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Abstract. In this paper, we study the global properties of an SIR epidemic
model with distributed delays, where there are several parallel infective stages,

and some of the infected cells are detected and treated, which others remain
undetected and untreated. The model is analyzed by determining a basic

reproduction number R0, and by using Lyapunov functionals, we prove that the

infection-free equilibrium E0 of system (3) is globally asymptotically attractive
when R0 ≤ 1, and that the unique infected equilibrium E∗ of system (3) exists

and it is globally asymptotically attractive when R0 > 1.

1. Introduction. It is well known that many infectious diseases in a population
are often described by an SIR model where the population is divided into three
species: susceptible individuals (S), infectious individuals (I) and recovered indi-
viduals (R). The basic forms of these models are ordinary differential equations
(ODEs) (see [5, 6], [10, 11, 12]), where the models do not have a prolonged infec-
tious period. However, the infection of the disease may have different consequences.
For example, some infected hosts can be properly detected and treated. Based on
this fact, Korobeinikov [9] proposed an SIR model of infectious diseases with several
parallel infective stages. In [9], he considered the SIR model with n alternative in-
fectious pathways and n noninteracting infective subclasses Ii, i = 1, 2, · · · , n, and
assumed that after infection an individual immediately moves from the susceptible
compartment into one of the infective compartments, and then entered into the
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recovered compartment where remains thereafter. In addition, the transmission of
the infection is denoted by βiSIi in [9], so the SIR model can be written as follows:



Ṡ(t) = λ−
n∑
j=1

βjIj(t)S(t)− µS(t),

İi(t) = pi

n∑
j=1

βjIj(t)S(t)− δiIi(t), i = 1, 2, · · · , n.

Ṙi(t) =

n∑
j=1

rjIj(t)− σiRi(t),

(1)

where
(A1) pi ∈ (0, 1) is the probability for an infected individual to enter the ith

infective compartment;
(A2) λ is the recruitment rate of the susceptible class;
(A3) µ is the natural death rate of the susceptible individuals, and δi is the rate

of the infectious individuals of the ith compartment leave this compartment (that
is, δi = rj + µ), where rj denotes the recovery rate;

(A4) σi is the remove rate of the recovered individuals.
In [1], in order to account for transmission by mosquitoes, Cooke investigated a

discrete delay model, where the delay is used to denote a latent period in the vector.
Takeuchi et al. [23] presented the equations for epidemics (e.g. malaria) spread by
vectors (mosquitoes) which have an incubation time to become infectious. Their
model would give rise to a system of distributed delay differential equations, and Mc-
Cluskey [17] considered the equations with a bounded distributed delay and a gen-
eral nonlinear incidence function to study the properties of the SIR epidemic model,
respectively. In view of the complexity of delay differential equations (DDEs), many
scholars have studied their mathematical models without delays. In fact, many bi-
ological processes have inherent delays, and it may lead to additional insights in
the study of complicated biological processes. Herz et al. [7] first proposed and
studied an HIV-1 model with delay in 1996. Henceforth, some authors developed
their models with discrete or distributed delays (see [2, 4, 14, 24, 15, 22, 25]). This
paper extends the results of Korobeinikov [9] adding a distributed delay. The di-
rect Lyapunov method and the notion of an auxiliary function have found a wider
range of application and Lyapunov functions may be used to achieve a multitude
of diverse tasks. For example, this method may be applied to estimate the rate of
convergence to a steady state, or the size of a basin of attraction in ODEs (see [9],
[10, 11, 12]). The approach here is to use a Lyapunov functional of the type used
by McCluskey [17]. Recently, [16, 18, 19, 20, 21] which used a similar Lyapunov
functional.

In this paper, a delayed SIR model of infectious disease with several parallel
infective stages is introduced in Section 2. In Section 3, by constructing Lyapunov
functionals, we show that the global asymptotic behaviors of the model relies only
on the basic reproduction number R0. The paper ends with conclusions in Section
4.
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2. The model and equilibria. In this section, we develop the model give in [9]
by the following system of DDEs:

Ṡ(t) = λ− µS(t)−
n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj ,

İi(t) = pi

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj − δiIi(t),

Ṙi(t) =

n∑
j=1

riIj(t)− σiRi(t),

(2)

where following [8] and [3], the vectors can be omitted from the equations by includ-
ing a distributed delay τj in the incidence term up to a maximum delay h > 0. The

incidence at time t is βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj(here kj is a Lebesgue integrable

function). We can choose βj such that

∫ h

0

kj(τj)dτj = 1.

The variables and the other parameters are defined the same as (1).

Since Ri does not appear in the first two equations, it is sufficient to analyze the
behavior of solutions of subsystem as follows:

Ṡ(t) = λ− µS(t)−
n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj ,

İi(t) = pi

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj − δiIi(t).
(3)

The initial condition for system (3) is

S(0) ∈ R≥0, Ii(θ) = φi(θ), for θ ∈ [−h, 0], (4)

where φi ∈ C = C([−h, 0], R≥0), the space of continuous functions from [−h, 0] to
R≥0, equipped with the sup-norm: ‖φ‖ = sup

θ∈[−h,0]

φ(θ). By the standard theory of

functional differential equations [8], we can prove that the solutions of system (3)
with initial condition (4) exist and are differentiable for all t > 0. Moreover, the

phase space X = R≥0×
n︷ ︸︸ ︷

C × · · · × C is positively invariant.

Lemma 2.1. For initial conditions in (4), solutions of system (3) are positive
and ultimately uniformly bounded in X.

Proof. Since the right hand side of system (3) is completely continuous, so the
solution (S(t), I1(t), · · · , In(t)) of system (3) with initial condition (4) exists and is
unique. Clearly, from system (3), we have

S(t) = S(0)e
−

∫ t
0

(µ+
n∑
j=1

βj
∫ h
0
kj(τj)Ij(θ−τj)dτj)dθ

+

∫ t

0

λe

∫ θ
t

(µ+
n∑
j=1

βj
∫ h
0
kj(τj)Ij(ξ−τj)dτj)dξ

dθ > 0,

(5)

evidently, we obtain S(t) > 0 for all t ≥ 0 since S(0) > 0.
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Next, we will prove that Ii(t) > 0 for all t ≥ 0, i = 1, 2, · · · , n. We easily see that
disease is initially present when the initial conditions Ii(θ0) for some θ0 ∈ [−h, 0];
by the continuity, Ii(t) is positive on some interval about θ0, then there exists t1 > 0
such that Ii(t1) > 0. From the second equation of (3), we have

İi(t) ≥ −δiIi(t), for t ≥ t1,

so

Ii(t) ≥ Ii(t1)e−δi(t−t1) > 0, for t ≥ t1.

Let U(t) = S(t) + Ii(t), then we have

dU(t)

dt
= λ− µS(t)− (1− pi)

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj − δiIi(t)

≤ λ− µS(t)− δiIi(t)
≤ λ− µ(S(t) + Ii(t)),

noting that pi ∈ (0, 1), δi = ri + µ, and so

lim sup
t→+∞

(S(t) + Ii(t)) ≤
λ

µ
, i = 1, 2, · · · , n.

It follows that the system (3) is point dissipative. Without loss of generality, we
assume that

S(t) + Ii(t) ≤
2λ

µ
, i = 1, 2, · · · , n for all t ≥ −h.

Hence, we may assume Ii(t) is bounded above, which in turn implies Ṡ(t) > 0 for
small S(t), and so S(t) is positive for t > 0.

Now, we consider the equilibria of system (3). Obviously, system (3) always has
an infection-free equilibrium E0 = (S0, 0, 0, · · · , 0), where S0 = λ

µ , I
0
i = 0, i =

1, 2, · · · , n. Apart from this steady state, system (3) can also has the infected
equilibrium E∗ = (S∗, I∗1 , I

∗
2 , · · · , I∗n), and satisfies the following algebraic equations:

0 = λ−
n∑
j=1

βjI
∗
j S
∗ − µS∗,

0 = pi

n∑
j=1

βjI
∗
j S
∗ − δiI∗i ,

i = 1, 2, · · · , n.

Therefore,

S∗ =
1

n∑
j=1

βjpj
δj

, I∗i =
(λ− µS∗)pi

δi
, i = 1, 2 · · · , n.

The basic reproduction number [3] for the model is

R0 =

n∑
i=1

βi
pi
δi

λ

µ
.
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3. Global dynamics. In this section, we shall study the global attractivities of
the infection-free equilibrium E0 and the infected equilibrium E∗ of system (3) by
constructing the Lyapunov functionals, respectively.

Theorem 3.1.

(i) If R0 ≤ 1, then the system (3) has no infected (or positive) equilibrium,
and the infection-free equilibrium E0 = (S0, 0, 0, · · · , 0) is globally asymptotically
attractive in Rn+1

≥0 .

(ii) If R0 > 1, then the infected equilibrium E∗ = (S∗, I∗1 , I
∗
2 , · · · , I∗n) is globally

asymptotically attractive in Rn+1
+ .

Proof. (i) Let g(z) = z − 1− ln z, z ∈ R+, then g(z) ≥ 0 for z > 0 and g(z) = 0
if and only if z = 1.

Define a Lyapunov functional,

V1(t) = S0g(
S(t)

S0
) +

n∑
i=1

aiIi(t) + S0U+(t), ai =
βiλ

δiµ
,

(6)

where

U+(t) =

n∑
j=1

βj

∫ h

0

Fj(τj)Ij(t− τj)dτj , Fj(τj) =

∫ h

τj

kj(s)ds, Fj(h) = 0.

Noting that Fj(τj) > 0 for 0 ≤ τj < h since the support of kj has positive measure
near h, and from Ii(t) ≥ 0 implies U+(t) ≥ 0 with equality if and only if Ii(t) is
identically zero on the interval [t− h, t].

We calculate the time derivative of U+(t),

U̇+(t) =
d

dt

n∑
j=1

βj

∫ h

0

Fj(τj)Ij(t− τj)dτj

=

n∑
j=1

βj

∫ h

0

d

dt
Fj(τj)Ij(t− τj)dτj

= −
n∑
j=1

βj

∫ h

0

Fj(τj)
d

dτj
Ij(t− τj)dτj .

Using integration by parts, we obtain:

U̇+(t) =

n∑
j=1

βjFj(τj)Ij(t− τj)
∣∣∣h
τj=0

+

n∑
j=1

∫ h

0

βjIj(t− τj)
dFj(τj)

dτj
dτj

=

n∑
j=1

βj

∫ h

0

kj(τj)Ij(t)dτj −
n∑
j=1

∫ h

0

βjkj(τj)Ij(t− τj)dτj .
(7)
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By (6), we obtain the time derivative of V1(t) along a solution of system (3):

V̇1(t)
∣∣∣
(3)

= (1− S0

S(t)
)Ṡ(t) +

n∑
i=1

aiİi(t) + S0U̇+(t)

= λ− µS(t)−
n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj

− S0

S(t)
(λ− µS(t)−

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj)

+

n∑
i=1

ai(pi

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj − δiIi(t))

+S0
n∑
j=1

βj

∫ h

0

kj(τj)(Ij(t)− Ij(t− τj))dτj

S0=λ
µ

= −µ(S(t)− S0)(1− S0

S(t)
)

+S(t)(

n∑
i=1

aipi − 1)

n∑
j=1

βj

∫ h

0

kj(τj)Ij(t− τj)dτj

+

n∑
i=1

βiIi(t)S
0 −

n∑
i=1

aiδiIi(t).

(8)

Using

R0 =

n∑
i=1

βipi
δi

λ

µ
= S0

n∑
i=1

βipi
δi

, ai =
βiλ

δiµ
, i = 1, 2, · · · , n.

Hence, we have

V̇1(t)
∣∣∣
(2)

= −µ(S(t)− S0)2

S(t)
+ S(t)(R0 − 1)

n∑
j=1

βj

∫ h

0

kj(τj)Ij(t− τj)dτj ≤ 0

when R0 ≤ 1 and V̇1(t)
∣∣∣
(2)

= 0 implies that S(t) = S0 and R0 = 1 or Ii(t) = 0.

Therefore, the largest invariant set in {V̇1(t)
∣∣∣
(2)

= 0} is the singleton {E0}. By the

LaSalle invariance principle [8] and [13], E0 is globally attractive in X.

(ii) From section 2, we know that an infected equilibrium E∗ = (S∗, I∗1 , I
∗
2 , · · · , I∗n)

exists, we now prove that E∗ is globally asymptotically attractive in
o

X. In partic-
ular, this means E∗ is unique.

Define a Lyapunov functional for E∗,

V2(t) = S∗g(
S(t)

S∗
) +

n∑
i=1

big(
Ii(t)

I∗
) + U+(t), bi =

βiS
∗

δi
, (9)

here

U+(t) =

n∑
i=1

∫ h

0

βiS
∗I∗i Fi(τi)g(

Ii(t− τi)
I∗i

)dτi,

Fi(τi) =

∫ h

τi

ki(s)ds, Fi(h) = 0.
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Then we have

U̇+(t) =

n∑
i=1

βiS
∗I∗i

∫ h

0

Fi(τi)g(
Ii(t− τi)

I∗i
)dτi

= −
n∑
i=1

βiS
∗I∗i

∫ h

0

Fi(τi)
d

dτi
g(
Ii(t− τi)

I∗i
)dτi

= −
n∑
i=1

βiS
∗I∗i Fi(τi)g(

Ii(t− τi)
I∗i

)
∣∣∣h
τi=0

+

n∑
i=1

βiS
∗I∗i

∫ h

0

dFi(τi)

dτi
g(
Ii(t− τi)

I∗i
)dτi

=

n∑
i=1

βiS
∗I∗i

∫ h

0

(g(
Ii(t)

I∗i
)− g(

Ii(t− τi)
I∗i

))dτi

=

n∑
i=1

βiS
∗Ii(t)−

n∑
i=1

βiS
∗
∫ h

0

ki(τi)Ii(t− τi)dτi

+

n∑
i=1

βiS
∗I∗i

∫ h

0

ki(τi) ln
Ii(t− τi)
Ii(t)

dτi.

(10)

In the following, we calculate the time derivative of V2(t) along the solution of (3)
is given by

V̇2(t)
∣∣∣
(3)

= (1− S∗

S(t)
)Ṡ(t) +

n∑
i=1

bi(1−
I∗i
Ii(t)

)İi(t) + U̇+(t)

= λ− µS(t)−
n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj

− S∗

S(t)
(λ− µS(t)−

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj)

+

n∑
i=1

bipi

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj −
n∑
i=1

biδiIi(t)

−
n∑
i=1

bipi
I∗i
Ii(t)

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj +

n∑
i=1

biδiI
∗
i

+

n∑
i=1

βiS
∗I∗i

∫ h

0

ki(τi)
[Ii(t)
I∗i
− Ii(t− τi)

I∗i
+ ln

Ii(t− τi)
Ii(t)

]
dτi.

(11)

Noting that

λ = µS∗ +

n∑
j=1

βjS
∗I∗j ,

pi

n∑
j=1

βjI
∗
j S
∗ = δiI

∗
i ,

biδiI
∗
i = bipi

n∑
j=1

βjI
∗
j S
∗ = βiS

∗I∗i .

(12)
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Since bi = βiS
∗

δi
, then

n∑
i=1

bipi = 1 and bipiβjS
∗I∗j = bjpjβiS

∗I∗i . Hence, we get

V̇2(t)
∣∣∣
(3)

= µS∗ +

n∑
j=1

βjS
∗I∗i − µS(t)− S∗

S(t)
(µS∗ +

n∑
j=1

βjS
∗I∗j ) + µS∗

+S∗
n∑
j=1

βj

∫ h

0

kj(τj)Ij(t− τj)dτj −
n∑
i=1

biδiIi(t)

−
n∑
i=1

bipi
I∗i
Ii(t)

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj +

n∑
i=1

biδiI
∗
i

+

n∑
i=1

βiS
∗I∗i

∫ h

0

ki(τi)
[Ii(t)
I∗i
− Ii(t− τi)

I∗i
+ ln

Ii(t− τi)
Ii(t)

]
dτi

= µS∗(2− S∗

S(t)
− S(t)

S∗
) +

n∑
j=1

βjS
∗I∗j (2− S∗

S(t)
)

+

n∑
j=1

βjS
∗I∗j

∫ h

0

kj(τj)(ln
Ij(t− τj)

I∗j
− ln

Ij(t)

I∗j
)dτj

−
n∑
j=1

bipi
I∗i
Ii(t)

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj

= µS∗(2− S∗

S(t)
− S(t)

S∗
) +

n∑
i=1

bipi

n∑
j=1

βjS
∗I∗j (2− S∗

S(t)
)

−
n∑
i=1

bipi
I∗i
Ii(t)

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj

+

n∑
i=1

bipi

n∑
j=1

βjS
∗I∗j

∫ h

0

kj(τj) ln
Ij(t− τj)

I∗j
dτj

+

n∑
i=1

bipi

n∑
j=1

βjS
∗I∗j

∫ h

0

kj(τj) ln
I∗j
Ij(t)

dτj .

(13)

Set
n∑
i=1

bipi

n∑
j=1

βjS
∗I∗j (2− S∗

S(t)
)−

n∑
i=1

bipi
I∗i
Ii(t)

n∑
j=1

βj

∫ h

0

kj(τj)S(t)Ij(t− τj)dτj

+

n∑
i=1

bipi

n∑
j=1

βjS
∗I∗j

∫ h

0

kj(τj)(ln
Ij(t− τj)

I∗j
+ ln

I∗j
Ij(t)

)dτj

∆
=

n∑
i=1

bipi

n∑
j=1

βjS
∗I∗j

∫ h

0

kj(τj)G(τj)dτj ,

where

G(τj) = 2− S∗

S(t)
− I∗i Ij(t− τj)S(t)

Ii(t)I∗j S
∗ + ln

Ij(t− τj)
I∗j

+ ln
I∗j
Ij(t)

= 1− S∗

S(t)
+ ln

S∗

S(t)
+ 1− I∗i Ij(t− τj)S(t)

Ii(t)I∗j S
∗ + ln

I∗i Ij(t− τj)S(t)

Ii(t)I∗j S
∗

+ ln
I∗j
Ij(t)

+ ln
Ii(t)

I∗i

= −g(
S∗

S(t)
)− g(

I∗i Ij(t− τj)S(t)

Ii(t)I∗j S
∗ ) + ln

I∗j Ii(t)

Ij(t)I∗i
.

(14)
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Note that
n∑
i=1

bipi

n∑
j=1

βjS
∗I∗j ln

I∗j Ii(t)

Ij(t)I∗i

=

n∑
i=2

bipi

i−1∑
j=1

βjS
∗I∗j ln

I∗j Ii(t)

Ij(t)I∗i
+

n−1∑
i=1

bipi

n∑
j=i+1

βjS
∗I∗j ln

I∗j Ii(t)

Ij(t)I∗i

=

n∑
i=2

bipi

i−1∑
j=1

βjS
∗I∗j ln

I∗j Ii(t)

Ij(t)I∗i
+

n∑
i=2

bipi

i−1∑
j=1

βjS
∗I∗j ln

I∗i Ij(t)

Ii(t)I∗j

= 0.

(15)

So, we obtain

V̇2(t) = µS∗(2− S∗

S(t)
− S(t)

S∗
) +

n∑
i=1

bipi

n∑
j=1

βjS
∗I∗j

∫ h

0

kj(τj)G(τj)dτj

= µS∗(2− S∗

S(t)
− S(t)

S∗
)

−
n∑
i=1

bipi

n∑
j=1

βjS
∗I∗j

∫ h

0

kj(τj)
[
g(

S∗

S(t)
) + g(

I∗i Ij(t− τj)S(t)

Ii(t)I∗j S
∗ )

]
dτj

≤ 0.

We have G(τj) ≤ 0, since g(z) ≥ 0 and

2− S∗

S(t)
− S(t)

S∗
≤ 0.

Then, we have V̇2(t)
∣∣∣
(2)
≤ 0 for all (S, I1, I2, · · · , In) ∈

o

X, and thus omega limit

sets of solutions are contained the largest invariant subset of {V̇2(t)
∣∣∣
(2)

= 0}. So

V̇2(t) ≡ 0 if and only if

S(t) = S∗,
I∗i Ij(t− τj)S(t)

Ii(t)I∗j S
∗ = 1.

Along a solution in this set, we have

S(t) = S∗, Ṡ(t) = İi(t) ≡ 0, i = 1, 2, · · · , n,
which means that

S(t) = S∗, Ii(t) = I∗i , i = 1, 2, · · · , n,
thus, the largest invariant subset is {E∗}. By the LaSalle invariance principle [8]
and [13], we can show that the infected equilibrium E∗ is globally asymptotically
attractive.

4. Conclusions. A delayed SIR epidemic model with multiple infection stages of
infectious individuals such as some of the infected are detected and treated, the
others remain undetected and untreated is investigated in our paper. The total
target cells are divided into a healthy target cell compartment S, n infected target
cell compartments representing different infectious stages. The purpose for this
paper is to study how the diversities of stages and pathways can affect the global
dynamics of a pathogen population system, and to extend the works in Korobeinikov
[9]. The global dynamics of the uninfected and infected steady states of these models
are established by direct Lyapunov method. It is shown from the results that the
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basic reproduction numbers R0 determined the global dynamics of our model: the
infection-free equilibrium E0 of system (3) is globally asymptotically attractive
when R0 ≤ 1; the infected equilibrium E∗ of system (3) is globally asymptotically
attractive when R0 > 1.
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