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Abstract. SIR age-structured models are very often used as a basic model of

epidemic spread. Yet, their behaviour, under generic assumptions on contact

rates between different age classes, is not completely known, and, in the most
detailed analysis so far, Inaba (1990) was able to prove uniqueness of the

endemic equilibrium only under a rather restrictive condition.

Here, we show an example in the form of a 3 × 3 contact matrix in which
multiple non-trivial steady states exist. This instance of non-uniqueness of

positive equilibria differs from most existing ones for epidemic models, since
it arises not from a backward transcritical bifurcation at the disease free equi-

librium, but through two saddle-node bifurcations of the positive equilibrium.

The dynamical behaviour of the model is analysed numerically around the
range where multiple endemic equilibria exist; many other features are shown

to occur, from coexistence of multiple attractive periodic solutions, some with

extremely long period, to quasi-periodic and chaotic attractors.
It is also shown that, if the contact rates are in the form of a 2× 2 WAIFW

matrix, uniqueness of non-trivial steady states always holds, so that 3 is the

minimum dimension of the contact matrix to allow for multiple endemic equi-
libria.

1. Introduction. SIR epidemic models are at the basis of research aiming at
predicting the epidemic dynamics and assessing control measures for many kinds
of infectious diseases, from measles, chickenpox and other childhood diseases, to
influenza, and to emerging diseases. Either the models are exactly age–sructured
(generally with discrete age) SIR models or some variants of that, allowing for
incubation periods or other complications.

A crucial point in the application of these models is the estimation of an adequate
kernel that describes infection transmission between age classes. An approach going
back to Anderson and May [2] is to divide ages into few (n) groups, so as to use
a n× n matrix (often named WAIFW, “Who Acquires Infection From Whom”) to
model the transmission between (and within) groups. This is the approach currently
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used in many publications, and several methods have been used for the estimation
of the WAIFW matrix, one of which [17] has required an extensive survey of daily
individual contacts in several European countries.

In contrast with the steady application of this type of models, lies the incomplete
theoretical analysis of their dynamic behaviour. To date, the most general results
have been obtained by Inaba [15] who, defining R0 as the spectral radius of an
appropriate operator, proved that for R0 < 1 the disease–free equilibrium is asymp-
totically stable and there are no positive stationary solutions, while for R0 > 1, the
disease–free equilibrium is unstable and there exists at least one positive stationary
solution.

If transmission follows ‘separable mixing’ (precisely defined below), the conclu-
sion is sharper [7]: for R0 > 1 there exists a unique positive stationary solution. The
same conclusion has been reached by Inaba [15] under hypothesis (H4) (see Section
3), which is however unlikely to hold for empirical transmission kernels. Thus, the
conjecture raised by Greenhalgh [11] that for R0 > 1 there exists a unique positive
stationary solution, is still open in general. In this paper, we show that the con-
jecture is false by exhibiting a WAIFW matrix such that the age-structured SIR
model with that matrix as transmission kernel may have up to 3 positive equilibria
for appropriate parameter values.

More generally, we show a method to build WAIFW matrices with this property;
in the way, we prove that a 2× 2 WAIFW matrix always leads to uniqueness of the
endemic equilibrium when R0 > 1, while one obtain non-uniqueness with a different
2× 2 matrix-like structure with infectivity increasing with age.

A related issue concerns stability of the equilibria; while it is well known that
the disease-free equilibrium is stable for R0 < 1 and unstable for R0 > 1, little is
known about the stability of the endemic equilibria, except that general principles
about transcritical bifurcations guarantee that it will be asymptotically stable for
R0 > 1 sufficiently close to 1. Thieme [18] showed that an endemic steady state
could be unstable, even with proportionate mixing. Andreasen [3] studied this
problem through perturbation methods under the assumption that the infectious
period is small compared to the individuals life span: he proved [3] that if the
disease transmission is independent of age then an endemic equilibrium is always
locally stable, while the introduction of age-dependent susceptibility may lead to
loss of local stability [4].

The numerical bifurcation study (based on the method in [5]) proposed in the
final section shows that much more complex bifurcation patterns are possible for
this type of model. This contrasts with the invariable convergence to the endemic
equilibrium occurring in all simulations (we are aware of) aiming at reproducing
empirical patterns. It is possible that the structure of realistic WAIFW matrices is
such that, for R0 > 1, the endemic equilibrium is always unique and globally stable.
We hope that the current study helps in elucidating this feature.

2. The model. The population is divided into three compartments, the suscep-
tible, infective and immune individuals; as usual [1, 11, 15], we assume that the
total population is in a demographical stationary state. n(a) is the stationary age
density of the total population, i.e. a stationary positive solution of the system{ (

∂
∂t + ∂

∂a

)
n(a, t) = −µ(a)n(a, t) , 0 < a < ω , t > 0

n(0, t) =
∫ ω
0
b(a)n(a, t)da

(1)
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where b(a) is the fertility rate, µ(a) is the death rate and a maximal age ω is
assumed; the assumption of demographical stationarity is equivalent ([14], chap.1)
to the condition ∫ ω

0

b(a)π(a) da = 1 ,

where

π(a) = exp{−
∫ a

0

µ(s) ds}

represents the probability of surviving up to age a.
We do not delve into the technical conditions [14] on the functions b and µ,

because they are not actually needed for the analysis of the epidemic models. Note
only that n(a) = Kπ(a) for some constant K > 0.

Let now S(a, t), I(a, t), R(a, t) be the age densities at time t of the susceptible,
infective and immune individuals, respectively. Susceptible may become infected at
rate λ(a, t) (“force of infection”); infectives become removed at rate γ. Considering
also deaths (at rate µ(a)), the equations satisfied by S, I and R are

(
∂
∂t + ∂

∂a

)
S = −(λ(a, t) + µ(a))S(

∂
∂t + ∂

∂a

)
I = λ(a, t)S − (µ(a) + γ)I 0 < a < ω , t > 0(

∂
∂t + ∂

∂a

)
R = γI − µ(a)R .

(2)

Initial and boundary conditions have to be added to the equations. Neglecting tran-
sient maternal immunity, it is assumed that all newborns are susceptible, namely

S(0, t) =

∫ ω

0

b(a)n(a)da , I(0, t) = 0 , R(0, t) = 0 t ≥ 0. (3)

In (3) it has been implicitly assumed S(a, t) + I(a, t) + R(a, t) ≡ n(a). This is
possible, since the sum S(a, t) + I(a, t) + R(a, t) satisfies equation (1), as long as
the initial conditions satisfy

S(a, 0) + I(a, o) +R(a, 0) = Kπ(a) for some K > 0

and then n(a) = Kπ(a).

Under these assumptions, it is convenient to change variables to the fractions
x(a, t) = S(a, t)/n(a) and y(a, t) = I(a, t)/n(a) (it is not necessary to consider also
z(a, t) = R(a, t)/n(a), since it can be obtained as z(a, t) = 1−x(a, t)−y(a, t)). The
system of equations satisfied by x and y is [15, p. 414]

(
∂
∂t + ∂

∂a

)
x(a, t) = −λ(a, t)x(a, t)

0 < a < ω , t > 0(
∂
∂t + ∂

∂a

)
y(a, t) = λ(a, t)x(a, t)− γy(a, t)

x(0, t) = 1 , y(0, t) = 0 , t > 0

(4)

with initial conditions

x(a, 0) = x0(a), y(a, 0) = y0(a) , 0 < a < ω ,

with x0(a), y0(a) ≥ 0 and x0(a) + y0(a) ≤ 1.
To complete model (4), one still has to assign a constitutive rule for the force

of infection λ(a, t). The standard assumption ([2], chap.9.2) is of a general linear
functional on infective density

λ(a, t) =

∫ ω

0

β(a, s)I(s, t) ds =

∫ ω

0

β(a, s)n(s)y(s, t) ds (5)
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with β(a, a′) the contact coefficient between susceptible individuals aged a and the
infectives aged a′.

3. Stationary solutions. A first problem concerning system (4)–(5) is the exis-
tence of stationary solutions (equilibria). For any values of parameters and functions
involved, there exists the disease-free equilibrium (x(a), y(a)) ≡ (1, 0). Concerning
the existence of other equilibria, Greenhalgh [11] showed the equivalence of the
problem of existence and uniqueness of the steady states of system (2) with the
problem of existence and uniqueness of the solutions of the following nonlinear
integral equation

λ(a) =

∫ ω

0

λ(σ)e−
∫ σ
0
λ(τ)dτφ(a, σ)dσ , (6)

where the kernel φ(·, ·) is given as

φ(a, σ) =

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)dξ . (7)

The most general result to date concerning this problem has been obtained by
Inaba [15] under the following assumptions about the contact coefficient β(·, ·).

(H1) β(a, ξ) ∈ L∞+
(
(0, ω)× (0, ω)

)
.

(H2) lim
h→ 0

∫ ω
0
|β(a+ h, ξ)− β(a, ξ)| da = 0 uniformly for ξ ∈ R, where β is

extended by β(a, ξ) = 0 for a, ξ ∈ (−∞, 0) ∪ (ω,+∞).
(H3) There exist numbers α with ω > α > 0 and ε > 0 such that β(a, ξ) ≥ ε

for a.e. (a, ξ) ∈ (0, ω)× (ω − α, ω) .

He considered the positive nonlinear operator Φ : L1
+(0, ω) −→ L1

+(0, ω) de-
fined by

(Φψ)(a) =

∫ ω

0

ψ(σ)e−
∫ σ
0
ψ(s)dsφ(a, σ)dσ , a ∈ (0, ω) (8)

with φ(·, ·) given by (7). Solutions of (6) can be written as solutions ψ of the
nonlinear equation Φψ = ψ, i.e. fixed points of the operator Φ.

Let finally T = Φ′(0) be the positive linear operator given by the Frechet deriv-
ative of Φ in zero, r(T ) the spectral radius of T . Then

Theorem 1. (Inaba,1990) Assume (H1)–(H3); then

1. if r(T ) ≤ 1 then the only non-negative fixed point of Φ is ψ = 0;
2. if r(T ) > 1, Φ has at least one non-zero fixed point (a positive solution of the

equation Φψ = ψ).

To prove uniqueness, Inaba added the assumption

(H4) For all (a, σ) ∈ [0, ω]×[0, ω] the inequality β(a, s)n(s)−γφ(a, s) ≥ 0 holds.

He proved, using monotonicity methods, that under (H4) there exists at most one
non-trivial positive solution of equation (6) [15, Prop. 4.10]; hence in case r(T ) > 1
there exists one and only one non-trivial positive solution under Assumptions (H1)–
(H4).

Another assumption under which is easy to prove uniqueness of positive solutions
is the so-called separable mixing β(a, s) = ϕ(a)q(s). In that case equation (6) can
be reduced to a one-dimensional problem, and r(T ) can be explicitly computed.

The problem arises of understanding whether or not uniqueness of positive solu-
tions of (6) holds in general. We will consider especially contacts that take the form
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of WAIFW matrices [2]; age is divided into n age groups Ij = (αj−1, αj), j = 1 . . . n
where 0 = α0 < α1 < · · · < αn−1 < αn = ω. Then

β(a, a′) =

n∑
i,j=1

βij1Ii(a)1Ij (a
′) (9)

where βij ≥ 0 ∀ i, j = 1, . . . , n .

In this case it is not difficult to see that, if ψ ∈ L1
+(0, ω) is a fixed point of Φ, it

must be ψ =
∑n
i=1 xi1Ii with (x1, . . . , xn) ∈ Rn+ . Formally, one can define a map

J : Rn → L1 by

J(x1, . . . , xn) =

n∑
i=1

xi1Ii

so that Im(Φ) ⊂ Im(J) and a map Φ̃ : Rn+ → Rn+ such that J ◦ Φ̃ = Φ ◦ J .

If x̄ is a fixed point of Φ̃, it is immediate that J(x̄) is a fixed point of Φ. A similar
reduction can be reached in the more general case of finite-dimensional mixing

β(a, s) =

n∑
j=1

ϕj(a)qj(s)

for arbitrary functions ϕj and qj ; this case will not be dealt with in this paper,
although similar methods would apply.

Through simple computations, the map Φ̃ can be written explicitly as

Φ̃i(x) =

n∑
j=1

βij gj(x) , i = 1, . . . , n (10)

where

g1(x) = x1

∫ α1

0

n(ξ)

∫ ξ

0

e−γ(ξ−τ)e−τx1dτ dξ

gj(x) =

j−1∑
k=1

xk

∫ αj

αj−1

n(ξ) exp{−
k−1∑
h=1

xh(αh−αh−1)}
∫ αk

αk−1

e−γ(ξ−τ)−xk(τ−αk−1)dτ dξ

+ xj

∫ αj

αj−1

n(ξ) exp{−
j−1∑
h=1

xh(αh − αh−1)}
∫ ξ

αj−1

e−γ(ξ−τ)−xj(τ−αj−1)dτ dξ . (11)

It is possible to prove the existence of non-zero fixed points of Φ̃ under weaker
conditions than those of Theorem 1. Indeed, conditions (H1) and (H2) are automatic
when (9) holds, and (H3) can be weakened, or dropped altogether allowing for
nonnegative fixed points. Precisely, consider the assumption

(H3’)

n∑
j=1

βij > 0 ∀ i = 1, . . . , n and there exist m ∈ {1 . . . , n− 1} and indices

i1, . . . , im, j1, . . . , jm with i1 = 1, jm = n, il ≤ jl−1, l = 2, . . .m, such that

βi1,j1 · βi2,j2 · · ·βim,jm > 0.

Theorem 2. Assume (9). Then

a) If (H3’) and r(T ) > 1, there exists a positive fixed point of Φ̃, hence of Φ.
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b) If r(T ) > 1, there exists a nonnegative fixed point of Φ̃, hence of Φ.

The proof is in Appendix A where it is shown that (H3’) is sufficient to exclude

existence of non-trivial fixed points of Φ̃ on the boundary of Rn+. The first part of

(H3’) ensures that Φ̃i(x), i.e. the force of infection in each age class Ii , is positive
for some x ∈ Rn+. The second condition can be described as asking that, if there
are some infective individuals in age-class n, eventually the force of infection will
be positive in age class 1. Only this condition is needed, because the passage of
time ensures that if there are some infective individuals in age class i, there will be
infectives in age class j for each j > i at some later time.

It can be seen that (H3’) is essentially necessary to exclude existence of fixed

points of Φ̃ on the boundary of Rn+ in the following sense. Without lack of general-
ity, one can assume that there exists j such that βjn > 0; otherwise, the first n− 1

components of Φ̃ do not depend on xn and one can restrict Φ̃ to Rn−1 (in biolog-
ical terms, the n-th age class would be an epidemiological dead-end). Under this

assumption, it is not difficult to see that, if (H3’) is violated, the system Φ̃(x) = x
can be split into subsystems, so there exist matrices with the same sign structure
that have non-trivial fixed points on the boundary of Rn+.

In the course of the proof, we prove the following Proposition concerning the fixed
point index i(Φ̃, ·); it will also be used in later Sections, and may be of independent
interest.

Proposition 1. Assume r(T ) > 1 and (H3’). Then there exists a bounded open
set G ⊂ Rn+ such that

i(Φ̃, G) = 1 (12)

and all fixed points x ∈ Rn+, x 6= 0, belong to G.

Actually, the proof of Proposition 1 works even in the infinite dimensional case
[15], using a generalization of the fixed point index [9, Ch. 20] needed because the
positive cone of L1(0, ω) has empty interior.

4. An example of non-uniqueness. The example of non-uniqueness of station-
ary solutions has been obtained choosing coefficients βij that allowed for drastic
simplifications. Specifically, in Appendix B we show the following

Example 1. Let βij = 0 for (i, j) /∈
{

(1, 3), (2, 2), (3, 1)
}
, i, j = 1, 2, 3 , n(ξ) ≡ 1

on (0, ω), and let Φ̃(ϑ, x) be the map defined in (10), making it explicit its depen-
dence on all parameters ϑ = (β13, β22, β31, α1, α2, ω, γ) beyond x = (x1, x2, x3).

Then there exist values ϑ∗ ∈ R7
+ and x∗ ∈ R3

+ such that

Φ̃(ϑ∗, x∗) = x∗ (13)

det
(
I − Φ̃x(ϑ∗, x∗)

)
= 0. (14)

More precisely, the construction of the example yields values of γ (=1), β13
(≈ 1.8702 · 104), β22 (≈ 2.4633), β31 (≈ 1.6835), α1 (= 2) such that for each ω
large enough there exists α2 with α1 < α2 < ω such that (13) and (14) are satisfied
at x∗ = (1, 1, 1). It is a constructive recipe that, for instance, for ω = 100, yields
α2 ≈ 12.4342.

Condition (13) says that x∗ is a fixed point of Φ̃ when ϑ = ϑ∗, while (14) is the
necessary condition for saddle-node bifurcations of fixed points of maps. Given a
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saddle-node bifurcation, one can choose a one-dimensional parameter from ϑ (for
instance α2, which has been used in the numerical computations) and obtain that

for α2 close to α∗2 there exist two fixed points of Φ̃ close to x∗ for α2 > α∗2 [or
α2 < α∗2] and none for α2 < α∗2 [or α2 > α∗2]. This would suffice to prove that, for

certain parameter values, equation x = Φ̃(x) has multiple positive solutions, hence
(4) has multiple positive equilibria.

1 1.5 2 2.5 3 3.5 4
10

11

12

13

14

15

16

17

18

19

20

22

2

CP CP CP CP 

Figure 1. The curve in parameter space (β22, α2) at which the
two conditions (13)–(14) occur at some point x∗ ∈ R3

+. Other
parameter values are β13 = 1.8702 · 104, β31 = 1.6835, α1 = 2,
ω = 100, γ = 1.

In order to prove the occurrence of a saddle-node bifurcation in (α∗2, x
∗), one

would need to check the transversality conditions. This can be performed through
very long computations. We are satisfied here with checking them numerically, and
showing the bifurcation diagram obtained numerically through the use of MATLAB
and MATCONT software (see Figures 1 and 2).

One may note that the choice of βij ’s in Proposition 1 does not satisfy condition
(H3) but only (H3’); thus it cannot be technically considered a counter-example to
the conjecture of uniqueness of equilibria under (H1)-(H3); from the computations
it is clear, however, that by continuity the results would be the same if a small ε > 0
were added to all values of βij .

5. Numerical results. First of all, using MATCONT, we computed, starting from
the value found analytically (2.4633, 12.4342) the curve of points in the parameter
space (β22, α2) at which the two conditions (13)–(14) occur at some point x∗ (Fig. 1).
It can be seen that the curve has a cusp around (2.51, 12.3) from which two branches
depart for β22 < 2.51: for such values two saddle-node bifurcations occur at (α∗2, x

∗)
and (α∗∗2 , x

∗∗), which get further apart as β22 decreases away from 2.51.
We then looked at a bifurcation diagram in the single parameter α2, setting

β22 ≈ 1.83, so that the two saddle-node bifurcation points are visibly away from each
other. The overall bifurcation structure (Fig. 2) confirms that for α2 ∈ (α∗2, α

∗∗
2 )

equation (6) has actually 3 positive solutions, while only 1 (unless other solution
branches exist) for α2 < α∗2 and α2 > α∗∗2 .
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x 1
*

2 14.945014

2 13.673273
2 14.2304

2 14.5766

2 14.9245
2 14.7972

2 12.8405
2 9.8239

2 8.96512 8.700939

Figure 2. Coordinate x∗1 of the stationary positive solutions of
system (4) against the value of α2. Other parameter values are
β13 ≈ 1.8702 · 104, β22 ≈ 1.83, β31 ≈ 1.6835, α1 = 2, ω = 100,
γ = 1. The points at which roots of the characteristic equation
cross the imaginary axis are also shown: moving on the curve from
right to left dashed labels denote crossings left-to-right, solid labels
denote crossing right-to-left, thick labels are for real crossings, nor-
mal labels are for complex crossings. Traits between bifurcation
points are shown in different style: thick solid denotes stable equi-
librium, dashed unstable equilibrium, solid periodic orbits. More
details are in the text.

The stability of the corresponding stationary solutions of (4) has been studied
numerically through the approximation of the eigenvalues of the linearisation at
equilibria, as depicted in Fig. 2. The technique, proposed in [5] and applied similarly
in [6], is based on the reduction to finite dimension of the infinitesimal generator
of the semigroup associated to the model. Starting the description from the right,
along the lower thick solid curve all eigenvalues have negative real part (and thus
the equilibrium is asymptotically stable) for all α2 > α∗2 ≈ 13.673273, the point of
saddle-node bifurcation (thick dashed label). Proceeding along the middle branch of
the curve, in the dashed part there is one real positive eigenvalue, while both at α2 ≈
14.2304 and α2 ≈ 14.5766 (dashed labels) a pair of complex conjugate roots crosses
the imaginary axis from left to right, thus giving rise through Hopf bifurcations to
periodic solutions that inherit the instability of the equilibrium they are bifurcating
from (thin solid part). At α2 = α∗∗2 ≈ 14.945014 a second saddle-node bifurcation
occurs with the real positive eigenvalue becoming negative (thick solid label); the
upper solution branch starts however unstable (still thin solid), because two pairs of
complex conjugate eigenvalues have positive real part. At α2 ≈ 14.9245 and α2 ≈
14.7972 (dashed labels) two further pairs of complex conjugate eigenvalues cross the
imaginary axis from left to right; thus for α2 to the left of 14.7972, the linearisation
at the equilibrium on the upper solution branch has four pairs of complex conjugate
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eigenvalues in the positive half-plane. These move back in the negative half-plane at
the bifurcation points at α2 ≈ 12.8405, 9.8239, 8.9651 and 8.700939 (solid labels).
For α2 < 8.70093 all eigenvalues have negative real part (thick solid curve), so that
the equilibrium is asymptotically stable. Looking at the bifurcation diagram in the
opposite direction, one sees that at α2 = 8.70093 a Hopf bifurcation occurs with
the emergence of a periodic solution that, in the supercrititcal case, would inherit
the asymptotical stability. Because of the complexity of the system, a numerical
continuation of the branches of periodic solutions and the corresponding analysis of
their stability was unfeasible. Instead we approximated the solutions of the PDE
system (6) at selected values of α2, chosen in relation to the diagram of Fig. 2.

Some results have been selected out of many simulations and are shown in Figures
3 and 4 where α2 increases going from left to right and from top to bottom. As
initial conditions, we choose, as described in the legends, either the final conditions
of other simulations, or fractions of susceptible and infectives that would be at
equilibrium if the force of infection were fixed at (x1, x2, x3). Precisely

x(a) =


e−x1a if 0 < a < α1

e−x1α1−x2(a−α1) if α1 < a < α2

e−x1α1−x2(α2−α1)−x3(a−α2) if α2 < a < ω

(15)

y(a) =

∫ a

0

(x11(0,α1)(τ) + x21(α1,α2)(τ) + x31(α2,ω)(τ))e−γ(a−τ)x(τ) dτ .

From Fig. 3 it can be seen that, as expected, solutions converge to the (unique)
equilibrium for α2 = 8.5 (first panel) and, passing the Hopf bifurcation, to a pe-
riodic solution (of period approximately 20 time-units) for α2 = 9 (second panel).
Increasing furthermore α2, the attractive periodic solution acquires a more com-
plex structure (at α2 = 11), then a parameter region (α2 between 11.59 and 11.67)
emerges in which solutions appear chaotic, followed by a region (we show α2 = 12)
where solutions converge to a periodic solutions of much shorter period (around 8
time units).

Looking at Fig. 4, obtained with larger values of α2, one sees that at α2 = 13,
two different periodic solutions exist, one of long period (around 50 time units), the
other one much shorter (around 9 time units). They appear to coexist for α2 up
to around 13.5, where the period of the long-period solution approaches 80 time-
units, while the solution of short period undergoes a Neimarck-Sacker bifurcation,
giving rise to a quasi-periodic solution (fourth panel). This solution disappears into
a chaotic region (not shown) for α2 around 13.6, while the long-period solution
persists and, at α2 = 13.66, has period around 200 years. Increasing α2 further,
the period lengthens but, as α2 passes the saddle-node value around 13.675, all
solutions appear to converge to the stable equilibrium solution (the lower branch in
Fig. 2). The suspicion arises that the stable periodic solution disappears through
a homoclinic bifurcation at the same time as the saddle-node bifurcation occurs.
The complexity of the system prevents us from reaching definite conclusions in this
respect as well as in the apparent transitions to chaos.

6. A uniqueness result. The example of non-uniqueness of equilibria of (4) has
been obtained assuming that the contact rates have the structure (9) with n = 3.
Since uniqueness is obvious with n = 1, one may wonder whether it is possible to
find an example of non-uniqueness with the structure (9) with n = 2. The answer
is actually negative, as shown below.
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Figure 3. The values of x1(t) = β13
∫ ω
α2
n(s)y(s, t) ds, x2(t) =

β22
∫ α2

α1
n(s)y(s, t) ds, x3(t) = β31

∫ α1

0
n(s)y(s, t) ds obtained by ap-

proximating (4) with a finite-difference scheme. The value of α2

(from 8.5 to 12) is reported in each panel. All other parameter
values as in Fig. 2. The initial conditions were, for the first three
panels, the final conditions of the panel in Fig. 4a; in the last three
panels, the final conditions of the third panel.
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Figure 4. Same as Fig. 3 with α2 between 13 and 13.7. Ini-
tial conditions were of the type (15): with, from top to bottom,
(x1, x2, x3) = (2.56, 0.47, 1.44), (2.60, 0.61, 1.55), (2.58, 0.49, 1.46),
(2.48, 0.49, 1.43) and (2.302, 0.423, 1.293) in the last row.

First note that, assuming (9) with n = 2 as contact rates, then the operator

equation (6) takes the form xi = Φ̃i(x), i = 1, 2 , where Φ̃ : R2
+ −→ R2

+ is the
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operator defined in (10) with n = 2 and that we now rewrite as

Φ̃i(x) = βi1

∫ α

0

n(ξ)e−γξx1ϕξ(x1)dξ + βi2

∫ ω

α

n(ξ)e−γξ (16)

×
(
x1ϕα(x1) + x2e

α(x2−x1)
(
ϕξ(x2)− ϕα(x2)

))
dξ , i = 1, 2

where

ϕs(t) =

∫ s

0

eτ(γ−t)dτ =

{
es(γ−t)−1

γ−t γ 6= t

s γ = t
s ≥ 0 , t ≥ 0 (17)

and now I1 = (0, α), I2 = (α, ω).
We assume in what follows that the entries of the matrix {βij}i,j=1,2 satisfy the

condition (H3’), that now is equivalent to the condition

β12 > 0 , β21 + β22 > 0 .

This assumption ensures that non-zero fixed points are in the interior of the
positive cone R2

+.
The main result we obtain in this Section is

Theorem 3. Assume (H3’) and let Φ̃ be defined as in (16) and T = Φ̃′(0). If

r(T ) > 1, then there exists a unique x∗ ∈ Int
(
R2

+

)
s.t. x∗ = Φ̃(x∗).

The existence part was firstly proved on Theorem 1 by Inaba under assumption
(H3) [15] and it is proved in Theorem 2, for the finite-dimensional case, under the
more general assumption (H3’). Uniqueness is proved through a series of interme-
diate results. The crucial one is summarised as

Proposition 2. Assume x ∈ Int
(
R2

+

)
is a fixed point of (16). Then

det
(
I − Φ̃x(x)

)
> 0.

Proposition 2 shows that the necessary condition (14) for a saddle-node bifurca-
tion cannot occur for n = 2.

Proposition 2 is proved in Appendix C through a series of Lemmas.
In order to prove Theorem 3, first note that all nontrivial fixed points (that are

in the interior of R2
+ because of (H3’)) are isolated since, by Proposition 2, Φ̃ is a

local diffeomorphism in each fixed point x. Then, the local fixed point index in x
is defined [19, Ch. 12.3] and given by

i(Φ̃, x) = sign
(

det
(
I − Φ̃x(x)

))
= 1. (18)

We can finally prove the main result of this Section.

Proof of Theorem 3. Consider the open set G defined in Proposition 1. The set of
positive fixed points of Φ̃ is contained in G. We already know that such fixed points
are isolated. Hence their number is finite for G is bounded. Let x1, . . . , xm be such
points and Bρ(xi), i = 1, . . . ,m , be disjoint neighborhoods of the xi, Bρ(xi) ⊆ G .
Then for the index sum Theorem [19, Prop. 12.6] and Propositions 2 and 1 we have

1 = i(Φ̃, G) =

m∑
i=1

i(Φ̃, Bρ(xi)) =

m∑
i=1

sign
(
det
(
I − Φ̃x(xi)

))
= m.

Then we have m = 1.
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We have seen above that, if the contact rates have the form (9) with n = 2,
the positive equilibrium is unique above the threshold. It is instead possible to
choose β(a, a′) in a way such that the operator Φ is essentially 2-dimensional, but
the condition (14) for saddle-node bifurcation of equilibrium (thus giving rise to
multiple positive equilibria) is satisfied.

Choose in fact

β(a, ξ) =

∑2
i,j=1 βij1Ii(a)1Ij (ξ)

n(ξ)e−γξ
. (19)

With this choice of β(·, ·), a positive fixed point ψ for Φ must be ψ =
∑2
i=1 xi 1Ii

where (x1, x2) is a solution of the equation on R2
+:

xi = βi1x1

∫ α

0

ϕξ(x1)dξ + βi2x1ϕα(x1)(ω − α)

+ βi2x2 e
α(x2−x1)

∫ ω

α

(
ϕξ(x2)− ϕα(x2)

)
dξ , i = 1, 2 (20)

with ϕ given as in (17). Considering now Φ̃ : R2
+ → R2

+ defined as the right
hand side of (20), one can find, with computations similar to those performed in

Section 4, that there exist values of the parameters and of x∗ such that Φ̃(x∗) = x∗

and det
(
I − Φ̃x(ϑ∗, x∗)

)
= 0. One such example is obtained at x∗ = (1, 1) with

β11 = β22 = 0, γ = 1, α = 4, ω = 28 +
√

720, β12 = 2
ω2−α2 , β21 = 2

α2 .

It must be remarked that the choice (19) entails that β(a, ξ) is unbounded as
ξ goes to ω if, as often but not always assumed, lim

a→ω
n(a) = 0. This problem

can be adjusted by modifying β(a, ξ) when ξ is in a suitably small neighbourhood
of ω while, by continuity, multiple solutions will continue to exist. However, the
choice (19) appears anyway unrealistic, because with that infectiousness increases
exponentially with age ξ.

7. Conclusions. The analysis presented in this paper shows that the age-struc-
tured SIR epidemic model may have rather unexpected dynamical behaviour, with
multiple endemic equilibria, coexistence of multiple attractive periodic solutions,
some with extremely long period, occurrence of quasi-periodic and chaotic attractors
and, more generally, a rather complicated bifurcation structure, of which we believe
we have captured only some partial information.

Although the contact rates have been chosen according to the widely used pattern
of WAIFW matrices, it must be admitted that the parameter values employed
do not aim at being realistic, but have been chosen purely out of mathematical
simplicity. Indeed, it is difficult to conceive that individuals in the intermediate age
class have contact only within themselves, while those in the youngest age class can
be infected only by those in the oldest class and vice versa. Furthermore in the
example shown in Sections 4 and 5 the strength of infection old-to-young is orders
of magnitude higher than that of infection young-to-old. Thus, the astonishing
pattern of periodic epidemics occurring every around 200 years (Fig. 4e), assuming
an average infectious period of 1 year and expected life of 100 years, may look just
a mathematical curiosity.

An intuitive explanation of the multiple equilibria appears appropriate. If there
were no population fluxes among age classes, with the WAIFW matrix chosen in
the example, there would be two separate epidemics: one involving youngest and
oldest age class, and another one involving the intermediate age class. Since there
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is instead population flux, an endemic infection in young and old age classes is such
that (when parameter values are suitable) too few individuals arrive susceptible
at the intermediate age class, so that the infection in that age class is not self-
sustaining; this corresponds to the upper equilibrium branch in Fig. 2 that exists
only if α2 is not too large (otherwise, the size of the intermediate class becomes
large enough that the infection in that age class becomes self-sustaining); in the
alternative equilibrium (lower equilibrium branch in Fig. 2), the infection is endemic
in the intermediate age class and too few susceptibles are left for the older age class
to be able to spread sufficiently the infection to the young age class and back.

A similar pattern can be seen in the periodic solutions, where infections in the
intermediate age class on one side, and in the young and old age class, on the other
side, are desynchronized. One can possibly conceive less extreme examples in which
partial desynchronizations of epidemics in different age classes occur.

The examples shown, though admittedly unrealistic, give insight on the mecha-
nisms through which, when a dynamical state (such as age) affects epidemic trans-
mission, complicated patterns may arise that are impossible when states are static;
as well known, in multigroup SIR models, global convergence to a unique equilib-
rium occurs above threshold [13, 12]. The complex behaviour of this system may
appear reminiscent of what found for the LPA model of Tribolium [8], where again
there are 3 stages with simple chain transitions and nonlinear interactions.

One may finally wonder whether, if the contact matrices are ‘realistic’ in some
sense, uniqueness of the endemic equilibrium occurs also in age-structured epidemic
model. The question becomes which are the features of ‘realistic’ contact matri-
ces: for instance, one may require that they are not too far from symmetry and
that their diagonal elements are larger than the non-diagonal (as in the empirically
identified matrices in POLYMOD [17]). Looking at the same question from a differ-
ent perspective, one could aim at identifying which properties of contact matrices
are required to obtain a saddle-node bifurcation, although computations appear
prohibitive without simplifying assumptions of the type we used in Section 4.

Appendix A. Proof of Theorem 2. We now use the structure of Φ̃ (10) to prove
the following

Lemma 1. If (H3’) holds, then Φ̃ has no fixed points on the boundary of Rn+ but
for 0.

Proof. One immediately see that, if x ∈ Rn+ with xi > 0 then gj(x) > 0 (11) for all
j ≥ i; in particular, if x ∈ Rn+ \ {0}, then gn(x) > 0.

Assume x ∈ Rn+, x 6= 0, is a fixed point of Φ̃. Since gn(x) > 0, from (H3’)

Φ̃im(x) > 0, so that xim > 0; similarly from xil > 0, one obtains gjl−1
(x) > 0,

implying xil−1
= Φ̃il−1

(x) > 0. Applying this recursively backwards with l from m
to 2, one arrives at xi1 = x1 > 0. Then from (H3’), one gets gj(x) > 0 for all j, so

that xi = Φ̃i(x) > 0 for all i = 1, . . . , n.

Proof of Proposition 1. We observe that

Mi = sup
x∈Rn+

Φi(x) < +∞ , i = 1, . . . , n ,

so we can choose R >
∑n
i=1Mi(αi − αi−1) and define

G =
{
x ∈ Rn+ : xi > 0 ∀ i, ρ < ‖J(x)‖1 < R

}
,
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with ρ > 0 to be selected below, ‖ · ‖1 the L1-norm on (0, ω) and recalling the
definition J(x) =

∑n
i=1 xi1Ii .

Choose x0 in the interior of Rn+ with ‖J(x0)‖1 < R, and let

q(t) = max
{

ln
(
r
(
(1− t)T

))
, t‖J(x0)‖1

}
for t ∈ [0, 1]. q is continuous since ln (r((1− t)T )) = ln ((1− t)r(T )) because of the
spectral mapping theorem ([16, Chapt. 1.6]). We notice that q(t) > 0 for all t ∈ [0, 1]
because of the assumption on r(T ) and the choice of x0. Hence mint∈[0,1] q(t) > 0
and we can choose ρ with 0 < ρ ≤ mint∈[0,1] q(t).

Now we define the homotopy

H : G× [0, 1] −→ Rn by H(x, t) = (1− t)Φ̃(x) + tx0.

We need to show that H(x, t) 6= x for all x on the boundary of G and t ∈ [0, 1]. By
construction

‖J(H(x, t))‖1 = (1−t)‖J(Φ̃(x))‖1+t‖J(x0)‖1 < (1−t)
n∑
j=1

Mj(αj−αj−1)+tR < R.

Furthermore, in Remark 6 of [10], it is shown that, if ψ̄ is a fixed point in L1
+(0, ω)

of a map Φ(ψ) + u0 with Φ given by (8) for some kernel β(a, a′), u0 ∈ L1
+(0, ω)

and r(Φ′(0)) > 1, then ‖ψ̄‖1 > ln(r(Φ′(0)). Note that, when β has the structure

(9), we do not need to distinguish between r(Φ′(0)) and r(Φ̃′(0)), because the two
operators have the same eigenvalues.

Assume then that x̄ = (1−t)Φ̃(x̄)+tx0 for some t ∈ [0, 1] such that r((1−t)T ) > 1
(this occurs for 0 ≤ t < 1− 1/r(T )). Applying the previous observation to (1− t)Φ
with u0 = J(tx0), one obtains ‖J(x̄)‖1 > ln(r((1−t)T )). Instead, if r((1−t)T ) ≤ 1,
then ‖J(x̄)‖1 > ln(r((1− t)T )) is obvious.

By the monotonicity of J and the L1-norm, one has J(x̄) ≥ J(tx0), hence
‖J(x̄)‖1 ≥ ‖J(tx0)‖1 = t‖J(x0)‖1 . Thus ‖J(x̄)‖1 ≥ q(t) for each t ∈ [0, 1], hence it
must be ‖J(x̄)‖1 > ρ.

To conclude, we must exclude that there exists fixed points of H(·, t) on the
boundaries where xi = 0 for some i = 1, . . . n. If t = 0 this is impossible by the
previous Lemma; if t > 0, this is prevented from x̄ ≥ tx0 ∈ Int(Rn+).

Hence H is an admissible homotopy; it follows for homotopy invariance [19,
Chapt. 12.3]

1 = i(x0, G) = i(Φ̃, G) . (21)

Proof of Theorem 2. a) If (H3’) holds, then i(Φ̃, G) = 1, which implies that Φ̃ has
at least one fixed point in G ([19, Theor. 12.4(2)]), as claimed.

b) Returning to the Proof of Proposition 1, without condition (H3’) we cannot

exclude that Φ̃ has nonzero fixed points on the boundary of Rn+. However since
x0 ∈ Int(Rn+), H(·, t) cannot have fixed points on the boundary of G for t > 0,
so we can use the homotopy H(x, t) for t ∈ [ε, 1] for any ε > 0 and conclude that
H(x, ε) will have a fixed point, say x̄ε in G for each ε > 0.

By the boundedness of G, we can find a sequence εk with limk→∞ εk = 0 such
that x̄εk converges to some x̄ ∈ Ḡ. Passing to the limit in

x̄εk = (1− εk)Φ̃(x̄εk) + εkx0

and using the continuity of Φ̃, we can conclude that x̄ = Φ̃(x̄).
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Appendix B. Construction of Example 1. Let us start by rewriting (10) with
n = 3, as

Φ̃i(x) =βi1

∫ α1

0

n(ξ)e−γξx1ϕξ(x1)dξ (22)

+βi2

∫ α2

α1

n(ξ)e−γξ
(
x1ϕα1

(x1) + x2e
α1(x2−x1)

(
ϕξ(x2)− ϕα1

(x2)
))
dξ

+βi3

∫ ω

α2

n(ξ)e−γξ
(
x1ϕα1(x1) + x2e

α1(x2−x1)
(
ϕα2(x2)− ϕα1(x2)

)
+ x3e

α1(x2−x1)eα2(x3−x2) ·
(
ϕξ(x3)− ϕα2

(x3)
))
dξ , i = 1, 2, 3 ,

where ϕs(t), s ≥ 0 and t ≥ 0, is defined in (17).
If βij are chosen as in the Example 1 and x ∈ Int

(
R3

+

)
is a fixed point of (22),

then

det
(
I − Φ̃x(x)

)
= β13β22β31(A1 −A2 −A3)

where

A1 =

∫ ω

α2

n(ξ)e−γξ
[( 1

x1
+ α1

)
x3e

α1(x2−x1)+α2(x3−x2) (ϕξ(x3)− ϕα2(x3))

+

(
1

x1
+ α1

)
x2e

α1(x2−x1) (ϕα2
(x2)− ϕα1

(x2))− x1ϕ′α1
(x1)

]
dξ

·
∫ α2

α1

n(ξ)e−γξ
[x1
x2
ϕα1

(x1) + x2e
α1(x2−x1)

(
α1 (ϕα1

(x2)− ϕξ(x2))
)

+
(
ϕ′α1

(x2)− ϕ′ξ(x2)
) ]
dξ ·

∫ α1

0

n(ξ)e−γξ
x1
x3
ϕξ(x1)dξ (23)

A2 =

∫ ω

α2

n(ξ)e−γξeα1(x2−x1)eα2(x3−x2)
[
(1 + α2x3) (ϕξ(x3)− ϕα2(x3))

+ x3
(
ϕ′ξ(x3)− ϕ′α2

(x3)
) ]
dξ (24)

·
∫ α2

α1

n(ξ)e−γξ
[x1
x2
ϕα1(x1) + x2e

α1(x2−x1)
(
α1 (ϕα1(x2)− ϕξ(x2))

)
+
(
ϕ′α1

(x2)− ϕ′ξ(x2)
) ]
dξ ·

∫ α1

0

n(ξ)e−γξ
(
ϕξ(x1) + x1ϕ

′
ξ(x1)

)
dξ
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A3 =

∫ ω

α2

n(ξ)e−γξ
[
(α1 − α2)x3e

α1(x2−x1)eα2(x3−x2) (ϕξ(x3)− ϕα2
(x3))

+ eα1(x2−x1)
(

(1 + α1x2) (ϕα2
(x2)− ϕα1

(x2)) + x2
(
ϕ′α2

(x2)− ϕ′α1
(x2)

) )]
dξ

·
∫ α2

α1

n(ξ)e−γξ
[
ϕα1

(x1) + x1ϕ
′
α1

(x1)− α1x2e
α1(x2−x1) (ϕξ(x2)− ϕα1

(x2))
]
dξ

·
∫ α1

0

n(ξ)e−γξ
x1
x3
ϕξ(x1)dξ

}
. (25)

To make the computations as simple as possible, we choose

γ = 1 , n(ξ) = 1 ∀ ξ ∈ (0, ω) , (26)

and set the other parameters in such a way that x∗ = (1, 1, 1) is a solution of (22).
From (22) we have

1 = β13

∫ ω

α2

e−ξξ dξ = β13
(
g1(ω)− g1(α2)

)
1 = β22

∫ α2

α1

e−ξξ dξ = β22
(
g1(α2)− g1(α1)

)
1 = β31

∫ α1

0

e−ξξ dξ = β31g1(α1)

where

g1(α) =

∫ α

0

e−ξξ dξ = 1− e−α − αe−α .

If we assume

β13 =
1

g1(ω)− g1(α2)

β22 =
1

g1(α2)− g1(α1)
(27)

β31 =
1

g1(α1)
,

then indeed x∗ = (1, 1, 1) is a solution of (22).
Using x∗ = (1, 1, 1) and (26) in (23)–(24)–(25), the expressions simplify greatly

yielding

A1 =

∫ ω

α2

e−ξ
(
α2
1

2
+ (1 + α1)(ξ − α1)

)
dξ

·
∫ α2

α1

e−ξ
(
α1 +

(ξ − α1)2

2

)
dξ ·

∫ α1

0

e−ξξ dξ

A2 =

∫ ω

α2

e−ξ(ξ − α2)

(
1− ξ − α2

2

)
dξ·

·
∫ α2

α1

e−ξ
(
α1 +

(ξ − α1)2

2

)
dξ ·

∫ α1

0

e−ξ
(
ξ − 1

2
ξ2
)
dξ
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A3 =

∫ ω

α2

e−ξ(α2 − α1)

(
1 +

α1 + α2

2
− ξ
)
dξ

·
∫ α2

α1

e−ξ
(
α1 −

α2
1

2
− α1(ξ − α1)

)
dξ ·

∫ α1

0

e−ξξ dξ .

We set α1 = 2, so that α1−
α1

2

2
= 0 and the second integral in A3 becomes simpler.

Suitable values for α2 and ω are now to be found; we write Ai = Ai(ω, α2) ,
i = 1, 2, 3, and compute

lim
ω→+∞

A1(ω, α2) = e−α2 (3α2 − 1)

(
3e−2 − e−α2(3− α2 +

α2
2

2
)

)
(1− 3e−2)

lim
ω→+∞

A2(ω, α2) = 0

lim
ω→+∞

A3(ω, α2) = e−α2(α2 − 2)2
(
e−2 + e−α2 − α2e

−α2
)

(1− 3e−2) ,

uniformly for α2 > 2.

We set η =
1

ω
and consider the function

H(η, α2) =

 A1

(
1

η
, α2

)
−A2

(
1

η
, α2

)
−A3

(
1

η
, α2

)
η > 0 , α2 > 2

limω→+∞
(
A1(ω, α2)−A2(ω, α2)−A3(ω, α2)

)
η = 0 , α2 > 2

on the domain D =

{
(η, α2) : α2 > α1, 0 ≤ η < 1

α2

}
. H is continuous in D and

H(0, α2) = e−α2−2(α2 − 2)(1− 3e−2)(f1(α2)− f2(α2))

where

f1(a) =
(3a− 1)

a− 2

(
3− e−(a−2)(3− a+

a2

2
)

)
=

(
3 +

5

a− 2

)(
3(1− e−(a−2))− a

2
e−(a−2)(a− 2)

)
f2(a) = (a− 2)

(
1 + e−(a−2) − ae−(a−2)

)
.

Since

lim
a→2+

f1(a) = 10 lim
a→+∞

f1(a) = 9

lim
a→2+

f2(a) = 0 lim
a→+∞

f2(a) = +∞

there exists α∗2 > 2 solution of the equation f1(a)− f2(a) = 0. Solving numerically
this equation, we find the value α∗2 ≈ 12.4342 which gives H(0, α∗2) = 0.

Moreover, we can find values α+
2 < α−2 such that f1(α+

2 ) > f2(α+
2 ) and thus

H(0, α+
2 ) > 0, while f1(α−2 ) < f2(α−2 ) and thus H(0, α−2 ) < 0. By continuity there

exists η0 > 0 such that H(η, α+
2 ) > 0 and H(η, α−2 ) < 0 for each η ∈ (0, η0). Hence,

given η∗ =
1

ω∗
∈ (0, η0), there exists α∗∗2 ∈ (α+

2 , α
−
2 ) such that H(η∗, α∗∗2 ) = 0 . So



MULTIPLE ENDEMIC STATES IN AGE-STRUCTURED SIR EPIDEMIC MODELS 595

if α1 = 2 , α2 = α∗∗2 , ω =
1

η∗
we have A1 −A2 −A3 = 0, from which it follows that

det(I − Φ̃x(x∗)) = 0.

Finally setting β13, β22, β31 from (27), we obtain Φ̃(x∗) = x∗. For instance, if

we take ω = 100, i.e. η∗ =
1

100
, then α∗∗2 ≈ α∗2 ≈ 12.4342 and the corresponding

values are

β13 ≈ 1.8702 · 104 , β22 ≈ 2.4633 , β31 ≈ 1.6835 .

Appendix C. Proofs of Section 6.

Lemma 2. Let

d11(x) =

∫ α

0

n(ξ)e−γξx1ϕξ(x1)dξ ;

d21(x) =

∫ ω

α

n(ξ)e−γξx1ϕα(x1)dξ ;

d22(x) =

∫ ω

α

n(ξ)e−γξx2e
α(x2−x1) (ϕξ(x2)− ϕα(x2)) dξ ;

so that

g1(x) = d11(x) , g2(x) = d21(x) + d22(x) .

Then, the following inequalities hold:

∂gi
∂xi

(x) > 0 , i = 1, 2 ; (28)

dij(x) > 0 , i = 1, 2 , 1 ≤ j ≤ i (29)

dij(x)

xj
− ∂gi
∂xj

(x) > 0 , i = 1, 2 , 1 ≤ j ≤ i (30)

∀x ∈ Int
(
R2

+

)
, ∀ 0 < α < ω , ∀ γ > 0 .

Proof. The derivative of (17) with respect to t is given by

ϕ′s(t) = −
∫ s

0

τeτ(γ−t)dτ =

−
1+s(γ−t)es(γ−t)−es(γ−t)

(γ−t)2 γ 6= t

−s2/2 γ = t.

Then

∂g1
∂x1

(x) =

∫ α

0

n(ξ)e−γξ
(
ϕξ(x1) + x1 ϕ

′
ξ(x1)

)
dξ .

We note that ∫ +∞

0

e−γξ
(
ϕξ(t) + tϕ′ξ(t)

)
dξ = 0 (31)

∀ γ > 0, ∀ t > 0 ; for we have∫ +∞

0

e−γξϕξ(t)dξ =
1

γt
,

∫ +∞

0

e−γξϕ′ξ(t)dξ = − 1

γt2
.



596 ANDREA FRANCESCHETTI, ANDREA PUGLIESE AND DIMITRI BREDA

We now prove that ∫ α

0

e−γξ
(
ϕξ(x1) + x1ϕ

′
ξ(x1)

)
dξ > 0

∀α > 0, ∀ γ > 0.
Let us consider the functions u : [0,+∞) −→ R defined as

u(α) =

∫ α

0

e−γξ
(
ϕξ(x1) + x1ϕ

′
ξ(x1)

)
dξ

and v : [0,+∞) −→ R defined as

v(ξ) = ϕξ(x1) + x1ϕ
′
ξ(x1) .

We have v′(ξ) = eξ(γ−x1)
(
1−ξx1

)
, hence v(ξ) is monotone increasing on (0, 1/x1)

and decreasing on (1/x1,+∞); moreover v(ξ) is such that v(0) = 0 and

lim
ξ→+∞

v(ξ) =

 −∞ if γ ≥ x1
1

x1−γ

(
1− x1

x1−γ

)
if 0 < γ < x1

.

Then

∃α0 > 1/x1 s.t. v(ξ) > 0 on (0, α0) , v(ξ) < 0 on (α0,+∞) .

Hence we have u(α) monotone increasing on (0, α0) and decreasing on (α0,+∞);
furthermore, u(0) = 0 and, because of (31), lim

α→+∞
u(α) = 0. We can then conclude

that u(α) > 0 ∀α > 0, ∀ γ > 0.
n(ξ), the stationary age profile of the population, is a monotone decreasing function
(see for example [15]). If α ≤ α0, then

∂g1
∂x1

(x) =

∫ α

0

n(ξ)e−γξv(ξ)dξ > n(α)

∫ α

0

e−γξv(ξ)dξ = n(α)u(α) > 0 .

Otherwise if α > α0

∂g1
∂x1

(x) =

∫ α

0

n(ξ)e−γξv(ξ)dξ =

∫ α0

0

n(ξ)e−γξv(ξ) dξ +

∫ α

α0

n(ξ)e−γξv(ξ) dξ

> n(α0)

∫ α0

0

e−γξv(ξ)dξ + n(α0)

∫ α

α0

e−γξv(ξ)dξ = n(α0)u(α) > 0 .

This proves the first inequality in (28). Since we have

∂g2
∂x2

(x) =

∫ ω

α

n(ξ)e−γξ
(
(1 + αx2)

(
ϕξ(x2)− ϕα(x2)

)
+ x2

(
ϕ′ξ(x2)− ϕ′α(x2)

))
dξ

= e−αx2

∫ ω−α

0

n(ξ + α)e−γξ
(
ϕξ(x2) + x2ϕ

′
ξ(x2)

)
dξ ,

the second inequality in (28) is proved in the same way.
To prove (29) and (30) we note that

ϕξ(t) =

∫ ξ

0

eτ(γ−t)dτ > 0 ∀ ξ > 0 , ∀ t > 0 ,∀ γ > 0; (32)

ϕ′ξ(t) = −
∫ ξ

0

τ eτ(γ−t)dτ < 0 ∀ ξ > 0 , ∀ t > 0 , ∀ γ > 0. (33)

Then (29) follows from (32).
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Let us write the inequalities in (30) explicitly:

d11(x)

x1
− ∂g1
∂x1

(x) = −x1
∫ α

0

n(ξ)e−γξϕ′ξ(x1)dξ > 0 ;

d21(x)

x1
− ∂g2
∂x1

(x) = −x1ϕ′α(x1)

∫ ω

α

n(ξ)e−γξdξ

+ αx2e
α(γ−x1)

∫ ω−α

0

n(ξ + α)e−γξϕξ(x2)dξ > 0 ;

d22(x)

x2
− ∂g2
∂x2

(x) = −x2eα(γ−x1)

∫ ω−α

0

n(ξ + α)e−γξϕ′ξ(x2)dξ > 0

∀x ∈ Int
(
R2

+

)
, ∀ 0 < α < ω , ∀ γ > 0 . So the Lemma is proved.

Proof of Proposition 2. If x = (x1, x2) ∈ Int
(
R2

+

)
is a fixed point of Φ̃, the entries

of the matrix I−Φ̃x(x) are as follows, noting that
∂di1
∂x2

(x) = 0 for x ∈ R2
+, i = 1, 2,

(
I − Φ̃x(x)

)
11

= 1− ∂Φ̃1

∂x1
(x) =

Φ̃1(x)

x1
− ∂Φ̃1

∂x1
(x)

= β11

(
d11(x)

x1
− ∂d11
∂x1

(x)

)
+ β12

(
d21(x)

x1
− ∂g2
∂x1

(x) +
d22(x)

x1

)
;

(
I − Φ̃x(x)

)
12

= −∂Φ̃1

∂x2
(x) = −β12

∂g2
∂x2

(x) ;

(
I − Φ̃x(x)

)
21

= −∂Φ̃2

∂x1
(x) = −β21

∂g1
∂x1

(x)− β22
∂g2
∂x1

(x) ;

(
I − Φ̃x(x)

)
22

= 1− ∂Φ̃2

∂x2
(x) =

Φ̃2(x)

x2
− ∂Φ̃2

∂x2
(x)

= β21
d11(x)

x2
+ β22

(
d21(x)

x2
+
d22(x)

x2
− ∂g2
∂x2

(x)

)
.

We notice that we can write det
(
I − Φ̃x(x)

)
as the sum of four terms,

det
(
I − Φ̃x(x)

)
= A1 +A2 +A3 +A4
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where

A1 = β11β21

(
d11(x)

x1
− ∂g1
∂x1

(x)

)
d11(x)

x2
;

A2 = β11β22

(
d11(x)

x1
− ∂g1
∂x1

(x)

)(
d21(x)

x2
+
d22(x)

x2
− ∂g2
∂x2

(x)

)
;

A3 = β12β21

((
d21(x)

x1
− ∂g2
∂x1

(x) +
d22(x)

x1

)
d11(x)

x2
− ∂g2
∂x2

(x)
∂g1
∂x1

(x)

)
;

A4 = β12β22

((
d21(x)

x1
− ∂g2
∂x1

(x) +
d22(x)

x1

)(
d21(x)

x2
+
d22(x)

x2
− ∂g2
∂x2

(x)

)

− ∂g2
∂x1

(x)
∂g2
∂x2

(x)

)
.

A1 is positive as we have(
d11(x)

x1
− ∂d11
∂x1

(x)

)
d11(x)

x2
> 0

because of (29) and (30); in the same way it is proved that A2 is positive.
A3 is positive as we have:(

d21(x)

x1
− ∂g2
∂x1

(x) +
d22(x)

x1

)
d11(x)

x2
− ∂g2
∂x2

(x)
∂g1
∂x1

(x)

>
d22(x)

x1

d11(x)

x2
− ∂g2
∂x2

(x)
∂g1
∂x1

(x)

=
d11(x)

x1

(
d22(x)

x2
− ∂g2
∂x2

(x)

)
+
∂g2
∂x2

(x)

(
d11(x)

x1
− ∂g1
∂x1

(x)

)
> 0

∀ 0 < α < ω, ∀ γ > 0 because of the inequalities (28),(29), (30).

In the same way the positivity of A4 is proved.
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