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Abstract. The increase in antibiotic resistance continues to pose a public

health risk as very few new antibiotics are being produced, and bacteria resis-

tant to currently prescribed antibiotics is growing. Within a typical hospital
setting, one may find patients colonized with bacteria resistant to a single an-

tibiotic, or, of a more emergent threat, patients may be colonized with bacteria
resistant to multiple antibiotics. Precautions have been implemented to try to

prevent the growth and spread of antimicrobial resistance such as a reduction

in the distribution of antibiotics and increased hand washing and barrier pre-
ventions; however, the rise of this resistance is still evident. As a result, there

is a new movement to try to re-examine the need for the development of new
antibiotics. In this paper, we use mathematical models to study the possible
benefits of implementing a new antibiotic in this setting; through these models,

we examine the use of a new antibiotic that is distributed in various ways and

how this could reduce total resistance in the hospital. We compare several dif-
ferent models in which patients colonized with both single and dual-resistant

bacteria are present, including a model with no additional treatment proto-
cols for the population colonized with dual-resistant bacteria as well as models
including isolation and/or treatment with a new antibiotic. We examine the

benefits and limitations of each scenario in the simulations presented.
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1. Introduction. Antibiotic resistance is a growing threat to public health as very
few new antibiotics are being produced leading to the growth of bacteria resistant
to the commonly prescribed antibiotics. Some of the risk factors which have been
found to contribute to the development of antibiotic resistance include, but are not
limited to, excessive use of antibiotics, antibiotic use in agricultural industries, lack
of use of effective preventative infection control measures (such as hand washing),
usage restriction of antibiotics, proper isolation of patients with resistant infections,
and longer survival of severely ill patients as well as longer life expectancy in the
elderly with increased use of antibiotics in both of these situations ([2] and the
references therein). Much work has already been done to try to better understand
the mechanisms which lead bacteria to form defenses against antibiotics [3, 4, 7,
10, 15, 21, 22, 23, 31] and how these resistant bacteria are transmitted from one
individual to another [5, 12, 13, 14, 16, 18, 20, 25, 26, 27, 28, 33, 35]. Some of
the latter references rely on mathematical models to try to quantify the effects
of various protocols on the transmission of resistant bacteria. In the paper by
Bergstrom et al., [5], the authors developed a mathematical model to explore the
efficacy of the cycling program within a hospital setting in which they incorporated
single resistance to two different antibiotics. Within the scope of the model, it
was determined that the cycling of antibiotics, i.e., when one antibiotic is used for a
specified period of time and then switched to another antibiotic or class of antibiotics
for a specified period of time, was not effective in reducing the overall resistance. In
fact, they determined that heterogeneous mixing of antibiotics was more useful in
reducing the overall antibiotic resistance in a hospital than any cycling protocol. In
case studies related to the cycling of antibiotics [1, 9, 19, 24, 32, 34], the results have
been mixed. In some cases, the conclusion was the same as in [5]; cycling did not
reduce the overall resistance, and, in some cases, cycling of antibiotics may actually
increase the total antibiotic resistance within the hospital [19]. In other cases, there
was a limited decrease in the average antibiotic resistance when using a cycling
protocol [24, 34]. In most all cases, once the antibiotic was eliminated, there was
a decline in resistance to that antibiotic followed by a rapid increase in resistance
once the antibiotic was reintroduced [9]. In many of these studies, resistance to a
single antibiotic was tracked. However, in the case study by van Loon et al., [19],
they noted that multi-drug resistance was also prevalent.

As a response to the existence of multi-drug resistant bacteria, Chow et al., [25],
developed a mathematical model to try to quantify the relationship between both
single and dual resistant bacteria and the spread of this resistance in a hospital set-
ting. Their findings indicated that although a mixing protocol was best to reduce
single resistance (as discussed in [5]), a cycling protocol actually resulted in a lower
percentage of patients colonized with dual resistant bacteria. In either case, the to-
tal proportion of patients colonized with resistant bacteria in the hospital remained
at a relatively high level of over 60% using either protocol. In addition, they noted
that there was an inverse relationship between single resistant bacteria and dual
resistant bacteria. As the proportion of patients colonized with single resistance
decreased, the proportion of patients with dual resistance increased and vice versa.
Therefore, a treatment protocol which proved to be beneficial for one group of colo-
nized patients was unfavorable for the other group of colonized patients. In general,
Chow demonstrated that isolating a portion of the patients carrying the dual re-
sistant bacteria proved to be most effective in reducing not only the proportion
of patients with dual resistance but the overall resistance in the hospital as well.
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However, if one includes those patients who are isolated (and still colonized with
the dual resistant strain) when calculating the total proportion of patients within
the hospital colonized with some kind of resistant bacteria, the overall proportion of
patients with resistant bacteria is still quite large. Hence, there is a need to examine
other alternatives to reducing the number of patients carrying a resistant bacteria.
One such alternative is a renewed push for the development of new antibiotics.

In this article, we seek to quantify the effects of introducing a new antibiotic
on the overall resistance in a hospital. The paper will be organized as follows. In
Section 2, we will introduce four mathematical models which we will use to evaluate
the effectiveness of the introduction of a new antibiotic and the best implementation
of the new antibiotic. In Section 3, we will discuss the sensitivity analysis for each
of these four models, examining the sensitivity of the model results on the chosen
parameter values. In Section 4, we will compare the results from each of the models
and discuss the findings. We will conclude with some final remarks in Section 5.

2. Model formulation. In this paper, we discuss four different mathematical
models. Two of these models, the Base Model and the Isolation Model, are ex-
amined as comparison models. To formulate these models, we modified the math-
ematical models developed by Chow et al. [25]. The remaining two models, the
Random Drug Model and the Targeted Drug Model, are similar models which focus
on two different approaches to introducing a new drug into the hospital. We focus
on the introduction of an entirely new antibiotic as opposed to simply an upgrade
of an antibiotic within the same class as the drugs already employed in the hos-
pital. Due to the chromosomal mutations or acquisition of new genetic material
leading to the development of resistant bacteria, if a new antibiotic is introduced
which is an upgrade of a current antibiotic, the use of the new antibiotic on patients
already colonized with bacteria resistant to the older antibiotic could lead to a new
high-level resistant strain [11, 35]. For this reason, we will only consider the case in
which the new antibiotic is not an upgrade of an older, more commonly prescribed
antibiotic. In considering a new antibiotic with a different mechanism of action
than the two drugs in our system, we can assume resistance to the new antibiotic is
initially negligible as the rate of mutation is on the order of 10−6 [22]. As a result,
resistance to a new antibiotic will require a longer period of time to develop.

2.1. The base model. The first model we will introduce is a slightly modified
version of the model found in the paper by Chow et al., [25]. We will call this
model the Base Model. In this model, we assume there are two antibiotics, which,
without loss of generality, we will call drugs 1 and 2 respectively. We consider
a compartmental model whose schematic is given in Figure 1 in which patients
within a hospital are classified based upon their colonization with respect to these
two drugs. Patients may either be colonized with bacteria sensitive to both drugs,
S; colonized with bacteria resistant to a single drug, R1 or R2; colonized with
bacteria resistant to both drugs, R12; or uncolonized, X. Patients colonized with
bacteria sensitive to both drugs 1 and 2, S, can be effectively treated with either
antibiotic and be cleared. Patients colonized with bacteria resistant to drug 1, R1,
may be successfully treated with drug 2. Similarly, patients colonized with bacteria
resistant to drug 2, R2, can be effectively treated with drug 1. In the Base Model,
we assume there is no effective antibiotic which can be utilized to treat the patients
colonized with the dual resistant bacteria nor is there a procedure in place, such
as isolation, to limit the spread of the dual resistant strain. A description of the
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variables and parameters used in our model are given in Tables 1 and 2, where each
of the variables are dimensionless as they are proportions of patients in the hospital.

We make various assumptions with this model. First of all, the population size
within the hospital is assumed to be sufficiently large to be able to use differential
equations to describe our system, and it is assumed that the population within the
hospital remains constant, i.e., the total rate of admission is equal to the total rate
of discharge. Furthermore, patients can enter the hospital in any of the states. A
proportion mS enter colonized with bacteria sensitive to both drugs, a proportion
mi enter the hospital colonized with bacteria resistant to one of the two drugs,
a proportion m12 enter colonized with bacteria resistant to both drugs, and the
remainder of patients admitted are uncolonized, mX = 1− (mS +m1 +m2 +m12).
Patients stay an average of 1

µ days in the hospital, where µ is the turnover rate

in the hospital. While in the hospital, a proportion of the total population will be
treated with antibiotics. We assume τi is the per capita treatment rate of drug i, and
therefore, the total proportion of the hospital being treated with antibiotics per day
is T = τ1 + τ2. Furthermore, it is assumed that drugs are prescribed without prior
knowledge of the type of bacteria present at the time of the initial prescription as it
is not yet common practice to test for resistant bacteria upon entering the hospital.
Patients are more likely to be tested for resistant bacteria after one or possibly
two drugs have failed to clear the infection. Therefore, it is possible for patients
resistant to drug 1, for instance, to be prescribed drug 1; however, these patients
will not be cleared until drug 2 is utilized or the patient’s immune response causes
clearance of the bacteria. It is assumed that without treatment, a patient’s immune
response will require 1

γ days to clear the bacteria.

Bacteria are always assumed to be in competition with one another, and, there-
fore, patients can only be colonized by one bacterial strain at a time. We further
assume each patient is equally likely to come in contact with a healthcare worker
and, only offset by the ability of the bacterial strain to spread, equally likely to
become colonized with one of the strains of bacteria or transmit the bacteria if al-
ready colonized upon contact. Patients make β of these effective contacts per unit
time. This effective contact rate or transmission rate is offset by fitness costs ci
for the single resistant strains and c12 for the dual resistant bacteria. Fitness cost
is a parameter which describes the rate at which resistant bacteria revert back to
being susceptible in the absence of antibiotic treatment. Resistant bacteria thrive
in the presence of antibiotics; however, in an antibiotic-free environment, the resis-
tant bacteria are at a disadvantage and less able to reproduce, thus providing an
advantage to the susceptible bacteria. When the fitness cost is high, the ability to
reproduce is much lower and thus more difficult to spread. On the other hand, the
lower the fitness cost of the resistant bacteria, the easier it is for the bacteria to
spread. In this paper, we assume, as Chow did, [25], that the dual resistant strain
is harder to spread and, therefore, has a higher fitness cost than the single resistant
bacteria. Therefore, in the competition between the dual resistant strain and either
the single resistant strain or the sensitive bacteria, the dual resistant strain always
loses. This competition between resistant strains is taken into account by the dif-
ference in fitness costs. In addition, the ability of one strain to take over another
strain is referred to as secondary colonization and is accounted for in the term σ.
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Figure 1. Schematic of the Base Model

The equations describing the system are given as

dS

dt
= (mS − S)µ− (τ1 + τ2 + γ)S + βXS + βσ(c1R1 + c2R2 + c12R12)S

dR1

dt
= (m1 −R1)µ− (τ2 + γ)R1 + β(1− c1)XR1

+βσ[(c12 − c1)R12 + (c2 − c1)R2 − c1S]R1

dR2

dt
= (m2 −R2)µ− (τ1 + γ)R2 + β(1− c2)XR2

+βσ[(c12 − c2)R12 + (c1 − c2)R1 − c2S]R2

dR12

dt
= (m12 −R12)µ− γR12 + β(1− c12)XR12

−βσ[c12S + (c12 − c1)R1 + (c12 − c2)R2]R12

dX

dt
= (mX −X)µ+ (τ1 + τ2 + γ)S + (τ2 + γ)R1 + (τ1 + γ)R2 + γR12

−β[S + (1− c1)R1 + (1− c2)R2 + (1− c12)R12]X

2.2. The isolation model. The Isolation Model is very similar to the Base Model
with the addition of a new class of patients, Q, who are colonized with the dual
resistant bacteria but now in isolation; see Figure 2. It is estimated that dual
resistant patients are identified and isolated at a rate η. The effectiveness of the
isolation is accounted for in the parameter ε where ε = 1 signifies completely effective
isolation with no contact between isolated patients and the remainder of hospital
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Table 1. The Definition of Model Variables

Variables Description
S Proportion of patients colonized

with bacteria sensitive to both drugs
Ri Proportion of patients colonized

with bacteria resistant to drug i, i = 1, 2
R12 Proportion of patients colonized

with bacteria resistant to both drugs
X Proportion of patients uncolonized

Table 2. The Definition of Parameters

Parameters Description Units
β Per capita primary transmission rate 1/day

(colonization rate)
σ Relative rate of secondary colonization Dimensionless

to that of primary colonization
ci Fitness cost of bacteria resistant to drug i, i = 1, 2 Dimensionless
c12 Fitness cost of bacteria resistant to both drugs Dimensionless
τi Per capita treatment rate of drug i, i = 1, 2 1/day
γ Per capita clearance rate of bacteria 1/day

due to immune response
µ Per capita patient turnover rate in hospital 1/day
mS Proportion of admitted patients Dimensionless

colonized with sensitive bacteria
mi Proportion of admitted patients colonized Dimensionless

with bacteria resistant to drug i, i = 1, 2
m12 Proportion of admitted patients colonized Dimensionless

with bacteria resistant to both drugs

population and ε = 0 signifies completely ineffective isolation. In actuality, ε most
likely lies somewhere between these extreme values.

In the Base Model, the entire hospital is what we will refer to as the active
proportion of the population, A, or the proportion of the population subject to
colonization or transmission, as we assumed in that model that each patient was
equally likely to become colonized with one of the strains of bacteria or transmit
the bacteria if already colonized upon contact. In the Isolation Model, the active
population is the entire hospital except those which are effectively isolated. If iso-
lation is totally effective, the active proportion of the population is given by 1−Q;
however, ineffective isolation leads to effective contact between isolated individuals
and the rest of the hospital population. Thus, the active proportion of the popu-
lation is given as A = 1 − εQ which is equivalent to A = 1 − Q when isolation is
totally effective and A = 1 (the entire hospital) when isolation is totally ineffective.
Depending on the parameter ε, the proportion of isolated patients who interact
(typically through means of healthcare workers) with the rest of the hospital is
given by (1 − ε)Q. Modifying the base model, the system of differential equations
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Figure 2. Schematic of the Isolation Model

describing the Isolation Model is given by

dS

dt
= (mS − S)µ− (τ1 + τ2 + γ)S +

β

A
XS

+
βσ

A
[c1R1 + c2R2 + c12(R12 + (1− ε)Q)]S

dR1

dt
= (m1 −R1)µ− (τ2 + γ)R1 +

β

A
(1− c1)XR1

+
βσ

A
[(c2 − c1)R2 + (c12 − c1)(R12 + (1− ε)Q)− c1S]R1

dR2

dt
= (m2 −R2)µ− (τ1 + γ)R2 +

β

A
(1− c2)XR2

+
βσ

A
[(c1 − c2)R1 + (c12 − c2)(R12 + (1− ε)Q)− c2S]R2

dR12

dt
= (m12 −R12)µ− γR12 − ηR12 +

β

A
(1− ε)QX +

β

A
(1− c12)XR12

−βσ
A

[c12S + (c12 − c1)R1 + (c12 − c2)R2]R12

dQ

dt
= ηR12 − µQ− γQ−

σβ

A
[c12S + (c12 − c1)R1 + (c12 − c2)R2] (1− ε)Q

dX

dt
= (mX −X)µ+ (τ1 + τ2 + γ)S + (τ2 + γ)R1 + (τ1 + γ)R2 + γ(R12 +Q)

− β
A

[S + (1− c1)R1 + (1− c2)R2 + (1− c12)(R12 + (1− ε)Q)]X
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2.3. The random drug model. Both the Random Drug Model and the Targeted
Drug Model involve the introduction of an entirely new antibiotic into the hospital,
which we will refer to as drug 3. The two models differ in the targeted recipients of
the new drug. In the Random Drug Model, it is assumed that physicians have no
limitations on their ability to prescribe the new antibiotic and are as equally likely
to choose drug 3 as they are to choose drug 1 or 2. Hence, in this model, we are
assuming heterogeneous mixing of antibiotics 1, 2, and 3 at equal rates, τ1 = τ2 = τ3
where τ3 is the per capita treatment rate of drug 3 per day. In comparing this model
to the previous models, we assume the total proportion of the hospital being treated
per day, T , remains the same as in the Base Model and Isolation Model. In both
the Base Model and the Isolation Model, drugs 1 and 2 were assumed to be equally
likely to be prescribed resulting in T = τ1 + τ2 with τ1 = τ2 = T

2 . In the Random

Drug Model, T remains fixed where now T = τ1+τ2+τ3 with τi = T
3 , for i = 1, 2, 3.

Thus, the introduction of drug 3 inherently reduces the per capita treatment rate
of both drugs 1 and 2 while keeping the total proportion of treated patients per
day within the hospital the same. In this model, it is again assumed that there is
no a priori knowledge of the type of bacteria, if any, within the patient. However,
patients colonized with single resistance can now be cleared when prescribed two of
the three possible drugs. For instance, patients colonized with bacteria resistant to
drug 1, R1, can be cleared using either drugs 2 or 3. Similarly, patients colonized
with bacteria resistant to drug 2, R2, can be cleared when prescribed drugs 1 or
3. Patients sensitive to all the drugs, S, will be cleared regardless of which drug
they are prescribed. Nonetheless, there is still the possibility, as with the previous
two models, that patients resistant to, for example, drug 1, will still be prescribed
drug 1 and thus will not be cleared until prescribed either drug 2 or 3. However, in
the Random Drug Model, a mechanism, beyond the patient’s own immune system,
exists to clear patients colonized with bacteria resistant to both drugs 1 and 2,
namely the prescription of drug 3. The set of differential equations describing the
Random Drug Model is given by the following equations.

dS

dt
= (mS − S)µ− (τ1 + τ2 + τ3 + γ)S + βXS

+βσ(c1R1 + c2R2 + c12R12)S

dR1

dt
= (m1 −R1)µ− (τ2 + τ3 + γ)R1 + β(1− c1)XR1

+βσ[(c12 − c1)R12 + (c2 − c1)R2 − c1S]R1

dR2

dt
= (m2 −R2)µ− (τ1 + τ3 + γ)R2 + β(1− c2)XR2

+βσ[(c12 − c2)R12 + (c1 − c2)R1 − c2S]R2

dR12

dt
= (m12 −R12)µ− (τ3 + γ)R12 + β(1− c12)XR12

−βσ[c12S + (c12 − c1)R1 + (c12 − c2)R2]R12

dX

dt
= (mX −X)µ+ (τ1 + τ2 + τ3 + γ)S

+(τ2 + τ3 + γ)R1 + (τ1 + τ3 + γ)R2 + (τ3 + γ)R12

−β[S + (1− c1)R1 + (1− c2)R2 + (1− c12)R12]X

2.4. The targeted drug model. In the Random Drug Model, it is assumed that
the new drug is readily available to be prescribed to all patients. Conversely, the
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Figure 3. Schematic of the Targeted Drug Model

Targeted Drug Model only allows drug 3 to be prescribed to those patients known
to be resistant to both drugs 1 and 2. As in the development of the Random
Drug Model, the Targeted Drug Model still keeps the total proportion of patients
treated per day, T = τ1 + τ2 + τ3, fixed in order to compare this model with the
preceding three models. However, we no longer assume all three drugs are used at
the same treatment rate τ1 = τ2 = τ3. As physicians still have drugs 1 and 2 readily
available for treatment of the entire hospital population, it is assumed, as before,
that physicians are no more likely to choose drug 1 over drug 2, so τ1 is set equal to
τ2. However, τ3 is now a function of time. It is assumed that some percentage p of
patients colonized with dual resistance are identifiable, either by testing or failure
of clearance by both drugs 1 and 2, and chosen for treatment (some of the identified
population may not be treated for various reasons such as terminal illness, etc.).
The only antibiotic available which can be used to successfully clear these patients
is drug 3. As τ3 is defined to be the per capita treatment rate of drug 3 or the
portion of patients within the hospital treated with drug 3 per day, τ3 is given by
τ3 = pR12 per day. For example, if 24% of the patients in the hospital are colonized
with dual resistance bacteria on a given day and physicians in the hospital can
identify and choose to treat 75% of these patients with drug 3, then p = 0.75 and
the per capita treatment rate of drug 3 is given by τ3 = pR12 = 0.75(0.24) = 0.18
per day. On the other hand, if only 10% of these patients are identified and treated,
then τ3 = 0.10(0.24) = 0.024 per day. Therefore, the chosen rate for τ3 depends
on the proportion of patients which can readily be identified and treated with the
appropriate drug. However, since R12 is a function of time, τ3 also changes across
time. In the same scenario as above, if only 12% of the hospital is colonized with
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dual resistant bacteria, and again 75% of these patients can be identified and treated
with the appropriate drug, then the per capita treatment rate with drug 3 is now
given by τ3 = 0.75(0.12) = 0.09 per day instead of 0.18 per day when 24% of the
hospital was colonized with dual resistant bacteria. Therefore, the treatment rate is
dependent on the total proportion of patients colonized with dual resistance in the
hospital and the ability to identify a portion of those patients. As the proportion of
patients in the hospital colonized with dual resistant bacteria increases, it is intuitive
that the treatment rate with drug 3 (the drug of choice for patients colonized with
dual resistance) should also increase; however, when only a small number of patients
are colonized with dual resistance, it is natural for the treatment rate with drug 3
to be lower as only those colonized with dual resistance are treated with drug 3.
As it is assumed that the total per capita treatment rate with all antibiotics, T ,
is fixed and the treatment rate with drug 3, τ3, changes with time, then both τ1
and τ2 are functions of time given by τ1 = τ2 = 1

2 (T − τ3). The schematic for this
model is given in Figure 3 where the parameter δ = 1/day is introduced only to
help distinguish between the proportion of patients colonized with dual resistance
who are identified and treated, RT = pR12 (dimensionless quantity), and the actual
treatment rate with drug 3, τ3 = δpR12 (units 1/day). The corresponding equations
are given by

dS

dt
= (mS − S)µ− (τ1 + τ2 + γ)S + βXS + βσ(c1R1 + c2R2 + c12R12)S

dR1

dt
= (m1 −R1)µ− (τ2 + γ)R1 + β(1− c1)XR1

+βσ[(c12 − c1)R12 + (c2 − c1)R2 − c1S]R1

dR2

dt
= (m2 −R2)µ− (τ1 + γ)R2 + β(1− c2)XR2

+βσ[(c12 − c2)R12 + (c1 − c2)R1 − c2S]R2

dR12

dt
= (m12 −R12)µ− (δp+ γ)R12 + β(1− c12)XR12

−βσ[c12S + (c12 − c1)R1 + (c12 − c2)R2]R12

dX

dt
= (mX −X)µ+ (τ1 + τ2 + γ)S + (τ2 + γ)R1 + (τ1 + γ)R2 + (δp+ γ)R12

−β[S + (1− c1)R1 + (1− c2)R2 + (1− c12)R12]X

2.5. Equilibrium and stability analysis. We only perform the complete equi-
librium analysis on the Random Drug Model. The stability analysis for the Base
Model, Isolation Model and Targeted Drug Model can be obtained following the
same steps as performed for the Random Drug Model and are stated at the end of
this section.

In all of the models, we assume that patients can enter the hospital in any of
the given states. Although it is unrealistic to assume that all the patients enter-
ing the hospital will be uncolonized, it is possible for the proportion of patients
entering the hospital colonized with resistant bacteria to be small. As a result,
we assume it is impossible for a disease-free equilibrium. Instead, we are inter-
ested in a boundary equilibrium in which all the patients are either uncolonized
or colonized with only sensitive bacteria; thus we focus on a resistant-free equilib-
rium (RFE), ER = (S,R1, R2, R12, X) = (S∗, 0, 0, 0, X∗). To perform the stability
analysis on the Random Drug Model, we use the assumption that there is a fixed
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population to first reduce the system by letting X = 1− (S +R1 +R2 +R12) and
thus in the reduced system (equation 2), we need to only consider the equilibrium
ER = (S∗, 0, 0, 0) where X∗ can be calculated by X∗ = 1−S∗. S∗ can be found by
solving dS

dt |ER
= 0 resulting in

S∗ =
β − (τ1 + τ2 + τ3 + γ + µ)±

√
(τ1 + τ2 + τ3 + γ + µ− β)2 + 4βµmS

2β
. (1)

The reduced system is given by

dS

dt
= (mS − S)µ− (τ1 + τ2 + τ3 + γ)S + βS(1− S −R1 −R2 −R12)

+βσ(c1R1 + c2R2 + c12R12)S

dR1

dt
= (m1 −R1)µ− (τ2 + τ3 + γ)R1 + β(1− c1)R1(1− S −R1 −R2 −R12)

+βσ[(c12 − c1)R12 + (c2 − c1)R2 − c1S]R1

dR2

dt
= (m2 −R2)µ− (τ1 + τ3 + γ)R2 + β(1− c2)R2(1− S −R1 −R2 −R12)

+βσ[(c12 − c2)R12 + (c1 − c2)R1 − c2S]R2

dR12

dt
= (m12 −R12)µ− (τ3 + γ)R12 + β(1− c12)R12(1− S −R1 −R2 −R12)

−βσ[c12S + (c12 − c1)R1 + (c12 − c2)R2]R12 (2)

Using the next generation approach, [30], we analyze the stability of the RFE. We
first reorder the system of differential equations so all the resistant states are coupled
together first followed by the sensitive state, R1, R2, R12, S. We then linearize the
reordered system about the RFE. The Jacobian matrix evaluated at the RFE is
given by

J =


J11 0 0 | 0
0 J22 0 | 0
0 0 J33 | 0

−−−−−− −−−−−− −−−−−− | − −−−
βS∗(σc1 − 1) βS∗(σc2 − 1) βS∗(σc12 − 1) | J44


where

J11 = −(µ+ τ2 + τ3 + γ) + β(1− c1)(1− S∗)− σβc1S∗

J22 = −(µ+ τ1 + τ3 + γ) + β(1− c2)(1− S∗)− σβc2S∗

J33 = −(µ+ τ3 + γ) + β(1− c12)(1− S∗)− σβc12S∗

J44 = −(µ+ τ1 + τ2 + τ3 + γ) + β(1− 2S∗)

The terms are split into the rates of new colonizations with resistant bacteria,

F =

 F11 0 0
0 F22 0
0 0 F33


where

F11 = β(1− c1)(1− S∗)− σβc1S∗

F22 = β(1− c2)(1− S∗)− σβc2S∗

F33 = β(1− c12)(1− S∗)− σβc12S∗
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and all other transitions

V =

 µ+ τ2 + τ3 + γ 0 0
0 µ+ τ1 + τ3 + γ 0
0 0 µ+ τ3 + γ

 .
V is a nonsingular matrix and the matrix product FV −1 is called the next generation
matrix for the model. The entries Fij signify the rate at which infected individuals
in compartment j produce new infections in compartment i near the RFE while the
entries V −1jk of the matrix

V −1 =

 1
µ+τ2+τ3+γ

0 0

0 1
µ+τ1+τ3+γ

0

0 0 1
µ+τ3+γ


represent the average length of time an individual spends in compartment j during
its lifetime, again assuming that the population remains near the RFE. Using ideas
similar to [30], we can define

RS = ρ(FV −1)

= max

{
β(1− c1)(1− S∗)− σβc1S∗

µ+ τ2 + τ3 + γ
,
β(1− c2)(1− S∗)− σβc2S∗

µ+ τ1 + τ3 + γ
,

β(1− c12)(1− S∗)− σβc12S∗

µ+ τ3 + γ

}
(3)

where ρ(A) is the spectral radius of the matrix A. Using results in [30], we have
the following theorem.

Theorem 2.1. The resistant-free equilibrium for the Random Drug Model, ER =
(S∗, 0, 0, 0), is locally asymptotically stable if and only if RS < 1 where RS is defined
by (3) and S∗ is given by (1).

For the Base Model, a comparable equilibrium analysis is performed by Chow
et. al. ([9]). We simply restate the results in the following theorem to provide a
complete stability analysis for all the models included in this paper.

Theorem 2.2. The resistant-free equilibrium for the Base Drug Model, EB =
(S†, 0, 0, 0), is locally asymptotically stable if and only if RB < 1 where RB is
defined by

RB = max

{
β(1− c1)(1− S†)− σβc1S†

µ+ τ2 + γ
,
β(1− c2)(1− S†)− σβc2S†

µ+ τ1 + γ
,

β(1− c12)(1− S†)− σβc12S†

µ+ γ

}
and S† is given by

S† =
β − (τ1 + τ2 + γ + µ) +

√
(τ1 + τ2 + γ + µ− β)2 + 4βµmS

2β
. (4)

Using a similar equilibrium analysis on the Isolation and Targeted Drug Models
as done with the Random Drug Model, we have similar results.
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Theorem 2.3. The resistant-free equilibrium for the Isolation Model, EI = (S†, 0,
0, 0, 0), is locally asymptotically stable if and only if RI < 1 where RI is defined by

RI = ρ(FV −1)

= max

{
β(1− c1)(1− S†)− σβc1S†

µ+ τ2 + γ
,
β(1− c2)(1− S†)− σβc2S†

µ+ τ1 + γ
,

β(1− c12)(1− S†)− σβc12S†

µ+ γ + η
,
−σβ(1− ε)c12S†

µ+ γ

}
and S† is given by (4).

Theorem 2.4. The resistant-free equilibrium for the Targeted Drug Model, ET =
(S†, 0, 0, 0), is locally asymptotically stable if and only if RT < 1 where RT is defined
by

RT = max

{
β(1− c1)(1− S†)− σβc1S†

µ+ τ2 + γ
,
β(1− c2)(1− S†)− σβc2S†

µ+ τ1 + γ
,

β(1− c12)(1− S†)− σβc12S†

µ+ δp+ γ

}
and S† is given by (4).

3. Sensitivity analysis. The ultimate goal of this paper is to determine the effect
of introducing a new drug in combating resistance within a hospital. Analyzing the
sensitivity of the model to changes in parameters will provide information about
how much the results of our model will be affected by changes in parameter values.
If the state variables are very sensitive to the changes of the parameter, then it
is necessary to explore the effects of the parameter changes on the resulting state
variables within the model. Moreover, it will be necessary to be able to accurately
estimate these parameters for more accurate findings. Additionally, the sensitivity
analysis will give insight into which variables, and hence processes, may work to
either increase or decrease resistance within the hospital.

To calculate the sensitivity of the state variables to the parameters, we perform
the traditional sensitivity analysis [8] by calculating ∂x

∂qj
for each state variable

x = [S,R1, R2, R12, X, (Q)] and each parameter qj in the system where

q = [β, σ, γ, µ,mS ,m1,m2,m12, c1, c2, c12, τ1, τ2, τ3, T, η, ε, p]

represents all the possible parameter values for the four models. To compute the
relative ranking of the parameters, i.e., to determine which parameter has the most
effect on the state variables, we use the modified l2 norm∣∣∣∣∣∣∣∣ ∂x∂qj

∣∣∣∣∣∣∣∣
2

=

[
1

tf − t0

∫ tf

t0

(
∂x

∂qj

)2

dt

]1/2
qj

max x

which normalizes the sensitivity values by removing the units. To determine the
sensitivity of the total resistance R = R1 + R2 + R12(+Q) in the hospital we use
the formula∣∣∣∣∣∣ ∂R∂qj

∣∣∣∣∣∣
2

=

[
1

tf−t0

∫ tf
t0

(
∂R
∂qj

)2
dt

]1/2
qj

max R

=

[
1

tf−t0

∫ tf
t0

(
∂R1

∂qj
+ ∂R2

∂qj
+ ∂R12

∂qj

(
+ ∂Q
∂qj

))2
dt

]1/2
qj

max R
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Figures 4 and 5 show the overall results of the sensitivity analysis. The parame-
ters resulting in the largest relative change in the state values for all the models are
the per capita primary transmission rate β, the per capita treatment rates τi or,
equivalently, the overall antibiotic treatment rate T , the per capita patient turnover
rate in the hospital µ, and to a lesser degree the initial population sizes m1, m2 and
mS . In addition, changes in the per capita isolation rate η in the Isolation Model
and changes in the proportion of patients colonized with dual resistance that are
identified and treated p in the Targeted Drug Model also have a large relative effect
on the state variables in each of these models. Small changes in the estimates of
these parameter values may result in relatively large changes in the resulting state
variables. On the other hand, changes in the relative rate of secondary colonization
to that of primary colonization σ, fitness costs of the resistant bacteria, c1, c2, and
c12, as well as the per capita clearance rate of bacteria due to the immune response
γ result in very little change in the overall state values. Therefore, small variations
in estimates of these parameters will not, in general, effect the overall model results
significantly. The one exception is in the Random Drug Model where the fitness
cost of the dual resistant strain c12 appears to effect the state variables on the same
order as changes in either τ1 or τ2.

Figure 4. Relative Sensitivity of the Basic Model and Isolation
Model with respect to the Parameters

In Figure 6, dx
dβ is plotted versus time where x = [S,R1, R2, R12]. In general,

dx
dβ > 0 across time except in a small window of time in which dS

dβ is negative.

This illustrates what one would expect: on average, increasing the transmission
rate increases the proportion of patients colonized with both sensitive and resistant
bacteria. In all but the Targeted Drug Model, the change is R12 with respect to β
is largest signifying that increasing β causes the greatest increase in the proportion
of patients colonized with dual resistant bacteria and hence also has a significant
effect on the total population colonized with resistant bacteria (also shown in the
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Figure 5. Relative Sensitivity of the Random Drug Model and
Targeted Drug Model with respect to the Parameters

figure). In the Targeted Drug Model, where drug 3 is used to treat a portion of the
patients colonized with dual resistance, and the per capita treatment rate of drug
3 increases as R12 increase, the change in β has a more significant effect on the
proportion of patients colonized with single resistant bacteria. One possible cause
for this switch could be a result of the treatment regime for drug 3 set forth in
this model. As patients carrying dual resistant bacteria increase, treatment of these
patients with drug 3 also increases. Recall, that the total proportion of patients
treated remain constant, thus increasing τ3 reduces the per capita treatment rates
with drugs 1 and 2, the only drugs allowed to treat patients colonized with single
resistance. In any of the cases, however, an increase in β results in an increase in
total resistance within the hospital.

Variation in the per capita treatment rate also appears to have one of the most
significant effect on changes in the state variables. Drug 1 is used to treat patients
colonized with both sensitive bacteria as well as bacteria resistant to drug 2; there-
fore, in the Base Model, Isolation Model and Random Drug Model, where τ1 is
fixed, increasing the value of τ1 will result in the greatest rate of decrease in R2,
see Figure 7. Similarly, increasing the value of τ2 results in the greatest rate of
decrease in R1 (Figure 8). In constructing the model, we did not explicitly assume
that the use of drug 1 increased resistance to drug 1 or the use of drug 2 increased
resistance to drug 2 although this is a popular argument in lobbying for a reduction
in the overall antibiotic use [27, 33]. However, the sensitivity analysis does indeed
show that at least initially, an increase in τ1 results in an increase in resistance to
drug 1, R1. Similarly, an increase in τ2 results initially in an increase in resistance
to drug 2, R2. However, it is interesting to note that after a short period of time,
increasing τ1 actually causes a decrease in R1 after which increasing τ1 has minimal,
if any, effect in either direction on R1. The same is true for τ2. On the other hand,
increasing τ1 or τ2 increases the proportion of patients colonized with dual resistant
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Figure 6. Relative Sensitivity of the State Variables with respect
to the Transmission Rate β for All Models

bacteria, R12. Although the rate of increase is smaller after the first window of
time, the variation in R12 due to changes in τ1 or τ2 does not reduce to 0 as in the
case with R2 or R1 respectively. Instead, the rate of increase in R12 with respect
to either τ1 or τ2 levels off to a near constant rate. Similar results were found in
the Random Drug Model where τ3 is the fixed per capita treatment rate with drug
3 which is used to treat all patients in the hospital. Since drug 3 was used to treat
all patients, an increase in τ3 results initially in a decrease in the proportion of pa-
tients colonized with either sensitive or resistant bacteria. However, after a certain
period of time, an increase in τ3 starts to increase both colonizations with sensitive
bacteria as well as colonizations with bacteria resistant to a single antibiotic while
still resulting in a decrease in both R12 and the total resistant population in the
hospital.

In addition to the rate of colonization and treatment rate, the change in the rate
of patient turnover, µ, results in an increase in the proportion of patients colonized
with sensitive bacteria and an eventual increase in the patients colonized with single
resistance. The time at which an increase in µ results in an increase in patients
colonized with single resistance R1 or R2 varies depending on the model, see Figure
9. In all models, increasing µ reduces both the proportion of patients colonized with
dual resistant bacteria as well as the total resistance in the hospital. Therefore,
increasing the turnover rate in the hospital may aid in the overall reduction in
resistant bacteria.

In addition to giving insight into which parameter values need to be estimated
precisely to produce accurate results, sensitivity analysis can also give intuition
into which processes effect total resistance in the hospital the most, and hence give
direction into where effort should be focused in order to reduce the total level of
overall resistance. For example, depending on which scenario or model best fits
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Figure 7. Relative Sensitivity of the State Variables with respect
to τ1 for the Basic Model, Isolation Model and Random Drug Model

Figure 8. Relative Sensitivity of the State Variables with respect
to τ2 for the Basic Model, Isolation Model and Random Drug Model

the hospital of interest and the time elapse within the system, it might be possible
to determine how one might go about trying to control overall resistance. For
instance, Figure 10 shows the variation in total resistance across time with respect
to the parameters for both the Base Model and Isolation Model. In both models,
the sensitivity analysis suggests that decreasing β, the rate of transmission, as well
as τ1 and τ2, the per capita treatment rates of drugs 1 and 2, and increasing µ,
the turnover rate in the hospital, the total resistance should decrease at the fastest
rate. In the Random Drug Model (Figure 11), the largest rate of decrease should
be found by again reducing β and increasing τ3 and µ. In the Targeted Drug Model
(Figure 11), again decreasing β and the overall per capita treatment rate T while
increasing µ and p, the portion of patients identified with dual resistant bacteria
and treated, should result in the greatest decrease in overall resistance. We will
examine these parameter changes in Section 4.
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Figure 9. Relative Sensitivity of the State Variables with Respect
to µ for All Models

Figure 10. Sensitivity of Total Resistance for the Basic Model
and the Isolation Model

4. Results. Using the parameter values in Table 3, the simulations for all the mod-
els can be found in Figure 12. In all the models, except the Targeted Drug Model,
the proportion of patients colonized with dual resistant bacteria, R12, reaches an
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Figure 11. Sensitivity of Total Resistance for the Random Drug
Model and the Targeted Drug Model

equilibrium at a much higher level than that for any of the single resistant states.
However, in the Targeted Drug Model, the change in both the single and dual
resistant strains follow a similar path and level off at nearly equal values. Examin-
ing the total resistance level within each of the models, the introduction of a new
drug greatly reduces the overall resistance within the hospital as one would expect.
However, the Targeted Drug Model depends on the portion of patients p one can
identify as carrying the dual resistant strain of bacteria. Figure 13 shows the effect
of varying p on the average total resistance compared to the average total resistance
of the other three models. Assuming the hospital can identify and successfully treat
approximately 25-26% of the dual resistant patients, with all other parameter values
fixed, model results suggest it would be more beneficial to treat only those patients
who have no other drugs available to clear the resistant bacteria. Hence, findings
suggest using a new antibiotic on only the portion of patients who carry a bacterial
strain resistant to all other antibiotics is beneficial in reducing the average total
resistance within the hospital, and this method of implementation limits the use of
the antibiotic which will most likely result in a longer time until the initial mutation
of a resistant strain forms [22].

The precise amount of reduction in total resistance depends on the choice of
parameters within the model. Although the best method for determining these
parameters and determining uncertainty in the model is to fit the model to actual
data from a hospital, we can examine possible benefits in changing the parameters
from their original estimates. In Section 3, we presented a sensitivity analysis for
each of the models and identified the potential parameters which might be most
beneficial in controlling the reduction of the overall resistant bacteria within the
hospital. Figures 14 - 16 illustrate a limited study of the effects of varying the most
influential parameter values for each of the models. In the sensitivity analysis of the
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Table 3. The Parameter Values for Simulations

Parameter Value Reference
β 1/day [5, 25]
σ 0.25 [5, 25]
ci 0.05 [25]
c12 0.15 [25]
T 0.78/day [17, 29]∗

γ 0.03/day [5, 25, 26]
µ 0.10/day [5, 25, 26]
mS 0.7 [5, 25, 26]
mi 0.05 [25]
m12 0.04 [25]
η 0.1/day
ε 0.9 [6, 25]

∗ [17] stated 24% of patients received antibiotics in 1979, while in a 2006-2007
study, [29] found 79% of COPD patients used antibiotics at least two consecutive

days while hospitalized.

Figure 12. Model Simulations showing the Proportion of Each
State over Time

Base and Isolation Models, it was discovered that decreasing the transmission rate
β and the per capita treatment rates of drugs 1 and 2, τ1 and τ2 respectively, while
increasing the turnover rate µ of patients within the hospital would be most likely to
reduce the average total resistance. To analyze the effects of these changes, we use
the initial parameter values in Table 3 and incrementally increase or decrease the
parameter values through a percent change in the original values, ranging from the
initial value to a 30% increase or reduction in the parameter values. We examine two
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Figure 13. Comparison of Total Resistance across All Models
Varying the Total Proportion p of Patients Identified and Treated
in the Targeted Drug Model

different total time increments since the sensitivity analysis suggests a greater effect
of one parameter over another depending on the total time period. In both scenarios,
with a maximum 30% change in the variables mentioned, the total resistance within
the hospital reduced on average by 15-20% with smaller reductions if only one of
the parameter values are changed or if there is a smaller percentage change in the
parameter values. We only show the results for the Base Model, but similar results
hold for the Isolation Model.

Figure 14. Average Total Resistance using the Base Model while
Varying Parameter Values
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In the Random Drug Model, the sensitivity analysis indicated that decreasing β
while increasing τ3 and µ would likely have the largest effect in reducing average
total resistance. Figure 15 examines the change in these variables when varying
the percent change in each variable. If reduction of this magnitude is possible,
model results indicate the possibility of reducing the average total resistance by an
additional 15-20% with the possibility of reducing the total proportion of patients
carrying resistant bacteria to less than 15%. However, simply reducing the rate of
transmission or colonization still provides significant reduction in the average pro-
portion of patients carrying any type of resistant bacteria. Results are similar with
the Targeted Drug Model, as seen in Figure 16, where β and T were reduced while p
and µ were increased. Overall, these results indicate that although introduction of
a new drug itself provides a substantial improvement towards reducing the average
overall resistance in the hospital, it is not the only source of reduction. There is still
a need to focus on all aspects of the hospital stay from faster discharges (when pos-
sible) to better hygiene practices and barrier preventions as well as the limitation
of antibiotic prescriptions to only those instances where it is required.

Figure 15. Average Total Resistance using the Random Drug
Model while Varying Parameter Values

5. Conclusions. In this paper, four models were used to examine the benefits of
introducing a new antibiotic within a hospital setting to try to combat the increase
of patients colonized with resistant bacteria. The first two models, the Base Model
and Isolation Models, described the spread of both single and dual resistant bacteria
in a hospital setting with no drug available to aid in treating patients colonized with
a dual resistant bacterial strain. These models were used as a basis for comparison
to both the Random Drug Model and Targeted Drug Model in which a new drug
was implemented but with different implementation strategies. The Random Drug
Model allowed the new drug to be available to treat all patients while the Targeted
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Figure 16. Average Total Resistance using the Targeted Drug
Model while Varying Parameter Values

Drug Model only allowed the new antibiotic to be prescribed to those patients who
were identified as carrying the dual resistant bacteria. We found that introducing a
new drug into the hospital resulted in a significant reduction of the average patients
carrying dual resistant bacteria, a reduction from approximately 65-72% of the
hospital down to between 28-36% of the hospital. Furthermore, the sensitivity of
the models were analyzed and parameters most likely to effect the results were
identified. A limited analysis was performed by changing those parameters most
likely to result in reducing the resistance even further, and if the parameter values
were changed by even 10%, there was a potential for another 8-10% reduction in the
overall resistance. Hence, introduction of a new antibiotic aids in the fight against
the spread of antibiotic resistance in a hospital, but focus on other processes effecting
the transmission of the resistance is still important in limiting antibiotic resistance.
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