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Abstract. Toxoplasma gondii (T. gondii) is a protozoan parasite that infects
a wide range of intermediate hosts, including all mammals and birds. Up to
20% of the human population in the US and 30% in the world are chronically
infected. This paper presents a mathematical model to describe intra-host
dynamics of T. gondii infection. The model considers the invasion process,
egress kinetics, interconversion between fast-replicating tachyzoite stage and
slowly replicating bradyzoite stage, as well as the host’s immune response.
Analytical and numerical studies of the model can help to understand the
influences of various parameters to the transient and steady-state dynamics of
the disease infection.

1. Introduction. Toxoplasma gondii, often referred to as T. gondii, is a parasite
that is able to infect a wide range of hosts, including all mammals and birds [13].
Up to one third of the world’s human population and about 20% of the population
in the US are estimated to carry a Toxoplasma infection [1]. People can be infected
by eating infected meat, by drinking water contaminated with the parasite, or by
transmission from mother to fetus. During acute Toxoplasma infection, the patient
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Figure 1. Diagram representing the life cycle of T. gondii.
Reprinted from [15] with permission from Elsevier.

typically exhibits a mild flu-like illness (swollen lymph nodes, or muscle aches and
pains that last for a month or more) or no illness at all. However, people with
a weakened immune system, such as AIDS patients or recipients of chemotherapy
and organ transplant, may develop serious inflammation in the brain or the eyes.
In most immunocompetent patients, the infection enters a latent phase, during
which tissue cysts may form in the brain and muscle. Recent studies show that
latent Toxoplasmosis may have significant effects on human behavior and may lead
to neuropsychiatric disorders, e.g. schizophrenia. In addition, infection acquired
during pregnancy may spread and cause severe damage to the fetus [1].

T. gondii has a complex life cycle, as seen in Figure 1. The parasite uses the
feline to reproduce sexually. When the cat becomes infected, it sheds oocysts,
which infect the environment. These oocysts can be ingested by mammals and
birds which then become infected with the parasite [13]. Eating another organism
that is infected can also infect the secondary hosts. A few mathematical models
have been developed to investigate the transmission dynamics of T. gondii between
different hosts [5, 19, 24, 25, 38].

Within a host, T. gondii exists in two interconvertable stages: bradyzoites and
tachyzoites. Bradyzoites have the slow-growing and encysted form whereas tachy-
zoites are the fast-replicating parasites. Tachyzoites disseminate within the host
and lead to the acute phase of infection. After the bradyzoite-containing cysts are
ingested by the host, the walls of these cysts are digested inside the host’s stom-
ach. Bradyzoites, which are resistant to gastric conditions in the stomach, will
subsequently invade the host’s epithelial cells of the small intestine and convert into
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tachyzoites there. While most of tachyzoites in immunocompetent hosts are elimi-
nated by the innate and adaptive immune responses, some tachyzoites differentiate
into the dormant bradyzoite stage inside host cells [13]. The differentiation of tachy-
zoites into the bradyzoite stage plays an essential role in the development of tissue
cysts, which allows life-long persistence of the parasites in the host. Reactivation
of bradyzoites back to tachyzoites can lead to life threatening infection. The inter-
conversion between tachyzoites and bradyzoites can be influenced by many in vivo
and in vitro factors. In this work, we aim to develop a mathematical model to un-
derstand the nonlinear, complex interactions between T. gondii invasion dynamics
and host immune response.
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Figure 2. Compartmental model representing within-host inva-
sion dynamics of T. gondii. Note the immune response is not
shown.

2. Model development. We develop a compartmental model to describe the inva-
sion dynamics of T. gondii ; see Figure 2. The model has 7 state variables: the pop-
ulation size of uninfected cells, X ; the population of cells infected with tachyzoites,
YT ; the population of cells containing early-stage bradyzoites, YB ; the population
of cells containing encysted bradyzoites, YC ; the population of free tachyzoites, PT ;
the population of free bradyzoites, PB; and the effector cells of the host’s immune
response, Z.

We assume uninfected cells are generated at a constant rate of λ and assume
the average life time of an uninfected cell is 1/d. In the absence of an infection,

the population dynamics of host cells is given by Ẋ = λ − dX . Under this simple
population dynamics model, the number of uninfected cells converges to the equilib-
rium X0 = λ/d. Free parasites infect uninfected cells at a rate proportional to the
product of their abundance: βPTXPT for tachyzoites and βPBXPB for bradyzoites.
The rate constants, βPT and βPB describe the efficacy of the invasion process and
depend on the rate at which the parasites find uninfected cells, the rate of par-
asite entry, and the probability of successful infection. Note that βPT and βPB

are lumped parameters and have the unit 1/(number of cells)/time [27, 30, 31, 41].
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Note these rate constants sometimes carry a slightly different definition; see [6] for
example.

Average life time of a cell infected with tachyzoites is 1/aT and that of a cell
infected with encysted bradyzoites is 1/aC . Since tachyzoites replicate much faster
than bradyzoites, one expect aC be much smaller than aT . Assume the total number
of parasites produced from one infected cell containing tachyzoites, i.e. the burst
size, is sT and assume the burst size of an encysted cell is sC . Let kT = sT ∗aT and
kC = sC ∗ aC . Then, free parasites are produce at a rate kT yT for tachyzoites and
kCyC for encysted bradyzoites. Free parasites are removed from the system at a
rate uTPT for tachyzoites and at rate uBPB for bradyzoites. Tachyzoites in a host
cell can spontaneously convert to bradyzoites at a rate rT yT . To account for the
reactivation process, we assume early-stage bradyzoites may convert to tachyzoites
at a rate rByB. We also consider a simple model for the immune response. Much
work has been done regarding the immune response caused by Toxoplasma infection
and many important mechanisms have been identified [16]. Here, we introduce a
variable Z to represent the overall effector cells without consideration of specific
immune mechanisms. We assume the effector cells act on host cells infected with
tachyzoites in a predator-prey manner.

Combining the above processes leads to the following system of equations:

Ẋ = d(X0 −X)− βPTXPT − βPBXPB (1)

ẎT = βPTXPT − aTYT − rTYT + rBYB − cTYTZ (2)

ẎC = rTYT − aCYC (3)

ẎB = βPBXPB − rBYB (4)

ṖT = kTYT − uTPT (5)

ṖB = kCYC − uBPB (6)

Ż =
ρYTZ

h+ YT

− δZ (7)

where ρ is the production rate of the effector cells, δ is the removal rate of the
immune system response, and h represents the saturation level of the effector cells
[41]. The first term in the immune equation represents the activation process in
response to the detection of infected cells whereas the second term in the immune
equation represents natural decay of the immune effector. The activation process
takes the form of Holling’s Type II predator-prey relation [28, 36, 8]. When the
number of infected cells is small, the level of immune response is low. Then, the im-
mune response increases at a great rate and saturates when the number of parasites
is sufficiently large.

Kafsack et al. [26] developed a mathematical model to interpret kinetics data
collected for T. gondii invasion. Their results show that T. gondii invasion dynamics
including contact, attaching, penetrating, and invasion occur within a few minutes.
On the other hand, previous experiments show that replication and stage conversion
dynamics take place in hours [23, 13, 40]. We assume that the kinetics of free
parasites are significantly faster than kinetics of other processes. Thus, we can
adopt the common quasistationary approximation and assume the free parasites
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are in equilibrium. It follows from Equations (5)-(6) that

PT =
kTYT

uT

(8)

PB =
kCYC

uB

(9)

Substituting the above equations into Equations (1)-(4), (7) leads to the following
reduced model:

Ẋ = d(X0 −X)− βTYTX − βBYCX (10)

ẎT = βTYTX − aTYT − rTYT + rBYB − cTYTZ (11)

ẎC = rTYT − aCYC (12)

ẎB = βBYCX − rBYB (13)

Ż =
ρYTZ

h+ YT

− δZ, (14)

where βT = kTβPT /uT and βB = kCβPB/uB. A compartmental model of this
simplified model is shown in Figure 3. All parameters in the model are non-negative
and one can show that the solutions of the system are non-negative, given non-
negative initial values. The model (10)-(14) will be analyzed in a biologically-
feasible region as follows. We consider the region

D =
{

(X,YT , YC , YB, Z) ∈ IR5
+ : X ≥ 0, YT ≥ 0, YC ≥ 0, YB ≥ 0, Z ≥ 0

}

.

Solutions of (10)-(14) starting in D can be shown to remain in D for all t ≥ 0. Thus
D is positively invariant and it is sufficient to consider solutions in D. We state and
prove Theorem 2.1 for non-negativity of solutions of (10)-(14) in D.

Theorem 2.1. Let the initial data be X(0) ≥ 0, YT (0) ≥ 0, YC(0) ≥ 0, YB(0) ≥ 0,
and Z(0) ≥ 0. Then, solutions X(t), YT (t), YC(t), YB(t) and Z(t) of the model
system (10)-(14) are non-negative for all t ≥ 0. Moreover, for the model system
(10)-(14), the region D is positively invariant.

Proof. Assume that the solution of (10)-(14) has been extended to maximal domain
[0, T ∗); we will show the non-negativity of solutions and that there is no blow-up,
giving T ∗ = ∞.

Since X0 > 0 and the other terms in the right hand side (RHS) of equation (10)
has X as a common factor, we have that X(t) ≥ 0 for t ≥ 0. Similarly, the structure
of the RHS of (14) implies that Z(t) ≥ 0 for t ≥ 0.

Note that the structure of (11)-(13) implies that if YT (0) = YC(0) = YB(0) = 0,
then YT (t) = YC(t) = YB(t) = 0 for all 0 ≤ t ≤ T ∗ by uniqueness of the initial
boundary value problem (solution is (X(t), 0, 0, 0, Z0e

−δt) where X ′ = d(X0 −X)).
If one of YT (0), YC(0) or YB(0) is positive, then we can show that all three

components are positive on [0, T ∗). For example if YC(t) > 0 on [0, ε], by integrating
the DEs for YB and YT , we obtain their positivity on [0, ε]. On the other hand,
if one of these three functions hits 0, say YT , let t1 be the first time that YT

is 0 and all three functions are positive on (0, t1). The structure of (11) with
K(t) = βTX(t)− aT − rT − cTZ(t) gives

YT (t1)e
∫ t1

0
K(s)ds − YT (0) =

∫ t1

0

e
∫

t

0
K(s)dsrBYB(t)dt,
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which is a contradiction as the RHS is positive, YT (t1) = 0 and YT (0) ≥ 0. Contin-
uing we conclude that D is invariant.

The structure of (10) and (14) shows that X and Z do not blow up. Note that

M(t) = X(t) + YT (t) + YC(t) + YB(t)

satisfies
M ′(t) ≤ d(X0 −X(t)),

which means that M does not blow up. Thus we conclude T ∗ = ∞.

Note that for ρ ≤ δ, the solution to our systems (10)-(14) is bounded for all
t > 0, but later we can prove the boundedness without that assumption.
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Figure 3. A simplified compartmental model representing the dy-
namics of T. gondii. Note the immune response is not shown.

3. Results.

3.1. Disease-Free Equilibrium (DFE). The structure of system (10)-(14) im-
plies there exists a unique non-negative DFE solution. Denote this equilibrium
solution by

E0 = (X∗, Y ∗

T , Y
∗

C , Y
∗

B, Z
∗) = (X0, 0, 0, 0, 0). (15)

The stability of E0 can be established using the next generation operator method
on the system (10)-(14). We take, YT , YC , YB , as our infected compartments, then
using the notation in [39], the Jacobian matrices F and V for the new infection
terms and the remaining transfer terms are respectively given by,

F =





βTX
∗ 0 0

0 0 0
0 βBX

∗ 0



 and V =





aT + rT 0 −rB
−rT aC 0
0 0 rB



 . (16)

It follows that the basic reproduction number of the system (10)-(14), denoted by
R0, is given by

R0 = ρ(FV −1) =
X0(aCβT + rTβB)

aC(aT + rT )
(17)

where ρ is the spectral radius. Further, using Theorem 2 in [39], the following result
is established.

Lemma 3.1. The DFE of the model (10 )-(14), given by E0, is locally asymptotically
stable (LAS) if R0 < 1, and unstable if R0 > 1.
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The basic reproduction number (R0) measures the average number of new in-
fections generated by a single infected individual in a completely susceptible pop-
ulation [4, 11, 21, 39]. Thus, Lemma 3.1 implies that T. gondii can be eliminated
from within the host (when R0 < 1) if the initial sizes of the sub-populations are
in the basin of attraction of the DFE, E0.

Consider the domain

D1 = {(X,YT , YC , YB, Z) ∈ D : X∗ ≥ X} .

Using the approach in the proof of Theorem 2.1, it can be shown that the region is
positively-invariant.

Theorem 3.2. The DFE of the model (10)-(14), given by E0, is global asymptoti-
cally stability (GAS) in D1 whenever R0 < 1.

Proof. The proof is based on using a comparison theorem. The equations for the
infected components in (10)-(14) can be written in terms of
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(18)
where, M = X∗ − X (t), the matrices F and V are given above and Q is the
non-negative matrix given by

Q =





βT 0 0
0 0 0
0 βB 0





Since M ≥ 0 for all t ≥ 0 and all parameters are positive, it follows that
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dt
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dt
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dt





















≤

(

F − V

)













YT (t)

YC(t)

YB(t)













. (19)

Using the fact that the eigenvalues of the matrix F − V all have negative real
parts (see the local stability result given in Lemma 3.1, where ρ(FV −1) < 1 if
R0 < 1 which is equivalent to F − V having eigenvalues with negative real parts
when R0 < 1 [39]), it follows that the differential inequality system (19) is stable
whenever R0 < 1. Consequently, (YT (t), YC(t), YB(t)) → (0, 0, 0) as t → ∞. by
standard comparison results [29, 37].

The structure of the X DE gives the convergence of X(t) → X∗ as t → ∞. Using
the convergence of YT (t) to 0 and the term with YT in (14) will be smaller than the
δZ term for large t, we obtain that Z(t) → 0.
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Thus, (X(t), YT (t), YC(t), YB) → (X∗, 0, 0, 0, 0) as t → ∞ for R0 < 1. Hence,
the DFE E0 is GAS if R0 < 1.

Note that the boundedness of the solutions follows in this case.

The above result shows that T. gondii will be eliminated from within the host if
the threshold quantity R0 can be brought to a value less than unity.

3.2. Endemic Equilibrium (EE). Let E1 = (X∗, Y ∗

T , Y
∗

C , Y
∗

B, Z
∗) be any arbi-

trary equilibrium of the model (10)-(14). Conditions for the existence of equilibria
for which T. gondii is endemic within the host (where at least one of the infected
variables is non-zero) can be obtained as follows. Let,

λ∗

1 = βTY
∗

T and λ∗

2 = βBY
∗

C ,

and let

x∗ = λ∗

1 + λ∗

2 (20)

be the associated force of infection, which is defined as the rate at which susceptible
individuals become infected by an infectious disease [2, 14, 18, 17, 20, 34, 35]. To
determine the existence of the endemic equilibrium, we consider first the case where
immunity is not present (i.e Z = 0). Setting the right-hand sides of the model to
zero gives the following expressions (in terms of λ∗

1 and λ∗
2 at steady state):

X∗ =
dX0

(d+ λ∗
1 + λ∗

2)

Y ∗

T =
dX0(λ

∗
1 + λ∗

2)

(aT + rT )(d+ λ∗
1 + λ∗

2)

Y ∗

C =
dX0rT (λ

∗
1 + λ∗

2)

aC(aT + rT )(d+ λ∗
1 + λ∗

2)

Y ∗

B =
dX0λ

∗
2

rB(d+ λ∗
1 + λ∗

2)
.

(21)

Substituting the expression in (21) into the expression in (20) we have that the
non-zero equilibrium of the model after some algebraic manipulation satisfy:

x∗ = d(R0 − 1). (22)

It follows that x∗ > 0 if and only if R0 > 1. This result is summarized below:

Theorem 3.3. The model (10)-(14) with Z = 0 has a unique endemic equilibrium

whenever R0 > 1.

Next we consider the case where the immune system responds throughout infection
period (i.e Z 6= 0). To determine the existence of the endemic equilibrium, setting
the right-hand sides of the model to zero gives the following expressions:
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X∗∗ =
dX0

(d+ λ∗∗
1 + λ∗∗

2 )

Y ∗∗

T =
δh

(ρ− δ)

Y ∗∗

C =
rT δh

aC(ρ− δ)

Y ∗∗

B =
dX0λ

∗∗
2

rB(d+ λ∗∗
1 + λ∗∗

2 )

Z∗∗ =
d(λ∗∗

1 + λ∗∗
2 )(ρ− δ)X0 − δh(d+ λ∗∗

1 + λ∗∗
2 )(rT + aT )

δhCT (d+ λ∗∗
1 + λ∗∗

2 )
.

(23)

Substituting the expression in (23) into the expression in (20) gives

x∗∗ =
δh(aT + rT )(R0 − 1)

(ρ− δ)
+

δh(aT + rT )

(ρ− δ)
(24)

It follows that x∗∗ > 0 if and only if R0 > 1 and ρ > δ. This result is summarized
below:

Theorem 3.4. The model (10)-(14) with immune response (i.e., Z(t) > 0) has a
unique endemic equilibrium whenever R0 > 1 and ρ > δ.

Thus, to obtain a unique endemic equilibrium, Theorem 3.4 implies that in the
presence of immune response, ρ, the maximum attack rate, must be greater than δ,
the removal rate of the immune system response for this case to happen.

3.3. Local stability of the endemic equilibrium (EE). In this Section we will
consider the stability of the endemic equilibrium E1. First we consider the case
without immune response (Z = 0); thus linearizing (10)-(14) we have the matrix J
evaluated at E1 with Z(t) = 0, using the equilibrium (21)

J =









−d− βTY
∗

T − βBY
∗

C −βTX
∗ −βBX

∗ 0
βTY

∗

T βTX
∗ − (aT + rT ) 0 rB

0 rT −aC 0
βBY

∗

C 0 βBX
∗ −rB









.

The matrix J has the sign pattern J11 < 0, J33 < 0, J44 < 0, J12J21 < 0, J13J31 =

0, J14J41 = 0, J23J32 = 0, J24J42 = 0, J34J43 = 0, and J22 = (aT+rT )(βTaC−1)
(aCβT+rT βB) < 0

provided βTaC < 1, thus the matrix is sign stable and hence the equilibrium (21)
is locally asymptotically stable [3, 7, 22]. We have thus established the following
result:

Lemma 3.5. The endemic equilibrium (21) without immune response is locally
asymptotically stable for βTaC < 1.

Next we consider the stability of the equilibrium E1 in the presence of immune re-
sponse (i.e., Z(t) > 0). Linearizing (10)-(14) evaluated at E1, using the equilibrium
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(23) gives the matrix J

J =















−d− Y ∗∗
−βTX∗∗

−βBX∗∗ 0 0
βTY ∗∗

T
βTX∗∗

− (aT + rT + CTZ∗∗) 0 rB CTY ∗∗

T

0 rT −aC 0 0
βBY ∗∗

C
0 βBX∗∗

−rB 0

0 ρZ∗∗

(h+Y ∗∗

T
)
−

ρY ∗

T
Z∗∗

(h+Y ∗∗

T
)2

0 0
ρY ∗∗

T

(h+Y ∗∗

T
)
− δ















where Y ∗∗ = βTY
∗∗

T − βBY
∗∗

C . The matrix J has the sign pattern J11 < 0, J33 <
0, J44 < 0, J55 = 0, J12J21 < 0, J13J31 = 0, J14J41 = 0, J15J51 = 0, J23J32 = 0,

J24J42 = 0, J25J52 = 0, J34J43 = 0, J35J53 = 0, J45J54 = 0, J22 = − rT βBX∗∗

aC
< 0

and J25J52 =
(ρ−δ)(aCβT+rT )[dX0(ρ−δ)−hδ(aT+rT )]−a2

C
d(ρ−δ)2(aT+rT )

hδρ(aCβT+rT )+ρaCd(ρ−δ) < 0 provided

dX0(ρ− δ) < hδ(aT + rT ), thus the matrix is sign stable and hence the equilibrium
(23) is locally asymptotically stable [3, 7, 22]. We have thus established the following
result:

Lemma 3.6. The endemic equilibrium (23) with immune response is locally asymp-
totically stable provided dX0(ρ− δ) < hδ(aT + rT ).

4. Discussion. Recall from (17) that the reproduction number R0 is proportional
to X0, the total number of host cells before invasion of the parasites. Assuming the
invasion and reproduction kinetics of the parasites are the same in different organs,
larger organs intend to have more cells and thus larger R0 values, which will make
them more suitable for the parasites to dwell. This is probably why T. gondii is
most frequently found in brain, heart, and muscle in a host [13]. To investigate the
influences of various parameters to the diseased state, we will rewrite the endemic
equilibria in terms of model parameters. The equilibrium without immune response
in (21) can be rewritten in terms of model parameters as follows:

X∗ = X0

R0

Y ∗

T = dX0

aT+rT
− d aC

rT βB+aCβT

Y ∗

C =
rT Y ∗

T

aC

Y ∗

B =
βB X∗Y ∗

C

rB
.

(25)

It follows from (25) that, in endemic state, the number of healthy cells, X∗, is
less than the original number of cells, X0. The model predicts that the steady
state of the disease reaches a dynamic balance between three different stages of the
parasites: Y ∗

T , Y
∗

C , and Y ∗

B . Note that Y ∗

B and Y ∗

C are proportional to Y ∗

T and Y ∗

T

is positively correlated to X0. Thus, steady state parasite loads are related to the
size of the organ. Also, recall the reproduction rate of uninfected cells is λ = dX0.
Assume the reproduction rate λ is a constant, it can be seen from (25) that, an
organ with longer life expectance 1/d will have larger parasite loads. Since brain
cells are permanent, this also explains why T. gondii is mostly like to be found in
brain [13].
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The equilibrium with immune response in (23) can be rewritten in terms of model
parameters as follows:

X∗∗ = aC dX0(ρ−δ)
h δ(aC βT+rT βB )+aCd(ρ−δ)

Y ∗∗

T = h δ
ρ−δ

Y ∗∗

C =
rT Y ∗∗

T

aC

Y ∗∗

B =
βB X∗∗ Y ∗∗

C

rB

Z∗∗ = X∗∗ (rT βB + aC βT )−aC( aT+rT )
aC cT

.

(26)

It is interesting to note that the relationships between the three parasite loads, Y ∗∗

T ,
Y ∗∗

C , and Y ∗∗

B , remain the same as those in the absence of immune response although
the steady state value of Y ∗∗

T is now determined by kinetics of immune response.
We also note the parasite loads Y ∗∗

T and Y ∗∗

C do not depend on the original number
of host cells X0 whereas the load Y ∗∗

B is proportional to X0. Moreover, when the
reproduction rate of uninfected cells λ = dX0 is kept at a constant, a larger life
expectance 1/d will lead to a larger value of X∗∗ and thus a higher parasite load
Y ∗∗

B . Again, the analysis shows that T. gondii favors cells with long life expectance
such as the brain.

4.1. Numerical simulations. In order to investigate the effects of T. gondii in-
fection, we first introduce model assumptions and estimate parameters of infection
dynamics using experimental data available in the literature. Numerical simulations
here use a mouse spleen as an example. We estimate a healthy spleen has X0 = 108

cells. Assume that the life expectancy of spleen cells is 1 month, which leads to
the death rate as d = 1.389 × 10−3h−1. In the current model, we assume at most
one parasitophorous vacuole (PV) can form within a host cell. We further assume
parasites within the same PV are in the same stage and replicate simultaneously.
Experimental data in Weiss and Kim [40] indicate that the doubling time of tachy-
zoites is 6 hours and that of bradyzoites is 24 hours. Tachyzoites in vivo often
lyse the host cell after reproducing 2 or 3 times [9]; thus, we choose aT = 1/(18h)
and kT = 8/(18h). Cysts of bradyzoite may contain more than 1000 parasites [12].
We assume encysted brayzoites burst after reproducing 10 times and thus estimate
aC = 1/(240h) and kC = 1024/(240h). After a parasite is released from a PV into
the organ, we assume the parasite may interact with 10 host cells and the probabil-
ity of invasion of individual host is 2%. It follows that βT = 8.889× 10−10(number
of cells)−1h−1 and βB = 8.533× 10−9(number of cells)−1h−1. Since tachyzoites can
convert to bradyzoites after about 20 generations of reproduction [32], we estimate
rT = 1/ (108h). Weiss and Kim [40] showed that 48 hours after bradyzoites invade
a tissue, tachyzoites start to appear; thus, we estimate rB = 1/ (48h). The current
model does not consider detailed immune mechanisms. Instead, we consider the
effector cells of the immune system acting on tachyzoites in PV. Assume the inter-
action rate between effector cells and tachyzoite PVs as cT = 1.67× 10−8(number
of cells)−1h−1. Assume the degradation rate of the immune effector cells to be
δ = 1/ (48h). Let h = 105 to account for the memory effect of immune response
and let ρ = 10/ (24h) be the response rate.



658 SULLIVAN ET AL.

Substituting the above parameters into Equation (17) yields R0 = 30.63, which
indicates that an infected cell will, on average, infect 30.63 uninfected host cells per
hour. Consider an immuno-incompetent host, in which Z = 0, it follows that the
equilibrium diseased state is X∗ = 3.26×106, Y ∗

T = 2.07×106, Y ∗

B = 6.16×106, and
Y ∗

C = 4.61×106. The total number of cells is 1.61×107, which is reduced to 16% of
the original number, X0. In contrast, in an immunocompetent host, the long term
solution is X∗ = 9.30× 107, Y ∗

T = 5.26× 103, Y ∗

B = 4.46× 105, Y ∗

C = 1.17× 104 and
Z∗ = 1.07 × 108. The total number of cells is 9.34 × 107, only slightly less than
the number for disease free state. Transient responses in the absence of immune
response are shown in Figure 4 while transient responses in the presence of immune
response are shown in Figure 5.

0 1000 2000 3000

0.2

0.5

1

2

5

time HhourL

H
ea

lth
y

C
el

ls
Hx

10
7 L

0 1000 2000 3000
1

100

104

106

108

time HhourL

In
fe

ct
ed

C
el

ls

Figure 4. Response in the absence of immune response: varia-
tion of healthy host cells (left) and variation of infected host cells
(right). The infected host cells include those infected with tachy-
zoites (solid), cysted bradyzoites (dashed), and early-stage brady-
zoites (dotted).
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Figure 5. Response in the presence of immune response: varia-
tion of healthy host cells (left) and variation of infected host cells
(right). The infected host cells include those infected with tachy-
zoites (solid), cysted bradyzoites (dashed), and early-stage brady-
zoites (dotted).

We further use the model to study reactivation. While the number of parasites
in an immunocompetent host is greatly suppressed, the parasites can be reactivated
when the host becomes immunoincompetent [10]. Here, we consider reactivation due
to temporary impairment in the immune system. We assume a host is first infected
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with T. gondii and, after 3000 hours, the host’s immune system is temporarily
impaired so that the production rate ρ is reduced to 10% of the nominal value. We
assume the impairment lasts for 200 hours and then the host’s immunity recovers
to the original level. This scenario would be analogous to a host suffering from
immunodepression for a few weeks before overcoming the secondary infection and
allowing for a full immune response to the toxoplasma. The results for this particular
situation are shown in figure 6. It is clear that this temporary decrease in immune
response leads to a significant increase of parasite load within the host.
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Figure 6. Reactivation of parasites due to temporary impairment
of the immune system: variation of healthy host cells (left) and
variation of infected host cells (right). The infected host cells in-
clude those infected with tachyzoites (solid), cysted bradyzoites
(dashed), and early-stage bradyzoites (dotted).

5. Conclusion. We have developed a mathematical framework to investigate intra-
host dynamics of T. gondii. Assumptions and simplifications have been made about
the biological processes including invasion, replication, and stage conversion. Pa-
rameters of the model have been estimated based on available experimental data.
In the differential equation model we created, the effects of spreading parasites are
examined. In the analysis, we first found the fixed points and analyzed the rate
of infection R0. The first fixed point in the analytical model was the parasite-free
equilibrium point. The second and third equilibrium points are identical in ex-
pressions for YT , YC , and YB. It is interesting to note that the second and third
equilibrium points vary in the values for the immune response fixed point. The
immune regulated equilibrium only exists when ρ > δ.

It is also important to note the assumption made in analyzing this model. We
have assumed the invasion dynamics of the free parasites are much faster than
the replication and stage conversion, which leads to quasistationary simplification
of the free parasites. This assumption is valid because the bursting of cells with
tachyzoites release free tachyzoites, this release was modeled as a contribution of
infection directly to uninfected hosts. The use of the Holling’s Type II functional
response models the way an immune system should respond: Very limited response
to low numbers of invaders and a quickly growing response up to a threshold as
the number of invaders increases. This type of response allows us to simplify the
immune system into a mathematical model.

The critical value forR0 found in this model indicates that our infection rate is de-
pendent upon the initial number of uninfected hosts, the death rate of cells infected
with bradyzoites and tachyzoites, the invasion rate of tachyzoites and bradyzoites
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contained within a host, and the conversion rate from tachyzoites to bradyzoites.
Analyses of the reproduction number and the endemic solutions indicate that T.
gondii favors large organs with long life expectance. This agrees with the experi-
mental observation that T. gondii are commonly found in skeletal muscles, brain,
and myocardium.

Numerical simulations show that the immune system plays a pivotal role in sup-
pressing the growth of tachyzoites within host cells. This suppression, once the
system reaches endemic behavior, allows for the body to exit the acute infection
stage and begin the long-term, virtually symptom-free, state. Without immune re-
sponse, the tachyzoites would be free to replicate and invade many different hosts.

Tachyzoites are rapidly dividing and responsible for the acute infection whereas
the slowly replicating bradyzoites are located within tissue cysts, which protect the
parasite from the host immune system and make it inaccessible to drugs [13]. The
differentiation of tachyzoites into bradyzoites is a response to the onset of protective
immunity whereas the dormant bradyzoites are able to reconvert into tachyzoites
to cause fatal infection in patients. Therefore, stage conversion between tachyzoites
and bradyzoites plays a pivotal role in the pathogenesis, transmission, persistence,
and reactivation of the disease.

Future work of this system will include a more detailed description of immune
response. While using the Holling’s Type may accurately model the conceptual
framework of an immune response, more evidence is needed to qualify this technique
as accurate. A further expansion of this model might include a spatial array in
which the disease can propagate. While our model tracks the disease throughout
the spleen and assumes a homogenous distribution of cells throughout, the parasites
are actually capable of starting in the stomach and invading the brain, muscles, and
liver. Therefore, a spatial model may be able to describe the complicated dynamics
that describe how the parasites can move throughout the body.
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