
uncertainty in the estimated parameters are discussed.

2. The compartmental model. The derivation of the compartmental model fol-
lows immediately from the derivation of the fragmentation model (1) in [18], which
is itself a variation of the structured population models of Bell-Anderson [23] and
Sinko-Streifer [68]. A complete derivation of the compartmental model can be found
in Chapter 3 of [71]. Let n;(t,x), 0 < ¢ < imax be the label structured population
density of a population of cells stained with CFSE and having undergone ¢ divisions.
The structure variable z is the fluorescence intensity (FI) of a cell (in arbitrary units
of intensity, UI) satisfying > x, where z, is the natural autofluorescence intensity
(AutoFT) of cells; ¢ is time (in hours). While it is known that AutoFI increases sig-
nificantly when cells become activated, this increase is not believed to be significant
for the current modeling effort (as AutoFI contributes minimally to the measured
FT of a labeled but unactivated cell). Thus, the parameter x, should be understood
to describe AutoF1I for activated cells. It is known that FI scales linearly with the
concentration of CFSE used to label a population of cells, and that this measure-
ment does not change significantly when cells increase in size [56]. Thus we assume
FI is a mass-like quantity.

The label-structured density of a population of dividing cells is modeled by the
system of PDEs

dng n Ov(t, x)ng(t, z))
ot Ox
Oni | O(t,z)na(t, )
ot Ox

=— (ao(t) + Bo(t))no(t, )

=—(a1(t) + S1(t))n (t, ) + Ra(t, @)
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(“)nimx 8[U(t, m)nimx (t’ gj)] . - |
ot + O = ﬂzmax (t)nlmx (t7 1-) + leax (t7 .’E) (2)

where v(t,x) is the natural rate of CFSE FI decay (as a result of the turnover
of CFSE within individual cells). The proliferation rates «;(¢) and death rates
Bi(t) (both in units hr~') are time-dependent exponential rates. While the use
of exponential models to describe dividing populations of cells has been widely
criticized as providing a poor representation of cell cycle dynamics and/or times
to division [26, 31, 37, 63], the time-dependence of these rates in the formulation
above in effect induces a probability distribution over times to division and death.
As such, the form of the cellular dynamics considered by the model above can be
considered as a hybrid model linking basic differential equations models with the
highly successful cyton model [26, 42] which considers the distribution over times
to events directly. The source terms are given by

Ri(t,$) = 4ai—1(t)ni—1(t7 23} - xa) 1 S ] S Z'Ina,x

and represent the influx into the i*" generation of cells having just divided out of
the (i — 1)!" generation. The form of the functions R;(¢,z) arises naturally from
the model derivation based upon conservation principles (see [71, Ch. 3]) and the
form of the proliferation rates «;(t) to account for the influx of newly divided cells
from the previous generation.

Note the assumption in Equation (2) that oy, = 0. While there is no mathe-
matical limit to the number of generations which can be computed, experimental
data generally exhibits fewer than 10 divisions. In an inverse problem setting (see
Section 3), the parameter iy, can be easily fixed in advance by simply counting
the number of generations which appear in the data. Because it is then known that
there are no cells with generation number i,,x + 1, there must be no proliferation
in generation imay, and the model can be simplified by setting o, = 0. Of course,
the process of determining i,,,x could be automated via model refinement statistical
tests, but that seems unnecessary given the ease with which the parameter can be
identified from data.

There is an additional mathematical justification for setting ;.. = 0. The total
quantity of CFSE FI in the population is

M(t) = /Oom (ia:x ni(t,x)> dz.

a =0

Using the definition of M (t) and the system of equations (2), we can show that

6%‘4 = : v(t,x) (f m(t,x)> - /:033 (i_:: ﬁi(ﬂ%(@@)

1=0
oo
+ Tq /
xT

Tmax e’}
(Z o (t)ns(t, x)) - / x(oy (O (t,x)).
a \i=0 Ta

While the first three terms on the right side of this equation are physically relevant
and expected (loss of FI by Gompertz decay, loss of FI by death, and the additive
role of AutoFI, respectively) the final term is not experimentally valid because
cells do not recognize a maximum division number after which they must leave the
measured population. The requirement that o;,, = 0 eliminates this term.

The initial condition must be prescribed for each 1,

n;(0,z) = ®;(x). (3)
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It will generally (but not necessarily always) be true that ®;(z) = 0 for ¢ > 1
(that is, all cells in the population are undivided at ¢ = 0). These initial condition
curves are determined from data taken at ¢ = 0. (A detailed methodology for
the construction of the initial condition can be found in [71].) The left (z = z,)
boundary conditions are the no-flux boundary conditions

v(t, zq)ni(t,ze) =0 (4)

for all 0 < i < .. Because the problem is defined on the semi-infinite domain
T > x4, these conditions are sufficient to compute a solution. This is in contrast
to previous work [18, 19, 52, 54] in which a zero-recruitment boundary condition,
n(t, Tmax) = 0, is imposed at the right boundary of the computational domain. As
discussed in the next section, under appropriate conditions these two formulations
are equivalent.

2.1. Model solution. For many decay velocities v(t,x) of interest, the system of
equations (2) can be solved analytically using the method of characteristics. As
discussed previously, we assume that the rate at which cells naturally lose FT is
described by the same function, v(t, z), for all cells independent of division num-
ber. As such, the characteristic lines are the same for each generation of cells.
Furthermore, it will be assumed that this rate of FI loss is adequately described
by a Gompertz decay process [39]; this has been shown [18] to effectively describe
the biphasic decay [57, 62, 75] characteristic of proliferation assay data when the
intracellular label is CFSE. Thus we have

v(t,x) = —c(x — x4)e ™ (5)

where ¢ > 0 and k£ > 0 (both with units 1/hr) are parameters to be estimated using
the data. In effect, this function describes cellular FI which decreases exponentially
(with initial rate ¢) to the level of cellular AutoFI, while the exponential rate itself
decreases (exponentially) with rate k. The assumption of Gompertz decay of cellular
FT has the additional benefit of trivially satisfying the left boundary condition (4)
for all 4, provided n;(t, z,) is finite (so that the flux at the boundary is well-defined).
Incorporating the Gompertz decay process, we can rewrite the system (2) as

on _ on _
T e e m) T = (@0(t) + olt) = e mo(t,2)
on _ on _
87151 —ce Mz — xa)a—; = — (a1 (t) + Ba(t) — ce M)y (t,2) + Ri(t, x)
animx _ 8nimx _
T M@ = wa) T2 = = (B (0) 0T i (89) F R (7). (6)
The characteristic lines (for all 7) are described by
d
% =v(t,z) = —c(x — x4)e M, (7)
and hence the characteristic line emanating from the point (0, s) in the tz-plane is
x(t;8) = x4 + (s — xq)exp [—% (1 — e_kt>:| ’ (8)

where s > x, parameterizes the line along which the initial condition is prescribed.
Define

fit) = o (t) + Bi(t) — ce™™".
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For undivided cells (i = 0), the solution along a characteristic line emanating from
a point (0, s) in the tz-plane is given by
8n0

= —fo(t)no(t, z(t;s))

with 19 (0, z(0;5)) = ng(0,8) = ®o(s). Thus the solution along characteristic lines
is

nalt (t:5) = ol (~ | t fa(ryir). )

As written above, the system of equations (6) is defined on the semi-infinite domain
x > x4. In general, the initial condition function ®¢(z), can be determined from
data (see Section 3) only on some finite segment [, Zmax] of the domain. However,
there is no loss of generality in extending the initial condition curve by assuming
®o(x) = 0 if * > @pax. This is in contrast to [18, 19, 52, 54] in which a PDE was
defined only on the finite interval [z,, Zmax| and a zero-recruitment boundary was
imposed. In fact, the two formulations are equivalent provided ®(zmax) = 0 (in the
former models; ®;(Zmax) = 0 for all ¢ in the compartmental model) and v(t, z) < 0.
As the semi-infinite formulation is notationally simpler and easy to implement, we
use it here.
The solutions for ¢ > 1 along the same characteristic lines (8) are described by

[“)m . ) .
o = Lt (t5) + Riltw(t;5)) (10)

with n,(0, z(0; s)) = ®;(s) and the solutions are

it n:5)) = s)exp (= [ i

+ [ Riwatrspen (- [ fierde) ar (1)

It is worth noting that the solution by the method of characteristics involves
the construction of an integral surface in the coordinates ¢ and s. The change of
coordinates from ¢ and = to ¢t and s has Jacobian

ot ot c
J=|8 8 |=exp(—- (1—eF)),
£ [=on(famem)

which is nonsingular along the initial condition curve (¢ = 0). Hence we are guar-
anteed (by the construction above) that a unique solution exists at least locally
near the initial condition curve. Note that in the limit as k — 0%, the Jacobian
is Jrjo = e “, which becomes singular asymptotically in time (reflecting the as-
ymptotic convergence of the characteristic lines). In such a case, one might observe
solutions which grow without bound. This is only of minimal concern, however, as
the total label loss resulting from decay is small over the duration of a typical ex-
periment. Possible characteristic lines (for £ > 0 and k = 0) are shown graphically
in Figure 2.

For the remainder of this document, it will be assumed that all cells are undivided
at t = 0, so that ®;(z) = 0 for ¢ > 1. This condition is satisfied by essentially
all experimental data. Thus, the only nontrivial initial condition for the PDE
system (6) is ®o(x). As this model is motivated by an attempt to fit and explain
experimental data, this smooth initial condition must be constructed from data
taken at the beginning of the experiment. Our process for doing so is described in
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FIGURE 2. Characteristic lines given by Equations (7)-(8) when
c=1x10"2 and k = 2 x 1072 (left) and in the limiting case when

k = 0 (right). Notice that distinct characteristic lines will remain
separated by some positive distance for all time in the former case,
while in the latter case the lines asymptotically converge to x = x,.
The horizontal broken line along the bottom of both graphics is the

line along which the initial condition data is given. It is clear that
this initial condition curve is nowhere tangent to a characteristic
line, hence the local existence of a unique solution is guaranteed.

detail in [20, 71]; essentially a smooth curve is drawn through the original histogram
data which is taken to represent the ‘true’ cell counts in the absence of noise.
Given the initial condition function ®¢(z) as computed this way from data, it then
remains to numerically compute the solutions (9) and (11) for ng(t,z) and n; (¢, z),
1 < i < ipax, respectively. Complete implementation details on our numerical
methods (along with a summary of simulations to ensure numerical convergence)
based on characteristics in this context are given [20, 71].

3. Inverse problem formulation. We now consider the inverse problem of cali-
brating the model (6) to a particular data set. As stated previously, the data consist
of ordered pairs (zi,nfc) indicating the total number of cells nfc counted into the
histogram bins with left boundary at zi (in the log FI coordinate) at time ¢;. The
notation is meant to emphasize the possibility that the histogram bins need not
share a common fixed width, nor need they be the same at each measurement time.
The data set we will use to calibrate the compartmental model is shown in Figure
3, with measurements taken at ¢t = 24, 48, 96, and 120 hours.

Let n;(t, x) be the solution of the compartmental model for cells having undergone
1 divisions. Then the total population of cells is

Tmax

n(t,z) = Z n;(t, ).

=0

Because this model solution is computed in the linear FI coordinate x while the
data is given in the logarithmic FI coordinate z = log;,(x), we define

n(t, z) = 107 In(10)n(t, 2(2)) = 107 In(10)n(t, 107). (12)

The function 7i(t, z) is the structured population density in terms of the new struc-
ture variable z. The factor 10*In(10) arises from the chain rule in the integral
formulation of the model (see Section 2) and is needed to conserve the quantity
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FiGure 3. CFSE data set for the compartmental model.

of label after the change of variables. Finally, we need to convert this structured
density into cell counts for comparison with the data. Thus we define

. Zi 1
In)(t;, %) E/A ’ n(tj, z)dz,
z,

which is the observation operator for the compartmental model. In practice, because
the transformed model solution 7(¢, z) is computed only at discrete points (¢, 21,
we must approximate this observation operator,

(15, ) ~ Lafil 1, 2]) = [ﬁ(t“z'““); ﬁ(tj’zk)] (e-t). )

3.1. Ordinary least squares. Given an initial condition, the solution n(¢, z) (and
hence, 7(t, z)) is completely determined by the parameters z, (AutoFI), ¢ and k
(Gompertz decay), as well as the proliferation rates {a;(¢)} and the death rates
{Bi(t)}. Let 0 = {zq,c,k,{ci(t)},{Bi(t)}} C O, where O is some set of admissible
values for 0. (While it will be necessary to make some simplifying assumptions on
O in order to render the inverse problem computationally tractable, we postpone
that discussion for the moment and proceed with a general overview of the inverse
problem procedure.) Thus we may write the model as n(t,z;0). The goal of the
inverse problem is to determine some value of the parameter # which minimizes
the distance (in an appropriate sense) between the cell counts determined by the
model solution, I[n](t;, zi), and the histogram data. For this report, we choose least
squares as the method of estimation. Following standard inverse problem procedure
[21, 28, 29, 66], we define the random variables

Ng :I[ﬁ](t]‘,zi;ao)—i—gkj, (14)

where &£, are independent random variables satisfying E[&y;] = 0 representing mea-
surement error and/or ‘noise’ in the data. The parameter 0y is the ‘true’ parameter
(given the model) which is assumed to exist and to describe the data. The data,
then, represent a single realization of these random variables,

nj, = I[A)(t;, 21 60) + eij-
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The assumption that the data are generated from the specified model, given a
nominal truth parameter, is common in inverse problem formulations [8, 21]. While
0y is generally unknown, we can define the estimator

R, 1 . oy
0 = 5 = —(I[n)(t;, 22:0) — N} 15
WLS = argnélél W argrelélg - wkj( [7]( 31 %hs ) k) ) (15)

which minimizes the weighted sum (with weights Wy ) of squared residuals Ry;.

Because the NV ,ﬁ are random variables, so are the Ry; and, hence, so is Oy 5. Using
the data, we may obtain the estimate

1 j i\2
Ow =argm —L = argm — (I[A)(t;, 2;0) —ni)".
Ls(n}) = arg min wy T min wkj( [](t;, 21;0) — i)

k.j k.j

In theory, the weights wk_jl should be chosen to reflect the variance of the random
variables N ,g In fact, the accurate, unbiased estimation of standard errors as well
as confidence intervals around parameter estimates is premised upon an accurate
statistical model (hence accurate weights) for the error terms &;. In practice, how-
ever, such a statistical model is rarely (if ever) known a priori, and some additional
assumptions must be made For this report, we assume a constant variance (CV)
error model, Var(&y;) = of for all k and j. In this case, wy; = 1 for all k and j
and (15) becomes an ordinary least squares (OLS) problem,

fors —argman (6|N7) ZR —argmlnz 7l(t;, 2 0) — N,z)Q, (16)

with corresponding estimate

0 = in J(0|n],).
ors(ny,) argrgggj( )

The function J (9|ni) is the OLS cost of the model, given the data, and is often writ-
ten simply as J(6). The expanded notation is meant to emphasize the dependence
of the estimate on the particular data set used to fit the model.

It should be noted that, rather than consider constant variance errors in an
OLS framework, one could alternatively consider a statistical model with con-
stant coefficient of variation (CCV), Var(&,) = U%(I[ﬁ}(t],zk,ﬁo))Q. Then wy,; =
(I[n](t;, zi; Ocrs))? and (15) becomes the generalized least squares (GLS) problem
defined implicitly by

RE;
(I[A](t;, 23 0ars))?

—argmﬂlz Sl tj’zk’e)_Nj)Z
(I[7)(t;, 21; 0ars))?

0crs = arg min E
8o —

: (17)

with corresponding estimate HAGLS(ni). As noted above, the results presented in
Section 4 will focus on parameter estimation in an OLS framework. A more thor-
ough consideration of the reliability of the assumptions for the statistical error model
in the inverse problem is postponed until the Discussion. For the moment, we focus
on the applicability of the compartmental model to a particular data set—that is,
how well the compartmental model fits the data. Of course, the measure of fit is
assessed in an OLS framework, which may be slightly different than a GLS or more
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general WLS framework. The misspecification of the error model is known to result
in biased standard errors (and hence inaccurate confidence intervals), and thus no
such work is carried out here. (Related efforts on determination of the precise form
of measurement error, and hence the corresponding statistical error, in a family of
data sets similar to the one used here is being pursued and will be reported on in
a separate manuscript.) In spite of this drawback, a slight misspecification of the
exact error model should have only minimal effect on the estimated best-fit param-
eters (see, e.g., the computational example of Section 3.4.2 of [21]), and thus we
proceed with the OLS estimation of 6.

3.2. Parameterizations of proliferation and death rates. We have already
defined the parameter 6 = {x4, ¢, k, {a;(t)}, {Bi(t)}} C © which describes a given
model solution. The parameters z,, ¢, and k are all elements of R (although in
a generalization below, we consider estimation of a probability distribution on the
parameter z,) and thus pose no problem for the estimation procedure. However,
the proliferation and death rates «;(t) and B;(t), 0 < i < ipax, are contained
in some (infinite-dimensional) function space. Mathematically, the solutions (9)
and (11) require only «;(t), 8;(t) € L2(0,T) in order for the solution to be well-
defined. Because it can reasonably be assumed that these functions are bounded,
this condition is naturally met. However, as currently written, (16) contains a
minimization over an infinite-dimensional space ©. In order to make the estimation
problem amenable to computation, additional assumptions and/or approximations
are necessary.

The primary motivation for using a label-structured PDE model to analyze his-
togram data from CFSE-based proliferation assays was an attempt to use measured
FI as a surrogate for division number and hence to investigate how the prolifer-
ation and death rates for a population of cells change with division number. In
earlier efforts [18, 19, 52, 54], this was accomplished by allowing the proliferation
and death rates to depend explicitly on the state variable (z or z). For the com-
partmental model formulated in this report, the number of divisions undergone is
accounted for directly, so that it is no longer necessary to have the a; and g; de-
pendent upon the structure variable (following the assumption that the interference
of CFSE with the intracellular machinery is negligible). Additionally, it was found
in [18, 19] that explicit time-dependence of the rate of cell proliferation is a signifi-
cant feature of an accurate label structured PDE model. We would like to pursue
this investigation using the new compartmental model. Thus, as we consider possi-
ble parameterizations of the proliferation and death rate functions, we do so with
an eye toward determining the heterogeneity of the rates (that is, how they vary
with division number), as well as the possible time-dependence of the proliferation
rates. As was noted previously, the time-dependence of the proliferation and death
rates induces a distribution over times to divide and die ranging from simple expo-
nential distributions (e.g., parameterizations A1 and B1 below) to more complex
distributions which are piecewise defined (e.g., A5 below). Such a wide range of pa-
rameterizations are included to demonstrate the flexibility of the current modeling
framework, as any number of (currently unknown) mechanisms may be responsible
for the observed histogram profiles for a given population (e.g., healthy, diseased,
immunosuppressed) of cells.

We begin with the death rate functions g;(¢). It has long been observed that
a significant proportion of undivided cells die in the first few days in culture, and
that this cell death occurs independent of cellular activation [38]. Beyond these
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observations, we would like to explore how the death rates of cells depend on division
number. Specifically we consider the following possible parameterizations for the
death rate functions 3;(t):

B1 S;(t) =0 for all ¢ and for all ¢;
B2 3;(t) = 8 for all i and for all ¢;
B3 Bo(t) = Bo, Bi(t) =0 for i > 1;
B4 Bo(t) = Bo, Bi(t) = B for i > 1;
B5 3;(t) = 5, for each i.

The possibility B1 is included as a baseline for comparison, as a means of con-
cluding the necessity of a death term in the mathematical model. As noted above,
it is expected that a model which lacks a mechanism to describe cell death will
predict far too many cells in the population when compared to the experimental
observations [32, 38]. Parametrization B2 assumes a constant death rate in the
population for all cells regardless of division number. Gett and Hodgkin [38] have
shown that parametrization B3, in which undivided cells die but all cells which
proceed through the first division will remain in the population indefinitely, can
be accurately used to predict the number of cells in the population up to approxi-
mately 90 hours. More generally, one might consider that cells which have divided
at least once may die, but at a rate which is possibly different from the rate for
undivided cells. This parametrization B4 has also been successfully used to model
proliferation assay data [30, 31, 32]. Finally, in parametrization B5, we consider the
possibility that the death rate is completely heterogenous with respect to division
number [30, 36, 44, 48].

While the model is derived in sufficiently general terms to include time-dependent
death rate functions, we do not consider any such parameterizations in this report.
It is certainly possible that, for particular cell lines and under particular culture
conditions, feedback mechanisms such as activation-induced cell death may in fact
be time-dependent [38]. For a (hypothetical) population of cells which divides
almost synchronously, such time-dependence would be identical to division-number-
dependence (i.e., a mechanism which does not appear until, say, 90 hours could be
equivalently modeled as a mechanism which does not appear until 3 divisions have
been completed). Thus it seems reasonable to conclude that, to some extent, the
necessity of time-dependent death rates in the mathematical model will depend on
the degree of synchronicity observed in the experimental data. At the very least,
past experience [18, 19] as well as the results presented here (Section 4) seem to
suggest little need for such time-dependence, at least for the current data set.

Unlike for the death rate functions, past experience [18, 19] does indicate a po-
tential need for explicit time-dependence of the proliferation rate functions c;(t).
(The fact that time dependence for cell death rates seems to be sufficiently modeled
with only division dependence while a similar result does not hold for the prolifera-
tion rates may be explained if the time-dependence of the proliferation rates occurs
on a scale faster than the average time a cell takes between subsequent divisions.)
To explore possibilities we consider the following possible parameterizations for the
proliferation rate functions:

Al ap(t) = ap; a;(t) = « for all 4

A2 «;(t) = «; for all t;

A3 ap(t) = aoxpes¢+); @it) = o for all 4;

A4 Ozo(t) = aOX[t>t*]§ Oéi<t) = Oy

A5 piecewise linear functions of time (see below).
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TABLE 1. Chosen nodes for the estimation of piecewise linear pro-
liferation rates. Bold font indicates a node for which the prolifer-
ation rate was set to zero rather than estimated. For each gener-
ation, the proliferation rate is assumed to be zero outside the set
of nodes shown. Thus the proliferation rate is estimated at three
nodes for each division number.

Generation (i) (o
0 24.13,60.72.96
48,60,84,108,120
48.60,84,108,120
60,72,96,120
60,72,96,120
60,72,96,120
60,72,96,120

ST W N =

Previous authors [32, 38, 42] have emphasized a special importance for the time
required for a cell to complete its first division. In case A1, it is assumed that
undivided cells divide at a rate which may be different than the rate for divided
cells, but that neither of these two rates depends on time [31]. Alternatively, we
consider the more general case A2 where each generation of cells divides with its own
(time-independent) rate [49]. We also consider a simple time-dependent mechanism
in which there is a delay before cells begin to divide. A quick glance at the data
(Figure 1) reveals that no division occurs in the population for at least the first 24
hours. Such a delay can be easily incorporated into the model with a step function
at some specified time ¢t*. Previous models [31] have found such a transient in
the undivided population to be a significant feature of an accurate mathematical
model. The proliferation rates for subsequent generations may A4 or may not A3
vary with the number of divisions undergone.

Finally, following the example of [18], we consider using piecewise linear splines
to incorporate time-dependence into the proliferation rates. Given a fixed set of

nodes {t&qi)}, we consider rates of the form

ai(t) =Y a1 (1),
q

where ZEQ)( ,()Z)) =11if p=gq and is zero if p # ¢q. In Table 1 we list the nodes {tg’i)}
used for the estimation of the proliferation rate functions. These particular nodes
have been chosen based upon careful consideration of the data in Figure 1 as well
as past experience.

Independent of which parameterizations of the proliferation and death rates are
used, it should be noted that the current model formulation features proliferation
and death rates which are essentially Malthusian in nature (see Section 2). That is,
the rates at which cells in a particular generation divide and die is assumed to be
proportional to the total number of cells in that generation (with ‘constants’ of pro-
portionality «;(t) and §; for proliferation and death, respectively). Alternatively, a
model can easily be derived with limiting proliferation and death rates (e.g., logistic
rates, Gompertz rates, etc.). Malthusian rates have been used with some success in
previous models and should be accurate for any population of cells which divides
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sufficiently rapidly. Biologically speaking, a cell must proceed through several nec-
essary activities (growth, DNA replication, microtubule formation, etc.) between
any two divisions, and this must induce some minimum cell cycle time. Tools such
as delay differential equations or stochastic processes have been used to mathemat-
ically model the cell cycle (see, e.g., [30, 31, 34, 37, 42, 45, 46, 48, 61, 69, 78])
and have resulted in several successful models. We find the current model with its
Malthusian rates to be simple and intuitive while also fully capable of accurately
fitting the data (see Section 4). However, it is imperative that the parameters esti-
mated when fitting the model to a particular data set be interpreted in the context
of the form of the model being used.

3.3. Probabilistically distributed AutoFI. The derivation and solution of the
compartmental model have been given so far under the assumption that the natural
brightness of cells in the absence of any CFSE molecules, i.e., the autofluorescence
intensity or AutoFI, can be modeled with sufficient accuracy by a single scalar
parameter x,. However, it is known that the AutoFT of a single cell changes as the
cell becomes activated, and that AutoF1I varies from cell to cell in the population,
even among activated cells.

The AutoFI of cells can be measured directly by setting aside a portion of cells
from the PBMC culture which are not labeled with CFSE (but which receive an
otherwise identical treatment). The results of such a measurement are depicted
in Figure 4 for two donors, each at two different measurement times. These data
sets were taken independently of the data set shown in Figure 1, which is used to
calibrate the model. Because FI measurements are not absolute-they depend on the
calibration and gain settings of the flow cytometer at the time of the experiment—
the data shown in Figure 4 are intended only to examine the shape of the AutoFI
distribution in the population, not its absolute magnitude. As time progresses, the
distribution of AutoFI in the data from both donors increases slightly in mean and
is increasingly skewed to the right. These features are also found in additional data
sets for 24 < t < 144 (results unpublished) and appear to be the result of some
unmodeled biological processes. The most likely explanation is the known increase
in AutoFT as cells become activated [56, Fig. 6]. After a sufficient amount of time,
essentially all cells in the culture have either become activated or have died.

Following the discussion at the beginning of Section 2, we may consider only
AutoFTI for activated cells. While we have thus far assumed that this AutoFI can
be sufficiently modeled with a single parameter, Figure 4 suggests that we might
need to consider a probability distribution on a range of values for the parameter
Zq. Let n(t,x;x,) represent the structured population density of a cohort or sub-
population of cells all of which share the same AutoFI parameter z,, subject to (6).
Assume further that this parameter z, is distributed in the total population of cells
with some probability distribution P. Then it follows that the total population is
described by

maz
‘Ta

n(t,z) = E[n(t,x; 2,)|P] :/ - n(t i ae)dP(z,). (18)
amin

It is now clear that the structured density 7(t, z) for the total population of cells

will depend upon the probability measure P. Figure 4 depicts the experimental

AutoFI data for each donor and measurement time fitted (ordinary least squares)

with a scaled lognormal curve. While such an assumption may possibly be of limited

validity early in the experiment (probably as a result of the activation process, as
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FIGURE 4. Experimentally determined AutoFI distributions with
OLS best-fit scaled lognormal curves. PBMCs of 2 blood donors
were cultured without CFSE staining and without stimulation. Af-
ter 24 (left) and 144 (right) hours respectively, cells were stained
for CD4 surface expression and analyzed by flow cytometry. Shown
are the histograms of CD4 cell counts as a function of CFSE FI.
We see that a lognormal distribution for AutoFT is quite accurate
by ¢t = 144 hours (right). Such an assumption is less accurate at
t = 24 hours, when a significant portion of cells in the population
remain unactivated.

discussed above), most cells are undivided at such times and hence the contribution
of AutoFI to the total FI of those cells is minimal. Thus we may assume that P is
reasonably well-described by a lognormal distribution. Hence

dP (2a) = 1 ox _(logava—u)2
dlEa_p Y xeo2m P 202 ’

where
1
p =log(Elr,]) — +log (1 n

Under such a parametric assumption, the population density 7(¢,x) is uniquely
described by the two parameters Elz,] and ST D[z,] = \/Var(z,) (in addition to
the parameters 0 discussed so far in this section).

The integral in Equation (18) can be easily computed via the midpoint rule. Let
{z} be a set of evenly spaced points with spacing Axz,. Then

0% =log <1 +

M
n(t,x) ~ n(t, z; 2l )p(al') Az,. (19)

m=1
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As written, Equation (19) requires the computation of M forward solutions in order
to approximate the total population density. However, this computationally inten-
sive approach can be avoided by a change of variables. Define y = log;,(z — z,)
and 7(¢,y) = 10Y log(10)n(t, x(y)) = 10Y log(10)n(¢, 10¥ + z,). Then the system (6)
becomes

Oong ce—kt ong . — Kty ~
Tt logio oy (ol FAlt) = e o (t @)
ong ce~Ft on . kit~
Bt logio oy () ¥ A et )

+ 20 (t)n0(t, y + logyg 2)

o —kt A
87’11141’1’13)( ce animax

- = — . _ —kt\ .
at log 10 ay (ﬁlmax (t) ce )nlmax (t? x)

+ 20 01 ()i 1 (8, Y + 10g 1 2). (20)

It is then clearly observed that the parameter z, no longer appears in the system
of equations for the compartmental model in the structure variable y, while only
the new initial condition,

Bo(y) = 10Y 1og(10) Py (10Y + z,), (21)

will now depend on z,. However, provided the initial uptake of CFSE in the exper-
imental procedure results in cells with measured FI significantly greater than their
AutoFI (which is always the case for useful experimental data), ®o(x) = 0 unless
x >> x, (and hence, unless 10Y >> z,). As such, the dependence of the initial
condition on the parameter z, can be safely ignored. This fact is demonstrated
with an example in Figure 5. In general, it is expected that CFSE-labeled cells are
approximately 100-1000 times brighter than unlabeled cells (see, e.g., [56, 64, 77]; as
mentioned previously, the actual measured F1 values depend on machine calibration,
and hence will vary from experiment to experiment). For the initial condition corre-
sponding to our particular data set of interest, it is reasonable to assume E[z,] ~ 10.
In Figure 5, a sample lognormal distribution with Elz,] = 12 and STD[z,] = 4
is depicted on the left. (These values for the mean and standard deviation can be
taken as maximum, worst-case bounds. It is expected that the mean value of x,
is no more than 12, with standard deviation less than 4.) We can assess the effect
of the parameter z, on ®¢(y) by computing ®¢(y) for extreme values of z, (that
is, values in the far-left and far-right tails of the density function). The resulting
functions (as well as a third function, showing ®o(y) when z, = E[z,]) are shown
on the right of Figure 5.

It is clear from Figure 5 that the initial condition function (for y as a structure
variable) changes only minimally for any reasonable values of z,. (Moreover, the
original initial condition ®¢(x) was already approximate, having been computed
from experimental data.) Thus, computationally, when computing the structured
population density according to (18), we compute only a single initial condition
from Equation (21) using xz, = Flz,]. The system (20) can then be solved to
obtain 7(t,y) (which does not depend on z, at all). Next, for each value of z, in
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FIGURE 5. Left: A hypothetical lognormal AutoFI distribution
with F[z,] = 12 and Var(z,) = 4. Right: Initial conditions (in
the structure variable y) computed for the mean value of x, (solid
line) as well as two for two extreme values of z,. One can see that
the value of the parameter x, has very little effect on the initial
condition ®¢(y).

(19), one can compute

ooy = AE) e ogfe — 2
T 1og(10) (2 — 24) log(10)(x — z4)

in order to determine the population structured density 7(¢, x). It should be noted
that, while the change of variables from z to y eliminates the parameter z, from the
system of PDEs, and we have shown that the effect of x, on the initial condition
éo(y) is negligible, it is not true that the parameter x, can be ignored entirely.
The negligible effect of z, on the initial condition is the result of the brightness of
CFSE-labeled cells at the beginning of the experiment. However, as time progresses,
CFSE intensity is lost as cells divide and CFSE degrades, so that AutoFI constitutes
a larger percentage of the measured FI. In other words, while it is reasonable to
assume n(0,z) = ®o(z) = 0 unless z >> x,, this assumption does not hold more
generally for n(t,z) (t > 0).

Finally, when using Equation (19) to approximate the total population density,
one must make certain that the parameter M is sufficiently large to provide desired
accuracy. In Figure 6, a sample density is computed at ¢ = 120 hours using three
different values of M. Given the discussion, above, there is essentially no difference
in computational time as M changes. While the solution is not accurately captured
for M = 10, there is no measurable difference between the solutions for M = 100
and M = 1000. Henceforth, if it is assumed that AutoFT is distributed in the
population of cells, the total population (¢, ) will be computed via Equation (19)
with M = 100.

3.4. Remarks on the inverse problem. At this point, we have considered nu-
merous different parameterizations for the proliferation rate functions «;(t) (Al-
A5), and the death rates 8; (B1-B5). Each of these parameterizations results in a
distinct set of parameters which will need to be estimated from the data. We also
have the additional label loss parameters ¢ and k, as well as the AutoFI parameter
which can be considered either as a fixed constant x, or as a lognormal probability
distribution with mean E[z,] and standard deviation ST D[z,].
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FIGURE 6. Effect of the number of nodes M used to approximate
the total population density 7(t, ) in Equation (19). Using M =

100 seems more than sufficient.

In the remainder of this report, we will refer to the model solution simply as
n(t,x;0) where 6 C RP is a set of parameters which describes the model. (This
includes the case that z, is described by a probability measure, where 7(t, ) was
used in the previous exposition.) This is done to simplify notation, and it will
always be clear from context which parametrization is being used. Obviously, the
value of p will vary depending upon the parametrization. The various possibilities

are summarized in Table 2.
We now return to the OLS formulation (16) of the inverse problem,

_ . 2 _ : =14 d.0) — N2
bors = argggngRkj = argrergél; (I[n](tw z;0) Nk) )
J J

where now © is a closed bounded subset of R?. Using the data {n{c} as realizations
(22)

of the random variables {N ,Z}, we would like to compute the estimate
i\ 2
=)

fors({n}}) = argmin J(0{n}}) = argggg; (I1A)(t;, 22;0) —
5J

However, we have only an approximate numerical solution with which to compare
the data. Thus we actually compute the approximate estimate
R A _ A . ~ . 9
Oors(he, No, M; {ni}) = argmin Ja(0]{n}}) = argggg; (Zalal(t;, 21;0) —nf)",
J
(23)

where we have now explicitly emphasized the dependence of the parameter esti-
mate on the computational accuracy of the numerical solution. The continuous
dependence of the model solution 7i(t, z; #) on the parameter 0 (regardless of which
particular parametrization is used) follows easily from the method of characteristics
solution of Section 2.1. Numerical convergence with respect to hy, N, and M fol-
low directly from well-known results regarding the trapezoidal rule for quadrature,
linear interpolation of a smooth function, and the midpoint rule for quadrature,
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TABLE 2. Summary of possible parameterizations for the compart-
mental model, with the set 8 € RP of parameters describing the
model in each case.

Model Parameters D
A1B1 6_{a:a,c k,aq,a} 5
A1B2 =A{za,c, k, a0, o, B} 6
A1B3 = {za,c, k, a0, , Bo} 6
A1B4 = {za, ¢ k, a0, @, Bo, B} 7
A1B5 ={za,c ka0, o, {Bi}} 12
A2B1 0 = {zq,c k, {a;}} 9
A2B2 0 = {za,c, k, {a;}, B} 10
A2B3 0 {zasc, k, {ai}, Bo} 10
A2B4 = {zq,c, k, {a;}, Bo, B} 11
A2B5 ={za,c b, {a;}, {Bi}} 16
A3B1 9 ={wa4,c, k,ap,t", a} 6
A3B2 0 = {za,c, k,ap,t*, o, B} 7
A3B3 0 = {zq,¢, k,a0,t", o, Bo} 7
A3B4 0:{7»'(1;071610‘07‘5*70"/607&} 8
A3B5 0 ={zq,c, k, a0, t 707{5i}} 13
A4B1 0={za,c,k, a0, t7, {a}} 10
A4B2 0 = {za,c, k, a0, t", {a}, B} 11
A4B3 6 = {asc, ks a0, t*, {a}, Bo} 11
A4B4 = {za,c k, a0, t*, {a}, Bo, B} 12
A4B5 ={za,c, k, a0, t*, {a}, {Bi}} 17
A5B1 0 ={zq,c,k, {aﬁp’}} 21
A5B2 0= {za,c, k, {a{P}, 8 22
A5B3 0= {za,c k, {alP}, 8o} 22
A5B4 0 = {za,c, k, {a{P}, Bo, B} 23
A5B5 0 = {za,c, b, £a'P}, {81} 28
A1B1dist = {FE[zq], STD[zq], ¢, k, ag, o} 6
A1B2dist 9 — {Elca], STDlxal, ¢, k, g, @, B} 7
A1B3dist 0 = {E[z4], STD[z4], ¢, k, ap, a, Bo } 7
A1B4dist 0 = {E[zq], STD|z4], ¢, k, ag, @, Bo, B} 8
A1B5dist 0 :{ [za], STD[za], ¢, k; @, ¢, {Bi }} 13
A2B1dist = {F[zq], STD[zq],c, k, {a;}} 10
A2B2dist 9 = {El2a], STD[zq), e b {ovi }, B} 11
A2B3dist 0 = {E[zq4], STD[z4], ¢, k, {ai}, Bo} 11
A2B4dist 0 = {E[z4], STD[QTQLC,IC,{O"i}vﬂOaﬂ} 12
A2B5dist 60 = {E[za4], STD[za],c, k, {a;}, {Bi}} 17
A3Bldist 0 = {E[zq], STD[zal, ¢, k, ag, t, a} 7
A3B2dist 0 ={E [za] STD[zg], ¢, k, g, t™, o, B} 8
A3B3dist 0 = {E[zq], STD[za},c,k,ao,t*,a,ﬁo} 8
A3B4dist 0 = {E[zq], STD|za], c, k, ag, t ,Ouﬁo,ﬂ} 9
A3B5dist 0 = {E[zq], STD[za], ¢, k; ap, t*, o, {Bi}} 14
A4Bldist 0 = {E[zq], STD[zq4],c, k cxo, t*, {a}} 11
A4B2dist 0 = {E[zq], STD[zq], c, k, oo, t ,{a}yﬂ} 12
A4B3dist G = {E[zq],STD[zq],c, k, g, t*, {a}, Bo} 12
A4B4dist = {E[zq], STD[za],c,k,ao,t*,{a},ﬂo,ﬁ} 13
A4B5dist = {E[za], STD[za], ¢, k; a0, t*, {a}, {B:}} | 18
A5B1dist 0 = {E[z4],STDlz4], ¢, k, {aﬁp)}} 22
A5B2dist 0 = {E[x4], STD[za), ¢, k, {aﬁ")},ﬂ} 23
A5B3dist 0 = {BElza), STD[zal, ¢, k, {a'P}, 8o} 23
A5B4dist 0 = {E[zq], STD[za], ¢, k, {a(p }, Bo, B} 24
A5B5dist 0 = {Elx,], STD[zq], c, k, {a“’ 3, {Bi}} 29

respectively. As such, it can be shown (see, e. g., the arguments of [15, Ch. 3] that
the approximate estimates HOLS(ht, N,, M; {nk}) will converge to some QOLS which
minimizes (22) as Ny, M — oo, and hy — 0. It should be noted that the possible
nonuniqueness of the minimizer 65, ¢ is a common issue in inverse problems. We
forgo techniques such as Tikhonov regularization in this report, choosing to focus
instead on the accuracy of the best fit models n(t, z; éo Ls) in fitting a particular
data set, regardless of uniqueness (although these issues must be dealt with in or-
der to establish standard errors, confidence intervals, etc.). For the remainder of
this report, we will not distinguish between o1, é*OLS, or éOLS(ht; N,, M; {ni})
It should also be noted that this best-fit parameter, which is itself an estimate
of the random variable 65, will be data-realization dependent. However, for a
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TABLE 3. Summary of bound-constraints for the OLS parameter
estimation problem (23). The parameters {a;}, {agp)}, and {8;}
must be positive. The feasibility of the remaining bounds has been
determined computationally.

Parameter Minimum | Maximum
Ty 1 20
Elz,] 5 12
STDlz,) 0 4

c 1x107% | 1x1072

k 0 1x1073
{a;} or {agp)} 0 1
{8i} 0 1

good model and a sufficiently large data set, Oo1s is an unbiased estimator of 8o g
[21, 29, 66].

The optimization (23) has been implemented in MATLAB using the fmincon
function, which is a variation of the BFGS-active set algorithm for bound-constrained
parameters. The parameter constraints are summarized in Table 3.

3.5. Information theoretic model selection. Each possible parametrization
presented thus far gives rise to a distinct mathematical model which can be fit
to a data set in the prescribed manner. Based upon the results for each model, we
would like to determine which parametrization is most appropriate and use those
results to draw conclusions regarding division-linked and/or longitudinal changes in
the behavior of the cell culture. In order to do this, we must establish some formal
mechanism which permits the objective comparison of different models.

Omne common approach is hypothesis testing for model refinements [8, 11]. How-
ever, such methods are only useful for pairwise comparisons, and are better suited
for comparison against an experimental control [24]. Moreover, such methods do
not apply unless one of the two models in the comparison is contained within the
other model (for instance, our parametrization B4 contains B3 as a special case).
While several parameterizations discussed in this document are indeed contained
within other parameterizations, this is not universally the case (e.g., there is no
containment relationship between B2 and B3).

A more general approach, based upon the premises of information theory, is found
in the Akaike Information Criterion (AIC). Briefly, for models with independent,
homoscedastic, normally distributed errors, it can be shown that (recall that p is
the number of parameters estimated)

AIC = mlog («](9:;5)) + 2p,

where m is the total number of data points, is an approximately unbiased estimate of
the “expected relative Kullback-Leibler distance” (information loss) when a model
is used to describe a data set [24]. Given a set of R models, the AIC can be
computed for each model; we seek the model which results in the smallest AIC
value. It should be emphasized that the AIC is only an estimate of information loss,
and this estimate depends on the particular data set being used. (When comparing
different models with the AIC, the same data set must be used to fit each model.)

(24)
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As discussed in Section 3.1, we cannot ascertain a priori that the measurement
errors are normally distributed with constant variance. However, the use of an OLS
framework already constitutes an assumption of homoscedasticity. The assumption
of normality does not seem to be a significantly greater burden, and we proceed
with the AIC in spite of these issues, recognizing that the use of the AIC will be
only suggestive. As will be shown in Section 4, there is a very clear preference
among the models when ranked by the AIC. As such, we do not expect our results
to change significantly for a different error model. Similarly, the derivation of the
AIC assumes that any model which is fit to the data is sufficiently accurate so that
the assumption E[N}] = n(t;, z;;0ors) is valid. While this assumption may break
down for the least accurate of the models tested in this report (see Section 4), it is
a standard assumption in the OLS framework (16), provided the estimate éo Ls is
sufficiently close to 6y for each particular model.

There is an element of parsimony in the AIC, as a model which fits the data
poorly (high J(Aors)) or which contains a large number of parameters (high p)
will have a comparatively larger AIC. Thus, the information-theoretic comparison
of models based upon the AIC provides an important safeguard against the risk
of overparameterization. This is particularly important given the wide range in
complexity among the various model parameterizations summarized in Table 2.
Rather than using the AIC to determine a single ‘best’ model, additional theory is
available. If AIC,,;, is the smallest computed AIC value, then we can define the
AIC differences

A, = AIC, — AICin, (25)

for 1 <r < R, where AIC, is the AIC value computed when model r is fit to the
data. Finally, we can compute the Akaike weights

2, exp (55%)

It can be shown (either by likelihood ratio tests or in a Bayesian framework, see
[24]) that the AIC weight w, can be interpreted as the probability that model r is
the best model to describe the data (given the set of R possible models). Thus, after
each model from Table 2 is fit to a data set, we can compute the Akaike weights
for the set of candidate models and use these to assess the necessity of various
mathematical features (e.g., division dependence of cell death rates) in describing
the data. A complete derivation of the AIC and Akaike weights, as well as numerous
examples and exhaustive references, can be found in [24].

(26)

4. Results and discussion. The model calibration results for each possible para-
metrization of the compartmental model considered in this report are summarized
in Table 5 of [20]. There the approximate OLS costs Ja(fors) are given for each
parametrization, as well as the computed AIC values and AIC differences. The
models are also ranked in terms of their relative information theoretic loss.

The AIC selected model is parametrization A5B5 with lognormally distributed
AutoFTI (henceforth, A5B5dist) with a cost JA(éOLS) = 3.0535 x 10''. This para-
metrization resulted in a model with not only the smallest AIC value, but also
the lowest cost (meaning that the decrease in cost more than offset the additional
parameters). Given the shortcomings of simple differential equations models dis-
cussed previously [26, 31, 37, 63] it is not surprising that the best fit model features
a time-dependent division rate. The optimal solution for parametrization A5B5dist
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FIGURE 7. Best-fit solution 4 [ﬁ](t,z;éOLS) for parametrization
A5B5dist. Total cost Ja(fors) = 3.0535 x 10,

is depicted in comparison to the data in Figure 7. The estimated piecewise linear
proliferation rates can be found in Figure 8, and the estimated death rates are sum-
marized in Table 4. For the AutoFI distribution, the best-fit lognormal distribution
has mean E[z,] = 8.739 Ul and ST DIz,] = 3.534 UL The estimated Gompertz
label decay parameters are ¢ = 5.641 x 1073 and k =1 x 1079,

As can clearly be seen in Figure 7, the compartmental model (with suitable
parametrization) is capable of accurately describing the particular data set used
for model calibration in this report. The most notable shortcoming of the model
occurs at t = 24 hours, where a distinct cohort of cells with high CFSE FI can be
seen in the data and is not modeled accurately. As discussed in [18], this cohort is
believed to be either cell duplets or some other anomalous cell types which were not
properly gated out of the measured cell data, and such cells should not be an issue
in future data sets. It also appears that neither of the two generations in the model
solution at ¢ = 48 hours contains enough cells (when compared to the data at that
time). This may also be partly explained as a systematic error resulting from the
presence of cell duplets in the data. It is also possible that small errors associated
with the manner in which counted beads (see [71, Ch. 1]) are used to determine
the total population size.

One of the primary goals of considering various parameterizations for the prolif-
eration and death rates (Section 3) was to investigate the dependence of these rates
on division number and on time. The best-fit parametrization A5B5dist features
a proliferation rate which depends both on time and division number, as well as a
death rate which depends on division number. Additionally, the AutoFI parameter
x4 is lognormally distributed, which was not considered in previous efforts [18].
Given the overwhelming weight assigned to the parametrization A5B5dist in the in-
formation theoretic framework, it is tempting to conclude that each of these features
is necessary in accurately modeling the data. Because the data set contains 4289
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FiGURE 8. OLS best-fit piecewise linear proliferation rate func-
tions for each division number. Red circles indicate nodes which
were estimated in the inverse problem.

points, even a small difference in OLS cost (compare, for example, parameterizations
A5B5dist and A5B4dist) results in significantly different AIC values. However, the
AIC (24) is derived under the assumptions of independent, homoscedastic, normally
distributed errors. If these assumptions are not valid, particularly if the 4289 points
are not independent, then the magnitude of the AIC differences may be misleadingly
large.

In spite of these potential setbacks, there are still several useful conclusions which
can be safely drawn. As expected, the worst parameterizations (in terms of both
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TABLE 4. Estimated death rates [3; in terms of the number ¢ of
divisions undergone.

Divisions | Death Rate (1/hr)
0 0.0165
0.0000
0.0000
0.0000
0.0012
0.0544
0.1572

ST W N

OLS cost and AIC rank) are those which do not permit cell death in the popula-
tion (B1). Parameterizations which feature probabilistically distributed AutoFI are
more accurate than parameterizations which use a constant parameter x, to describe
AutoFI. Among the models which use a constant parameter x, to describe AutoF1I,
the most parsimonious model (that is, the AIC selected model) is parametrization
A5B4. (Parameterizations A5B4 and A5B5 differ minimally in cost, but A5B4 has
fewer parameters.) The best-fit solution for this model is shown in comparison to
the data in Figure 9. We find that a model which fails to account for variabil-
ity in AutoFI in the population of cells does not adequately describe the increasing
heterogeneity of the population of cells as division number increases. This is par-
ticularly noteworthy for cells having undergone 4 or more divisions, where AutoFT
constitutes a comparatively larger fraction of the measured FI of the cells. Such an
observation has important experimental ramifications for the design of intracellular
dyes. While it has long been known that a population of cells must obtain a high
level of FI (relative to their AutoFI) during the initial staining process in order for
the experimenter to resolve multiple rounds of division in the population [56, 64],
we now see that the variability of AutoFI in the population of cells also has an
effect on the peak-to-peak resolution of the data. While AutoFI is a property of
the cells being measured (it arises from intracellular molecules which emit light in
the frequency bands used to detect the intracellular dye), focus may possibly be
directed toward the design of dyes with spectral properties that minimally overlap
with common intracellular molecules.

As in previous work [18, 19], we find that time dependence is a significant feature
of the proliferation rates, given the model formulation (6). Significantly, we find that
the population of cells cannot be accurately modeled by considering only a delay in
the time to first division. For instance, the calibrated model using parametrization
A4B5dist (which is the AIC selected model among those which does not feature
completely time dependent proliferation) is shown in Figure 10. This parametriza-
tion does not permit any proliferation until ¢ > ¢*, thus enforcing a delay before any
division occurs in the population. Even with this feature, subsequent divisions of
cells emerge too quickly in the model solution. Thus more complex time-dependence
(parametrization A5) appears to be necessary, as the resulting decrease in cost out-
weighs the additional parameters.

The compartmental model was motivated by a desire to compute quantities such
as cell numbers from the best-fit model solution. As noted above, previous methods
for obtaining cell numbers relied on some form of deconvolution of the histogram
data, typically via fitting by a series of normal or lognormal curves. While the
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FIGURE 9. Among the models which do not use a lognormal distri-
bution to describe AutoFI, the AIC selected model is parametriza-
tion A5B4. When comparing the best-fit solution to the data, it
is clear that a model lacking an AutoFI distribution will result in
peaks which are too distinct when compared to the data.

compartmental model is more mathematically involved and requires considerably
more time for fitting to data (a few minutes to a few hours, depending upon the
parametrization used and the accuracy of the initial parameter guess for the BFGS
algorithm), it does not require any assumption as to the shape of the distribution
of cells within a single generation. Given a calibrated model solution n(t, x; éo LS)s
one can compute the total number of cells

oo
Nit) = [ nitt.aibors)ds (27)
Tq
for each generation. It may also be of experimental interest to consider the number
of precursors in the population. Because each cell division results in the formation
of two daughter cells from a single mother cell, one must renormalize (by a factor
of 2) the total number of cells in each generation in order to accurately analyze the
proportion of cells proceeding through a specified number of divisions. Precursors,
then, are cells in the original population (that is, at ¢ = 0 hours) which eventually
give rise to other cells with higher division numbers at later times. The number of
precursors is
o0
Py =N _ L / ni(t 2: ors)dz. (28)
2! 2¢ J,.

Given that precursors represent numbers of cells in the original population, it follows
that the total number of precursors

Tmax

P(t) =Y Pi(t)
=0

cannot increase in time (but may decrease as a result of cell death). Cell num-
bers and precursor numbers have been computed from the best-fit model solution
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FIGURE 10. Best-fit model solution with parametrization
A4Bb5dist, the AIC selected model among the subset of models
which does not feature completely time-dependent proliferation.
While this parametrization includes a delay before the first division
is reached, this is still insufficient to describe the data as cells
proceed through subsequent rounds of division too quickly. The
discontinuity in the model solution at ¢ = 48 hours is a result of a
sudden change in the size of the histogram bins on which the data
is specified.

(parametrization A5B5dist) and are shown in Figure 11 for undivided cells (Ny(t),
Py(t)) and divided cells (3:7° N;(t), do:m7° Pi(t)) as well as total cells. It follows
that such curves could easily be used to determine such parameters as approximate
doubling time for the population, or the fraction of cells which do not divide. These
parameters may be of particular importance in accounting for changes in behav-
ior as a function of experimental conditions (e.g., strength of stimulation) or in a
diagnostic setting.

5. Discussion. In this report, a label structured system of PDEs for a population
of dividing cells, indexed by the number of divisions undergone, is derived and fit
to data. Under the appropriate assumptions for the label loss rate, autofluores-
cence parameter, proliferation rates, and death rates, such a model can accurately
fit an experimental data set (Figure 7). Because each generation of cells is math-
ematically described by a separate structured density function, the proliferation
and death rates can be estimated directly in terms of division number, and there
is no need for any parametrization of these rates in the structure variable. This is
in contrast to the previous fragmentation model (1) from [18]. The AIC-selected
best-fit compartmental model contains 29 parameters and results in a best-fit OLS
cost of J4(fors) = 3.0535 x 101! while the best-fit fragmentation model contained
73 parameters and resulted in a cost of 3.0901 x 10*!. Thus the compartmental
model appears quite superior to the previous fragmentation model, as it contains
fewer parameters and has a lower OLS cost. Additionally, the compartmental model
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FIGURE 11. Total cell counts (left) and total precursors (right) in
terms of undivided cells, divided cells, and total cells. The val-
ues are computed from the best-fit model solution n(t,x;éo Ls)
with parametrization A5B5dist. Numerical values at data collec-
tion times are summarized in Tables 5 and 6. The slight increase
(less than 0.3%) in the total number of precursors between ¢ ~ 60
hours and t &~ 90 hours is within the range of numerical error for
the computed solution.

can be used to compute cell numbers in terms of the number of divisions under-
gone. Certainly it may be possible to decrease the number of parameters in the
fragmentation model by changing the placement of the nodes used for the estima-
tion of the proliferation and death rate functions. Yet even if the total number of
parameters could be decreased significantly without increasing the OLS cost of the
fragmentation model, it still could not be used directly to compute cell numbers.
It is interesting to note that using the compartmental model we have found
variability in AutoFI to be an essential feature of an accurate mathematical model.
Yet the fragmentation model assumes only a constant value of AutoFI without
significant sacrifice in accurately fitting the data (see [18]). The explanation for this
unusual observation is the manner in which the proliferation rate is parameterized as
a function of the structure variable (or the ‘translated variable’) in the fragmentation
model. The large number of nodes used for the structural dependence of that
proliferation rate (13 nodes) allows for significant variability in the proliferation rate,
even among cells which are sufficiently close in the structural coordinate. Because
the Gompertz function for label decay assumes that the rate of FI loss is directly
proportional to the quantity of FI, a group of cells which divides immediately and
then pauses will lose less label than a group of cells which waits for some time
and then divides. In other words, the variability of the proliferation rate induces a
variability in the label loss rate. As a consequence of this observation, it would be
interesting to compare the effects of probabilistically distributed AutoFI with the
effects of probabilistically distributed label loss rates in the compartmental model.
The major advantage of the compartmental model over previous efforts is the
ability to compute cell numbers directly from the model solution (Figure 11). Be-
cause the compartmental model can be used to estimate the numbers of cells (or pre-
cursors) having undergone a specified number of divisions, biologically meaningful
parameters can be assessed directly in terms of division number. For instance, the
total number of precursors in the population, as a fraction of the original number,
provides a meaningful estimation of cell viability. The total number of cells in the
population can be used to estimate the population doubling time. As more complex
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experiments are conducted, the compartmental model could be easily generalized
to account for division-linked changes (surface marker expression/differentiation,
genetic mutations, etc.). Such features should be useful when comparing results
from different data sets, such as when attempting to quantify the effects of a given
chemical reagent, or distinguishing between diseased and healthy cells.

We remark that we cannot guarantee and do not assume the uniqueness of the
estimated rates «;(t) and 5;(t), as these quantities will depend heavily on the finite-
dimensional parameterization used, as well as any number of currently unknown
biological mechanisms which may lead to similar behavior. The conclusions reached
with this model (the apparent desirability of time-dependent proliferation rates,
heterogeneity with respect to division number, and distribution of autofluorescence)
are all sufficiently general and have been demonstrated on an information-theoretic
basis. Still, future work should certainly be directed toward addressing the unique
estimability of these rates, and some work (see below) is currently being considered
in this direction.

In addition to issues of uniqueness, the meaningful comparison of parameter esti-
mates between multiple data sets and experimental conditions relies upon quantifi-
cation of the levels of uncertainty in the estimated parameters. This quantification,
typically in the form of confidence bounds, is premised upon the accurate specifica-
tion of the statistical model (14) which links the model to the data. In this report,
the model was fit to the data in an ordinary least squares sense, with the tacit
assumption that the error random variables &; have mean zero and constant vari-
ance. However, this assumption is not an accurate description of the data. While
the misspecification of the statistical error model does not invalidate the ability of
the compartmental model to (qualitatively) fit the available CFSE data set, it does
impede the meaningful quantification of uncertainty in the parameter estimates.
Some initial discussions and results on an appropriate statistical model to be used
with our mathematical model and inverse problem formulation (see [21, Chapter
3]) are given in [20, Section 5.1] and [71, Chapter 4]. Work is ongoing to estab-
lish a suitable mathematical form for the statistical model accurately linking the
histogram data to the model.

5.1. Comparison with deconvolution techniques. Given the applicability of
the compartmental model (once calibrated) to computing the numbers of cells hav-
ing undergone a specified number of divisions, a relevant comparison can be drawn
between the results of a label structured PDE model and the commonly used decon-
volution techniques. In Table 5, the number of cells in each generation is computed
at each measurement time. For each time and generation, the top number is com-
puted from Equation (27). The middle number is computed by first fitting the
function

Tmax
G(z) =D Wilzk; iy i, 03)
i=0
to the data at a given time, where ;(zx; ki, pt;, 0;) is a normal density function with
mean pu; and standard deviation o;, scaled by a factor s;. The method of fitting is
ordinary least squares. Then the total number of cells having undergone 7 divisions
is >, ¥i(2k; Si, fti, 05). The final number in each block of Table 5 is computed in
an analogous manner, but with lognormal rather than normal density functions.
Unsurprisingly, the two deconvolution techniques (fitting with a series of normal
or lognormal curves) provide estimates of cell numbers which are fairly consistent.
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TABLE 5. Total numbers of cells in terms of division number. For
each time and generation, the total number of cells has been com-
puted from the OLS best-fit model solution (top), from a deconvo-
lution of the data using normal curves (middle) and from a decon-
volution of the data using lognormal curves (bottom). While the
numbers computed from normal and lognormal curves are gener-
ally close together, there are clear differences between the values
computed from the deconvolution methods and those obtained with
the compartmental model. The most striking example occurs for
t = 120 hours for cells having undergone 6 divisions. It is interest-
ing to note that the division peaks in the histogram data are not
well-resolved for such cells, making the accurate determination of
cell numbers difficult.

Divisions Undergone
Time (hrs) 0 1 2 3 4 5 6 Total
11339892 0 0 0 0 0 0 11339892
24 9211571 0 0 0 0 0 0 9211571
9254681 0 0 0 0 0 0 9254681
5881557 6555814 0 0 0 0 0 12437372
48 6298359 5473128 0 0 0 0 0 11771487
6294945 5434570 0 0 0 0 0 11729515
1906065 2478042 8092563 20976431 18520420 7588997 0 59562519
96 1970401 3284000 11019352 18184100 18307586 5252346 0 58017785
2364520 3940800 10467773 17773515 18846649 5406993 0 58800249
1476266 1978930 5605926 17086869 25529315 25986246 14337080 | 92000632
120 1969773 2969295 7881600 21017600 26272000 24958400 4597599 89666268
2195762 3435673 7722653 17150087 26755781 29950079 5517118 92727154

However, these estimates occasionally differ from estimates obtained from the com-
partmental model. Of particular note is the difference for cells having undergone 6
divisions at ¢ = 120 hours. It should be noted that this generation of cells is very
difficult to distinguish in this particular histogram data set. Such poorly resolved
generations of cells can be quite problematic for the deconvolution techniques, as
the unique estimation of parameters (for the normal or lognormal curves) requires
that distinct generations of cells be plainly visible. It appears to be a major ad-
vantage of the compartmental model to be able to fit data (and hence compute
cell numbers) even when the histogram data features generations of cells which are
less than ideally resolved. Of course, it is not possible to say from these results
which technique (if either) is providing the correct number of cells. Yet, because
the compartmental model is derived from a conservation law, and this conservation
law must hold regardless of the parameters input into the model, cells cannot enter
or leave the population except as permitted by the form of the model and the given
parameters. Meanwhile, the deconvolution techniques do not arise from any con-
servation law, and the computed cell numbers in each generation may increase or
decrease freely, unrestrained by any balance law. It seems then, that the compart-
mental model should have a major advantage in computing cell numbers, owing to
its ‘memory’ of the number of cells determined at previous time points (even when
the generations of cells are poorly resolved in the data).

This is particularly noteworthy in Table 6, where the number of precursors for
each generation of cells is computed. As in Table 5, each block of Table 6 contains
the results computed from the compartmental model, deconvolution with normal
curves, and deconvolution with lognormal curves. Observe the significant increase
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TABLE 6. Total precursors in terms of divisions number. For each
time and generation, the total number of precursors has been com-
puted from the OLS best-fit model solution (top), from a deconvo-
lution of the data using normal curves (middle) and from a decon-
volution of the data using lognormal curves (bottom). As in Table
5 we find general agreement between the values computed from
deconvolution techniques, which are slightly different than those
computed from the compartmental model. Under the assumptions
of the experiment, the total number of precursors should not in-

crease.
Divisions Undergone
Time (hrs) 0 1 2 3 4 5 6 Total
11339892 0 0 0 0 0 0 11339892
24 9211571 0 0 0 0 0 0 9211571
9254681 0 0 0 0 0 0 9254681
5881557 3277907 0 0 0 0 0 9159465
48 6298359 2736564 0 0 0 0 0 9034923
6294945 2717285 0 0 0 0 0 9012230
1906065 1239021 2023141 2622054 1157526 237156 0 9184963
96 1970401 1642000 | 2754838 | 2273013 1144224 164136 0 9948612
2364520 1970400 | 2616943 | 2221689 1177916 168969 0 10520436
1476266 989465 1401482 2135859 1595582 812070 | 224017 8634740
120 1969773 1484648 1970400 | 2627200 1642000 779950 71837 10545808
2195762 1717837 1930663 | 2143761 1672236 | 935940 86205 10682405

(more than 10%) in the total number of precursors as computed by deconvolu-
tion between t = 48 and t = 96 hours. As discussed above, the total number of
precursors cannot increase in a population of cells. While the number of precur-
sors computed from the compartmental model also increases, it does so by a very
small amount (less than 0.3%) consistent with the error in the numerical solver. Of
course, it has already been noted that some data sets do in fact exhibit increases
in the total number of precursors—a discrepancy arising from the inaccuracy of the
assumption that each well plate contains an identical population of cells. On one
hand, the deconvolution techniques would seem to have an advantage, as they are
not constrained by any conservation law. However, this has an interesting impli-
cation. Because the deconvolution techniques do not link the population estimates
from one data collection time to the next, there is a potential bias associated with
such methods as a result of sample-to-sample variability in the experimental data.
It should be noted that sample-to-sample variability is also problematic for the com-
partmental model solution. If the samples used to obtain the experimental data are
not sufficiently similar, the conservation law (which follows from the assumption
that each sample is identical) used to derive the model may not hold. In such a
case, the compartmental model would be systematically in error (when compared to
the data), as the calibrated model itself would still follow the assumed conservation
law. Following the discussion above, we believe that a more accurate statistical
model, which will necessarily include a careful consideration of the method of sam-
pling/data collection, will resolve any discrepancy with the compartmental model.
Some preliminary work on this subject is surveyed in [71, Chapter 4].

5.2. Generalizations of the mathematical model. Apart from issues involv-
ing the statistical model relating the mathematical model to the data, it has been
shown that the compartmental model accurately reproduces the behavior of a PHA-
stimulated population of CD4+ cells as represented in histogram data from a flow
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cytometry assay. This model accounts for the natural rate of CFSE FI decay result-
ing from turnover of the intracellular label as well as the autofluorescence of cells in
the absence of any fluorescent labeling. Simple linear models are used to describe
the rates of cell division and death.

In this paper only a single CFSE data set has been examined and used to estimate
the parameters of the mathematical model(s). It is believed that the compartmental
model is quite general and should apply to a wide range of data sets from various
experimental setups. Work is ongoing to analyze additional data sets to demonstrate
such a wide applicability of the model. As additional data sets become available,
several additional features may need to be considered at greater length.

It is hoped that the compartmental model can be generalized to account for
multiple cell types both in vivo and in vitro. While the cells studied in this report
were cultured in a saturating quantity of the stimulating agent PHA, cells in vivo
(or even cells in vitro in a different experimental setup) will not experience such
a strong, constant stimulation. As such, the possibility exists that some cells may
return to a quiescent state during the proliferation assay. It is known that the
autofluorescence of a cell changes depending upon its state of activation, and thus
this mechanism may need to be included in subsequent modeling efforts. (For the
current data set, the quiescent cells are all undivided, and AutoF1I is negligible for
those cells.)

Similar to the efforts in [18, 19], we have used Malthusian rates for both prolifer-
ation (with time-dependent rates «;(t)) and death (with rates ;). As discussed in
Section 3, such an assumption is reasonable provided the turnover of cells (resulting
either from division or death) occurs at a sufficiently rapid pace. Given the physi-
ological constraints placed on rapidly dividing cells (e.g., rates of growth and DNA
replication), one would expect some sort of minimum cell cycle time. It is unclear
if the necessity of time dependence in the Malthusian rates «; is an artifact of such
a feature. To test this hypothesis, several generalizations of the proliferation and
death rate terms are immediately available.

First, one might consider the addition of a second structure variable (say, volume)
which could be used to enforce a minimum cell cycle time by requiring that cells
progress from some size V' to 2V before dividing, at which point two cells of size V
are produced. However, in the absence of additional observations, it is unclear what
parameters (e.g., average rate of growth, or the parameter V') might be estimable
from CFSE histogram data. Video microscopy measurements by Hawkins, et al.
[43] indicate that average cell size may be division dependent, and this may add
some additional complexity to the inclusion of volume structure. Biologically, it
is expected that apoptosis occurs only at particular checkpoints in the cell cycle
(particularly if external ‘kill signals’ are absent) so that a generalization to volume
structure (or any other surrogate for cell cycle position or physiological age) may
permit a more accurate description of cell death. Still, it is unclear what information
might be estimated from only CFSE histogram data. It is possible that the forward
scatter (FSC) of laser light may possibly be used as an observable surrogate for cell
size, and some additional work will be necessary to investigate this possibility.

A second possibility to generalize the rates of proliferation and death would
be to consider rate-limiting (e.g., logistic, Gompertz) models for proliferation and
death. Some biological mechanisms have been proposed which may lead to density-
dependent rates of cell death [27], and a Gompertz model for cell growth has been
used to account for quiescence in the context of a size-structured population model
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[40]. Of course, generalizations to nonlinear division and death must be consid-
ered in the context of the improvement they provide in fitting a given model to
CFSE data sets. Given the accuracy of the simple linear models (albeit with time-
dependent rates of proliferation), such generalizations seem unnecessary at the mo-
ment.

Given that the compartmental model can be used to compute numbers of cells
per generation directly, some comparison has already been made between the re-
sults obtained with this model and the cell numbers computed from deconvolution
techniques (Tables 5 and 6). It remains to compare the parameter estimates and
model fits obtained with the compartmental model with those obtained from pre-
vious models (Smith-Martin, cyton, etc.). In fact, it is possible to incorporate into
the compartmental model the mathematical forms used to describe proliferation
and death in these models. Recall that the method of characteristics provides a
solution (equations (9) and (11)) of the form

n;(t, z(t; s)) = F(Division,Death) (29)

where z(t;s) is the characteristic line emanating from the point (0,s) in the ¢z-
plane. Clearly, the left side of Equation (29) is independent of any mathematical
formulation of cell proliferation and death. In this report, the form of the hypo-
thetical function F' is determined from the PDE formulation of the compartmental
model (2) and the accompanying assumptions regarding the Malthusian rates of
proliferation and death. Alternatively, one could consider using (29) or its differ-
ential form (i.e., (10)) as a starting point, defining the right side of the equation
in accordance with the assumptions of the Smith-Martin or cyton models, or their
generalizations [34, 42, 48, 60, 76]. While previous authors have derived these mod-
els specifically in terms of total cell numbers, (29) could be related back to previous
work by simple integration. The primary advantage in using (29) would be in the
direct comparison of the model to histogram data, rather than from computed cell
numbers. In fact, using a similar compartmental model [41, 67] developed simul-
taneously with the one presented here, Allgéwer et al. have shown that the model
solution is separable in the sense that one can consider label dynamics and cellular
dynamics independently of one another. Thus the time-dependent rates a;(t) and
Bi(t) could be exchanged for, say, the cyton model of [42] or the recent branching
process model of [59]. This simple yet remarkably useful solution technique can
extend the current modeling framework to an entire class of structured population
models for CFSE data. Further study could reveal the extent (if any) to which
such a direct comparison improves the unique identification of parameters in exist-
ing models (e.g., cyton dynamics) and/or the interpretation of the time-dependent
rates a;(t) and f;(t) in the current modeling framework. Of course, this will first
rely on an accurate statistical model.

In this context, it is clear that several alternative possibilities exist for a math-
ematical description of proliferation and death rates. Thus it is clear that the
interpretation of the proliferation and death parameters must be made with careful
regard to the form of the model. Given the form of the model solution (Equa-
tions (9) and (11)) for the compartmental model, it is plainly observed that linear
changes in parameters for proliferation and death rates cause an exponential re-
sponse in the computed solution [32, 38]. As such, the sensitivity of the model to
these parameters, as well as the degree to which their estimation is unique, must
be carefully considered when interpreting estimated parameters. The uniqueness of



732 H. T. BANKS, ET AL.

the estimated functions «;(¢) will depend on how the nodes for the linear splines are
chosen in relation to the times at which data is taken. In some models, it has been
shown that the effects of a linear increase of cell cycle time with division number
cannot be distinguished from the effects of a linear increase in the death rate with
division number [49]. If this is the case, then the biological interpretation of some
parameters may be suspect.

Ideally, the values of «;(t) and §; can be related back to more physical/experi-
mental parameters such as the type and strength of stimulation, which may in turn
require the mathematical modeling of certain molecular pathways within individual
cells. Recent work has indicated that the mechanisms responsible for cell prolifer-
ation and death may be mutually dependent upon a common molecular pathway
[33, 70]. As more data becomes available, we hope to examine how the estimated
parameters change under various experimental conditions, with an eye toward ad-
ditional constitutive relationships linking molecular and/or subcellular functions to
population dynamics [25]. In this context, it seems necessary to consider the ex-
tent to which these functions and/or pathways are inherited. Evidence suggests
that closely related cells exhibit strong correlation in times to divide and some
correlation in times to die, and that this correlation tends to decrease with the
number of divisions undergone [43]. Cells with a common precursor may also share
a common division destiny [43], which can be altered by stimulation conditions
[73]. While computed cell numbers are relatively unaffected provided correlation is
limited to cells having undergone the same number of divisions [34, 43, 46], corre-
lation between subsequent division of cells can alter the dynamics predicted by a
mathematical model [76]. For large populations, this effect seems negligible, but
may play an important role in vivo where only a small number of responding cells
can trigger an immune response [76]. Cyton models and branching process models
have been formulated to account for various levels of correlation [34, 46, 76], and
these models may be incorporated into the compartmental model framework as de-
scribed above. Alternatively, it may be possible (given any reasonable, identifiable
parameterizations of cell division and death) to place probability distributions on
these parameters (e.g., on the functions a;(t) and 3;(¢)) [6, 9, 12] in the manner
described in Section 3.3.

5.3. Concluding remarks. Our compartmental model is the latest in a series
of structured PDE models which can be fit directly to histogram representations
of flow cytometry data. Once calibrated, the compartmental model can be used
to quickly and accurately estimate the numbers of cells having undergone a certain
number of divisions. This information can be used to determine biologically relevant
parameters which will help to meaningfully compare cells from different donors
and experiments. While the use of cell numbers per generation is not new, the
direct modeling of histogram data reduces any need for deconvolution techniques
which may introduce unnecessary bias into the computed cell numbers. Moreover,
because the model is based upon conservation principles, it should be possible to fit
histogram data even when the ‘peaks’ in the data (representing distinct generations
of cells) are not well-resolved. This is a significant advantage over deconvolution
techniques. The actual number of generations which can be accurately modeled
(that is, the maximum value of i,,,x) Will depend upon the uniformity of the initial
uptake of intracellular dye as well as the magnitude of the resulting CFSE F1I relative
to cellular AutoFT.
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We are actively working to collect additional data sets with which to demon-
strate the widespread applicability of this model, as well as to use this model in a
systematic fashion to analyze how the estimated parameters vary under changing
experimental and biological conditions. Most immediately, this will require the de-
velopment of an accurate statistical model for the data. The generalization of the
model to multiple cell types is immediate, although an accurate quantification of
any interaction terms will require some careful thought and experimentation.

As more information becomes available regarding the complex processes involved
in cell proliferation, we are confident that the model discussed here provides a firm
physiological foundation upon which CFSE-based assay data can be understood. We
strongly believe that the ideas and results presented here will form an important
interpretive framework with a wide array of applications in experimental settings,
diagnostic tests [35], and perhaps in a more integrated model of cell dynamics
[47, 51].
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