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Abstract. We examine estimation of the parameters of Susceptible-Infective-
Recovered (SIR) models in the context of least squares. We review the use

of asymptotic statistical theory and sensitivity analysis to obtain measures of

uncertainty for estimates of the model parameters and the basic reproductive
number (R0)—an epidemiologically significant parameter grouping. We find

that estimates of different parameters, such as the transmission parameter and

recovery rate, are correlated, with the magnitude and sign of this correlation
depending on the value of R0. Situations are highlighted in which this corre-

lation allows R0 to be estimated with greater ease than its constituent param-

eters. Implications of correlation for parameter identifiability are discussed.
Uncertainty estimates and sensitivity analysis are used to investigate how the

frequency at which data is sampled affects the estimation process and how the

accuracy and uncertainty of estimates improves as data is collected over the
course of an outbreak. We assess the informativeness of individual data points

in a given time series to determine when more frequent sampling (if possible)
would prove to be most beneficial to the estimation process. This technique

can be used to design data sampling schemes in more general contexts.

1. Introduction. The use of mathematical models to interpret disease outbreak
data has provided much insight into the epidemiology and spread of many pathogens,
particularly in the context of emerging infections. The basic reproductive number,
R0, which gives the average number of secondary infections that result from a sin-
gle infective individual over the course of their infection in an otherwise entirely
susceptible population (see, for example, [1] and [20]), is often of prime interest.
In many situations, the value of R0 governs the probability of the occurrence of
a major outbreak, the typical size of the resulting outbreak and the stringency of
control measures needed to contain the outbreak (see, for example [10, 26, 30]).

While it is often simple to construct an algebraic expression for R0 in terms of
epidemiological parameters, one or more of these values is typically not obtainable
by direct methods. Instead, their values are usually estimated indirectly by fitting
a mathematical model to incidence or prevalence data (see, for example, [3, 12, 32,
38, 41, 42]), obtaining a set of parameters that provides the best match, in some
sense, between model output and data. It is, therefore, crucial that we have a
good understanding of the properties of the process used to fit the model and its
limitations when employed on a given data set. An appreciation of the uncertainty
accompanying the parameter estimates, and indeed whether a given parameter is
even individually identifiable based on the available data and model, is necessary
for our understanding.

The simultaneous estimation of several parameters raises questions of parameter
identifiability (see, for example, [2, 6, 17, 22, 24, 27, 36, 43, 44, 45, 46]), even if the
model being fitted is simple. Oftentimes, parameter estimates are highly correlated:
the values of two or more parameters cannot be estimated independently. For
instance, it may be the case that, in the vicinity of the best fitting parameter set,
a number of sets of parameters lead to effectively indistinguishable model fits, with
changes in one estimated parameter value being able to be offset by changes in
another.

Even if individual parameters cannot be reliably estimated due to identifiability
issues, it might still be the case that a compound quantity of interest, such as the
basic reproductive number, can be estimated with precision. This would occur, for
instance, if the correlation between the estimates of indivdual parameters was such
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that the value of R0 varied little over the sets of parameters that provided equal
quality fits.

Statistical theory is often used to guide data collection, with sampling theory
providing an idea of the amount of data required in order to obtain parameter
estimates whose uncertainty lies within a range deemed to be acceptable. In time-
dependent settings, sampling theory can also provide insight into when to collect
data in order to provide as much information as possible. Such analyses can be
extremely helpful in biological settings where data collection is expensive, ensuring
that sufficient data is collected for the enterprise to be informative, but in an efficient
manner, avoiding excessive data collection or the collection of uninformative data
from certain periods of the process.

In this paper we discuss the use of sensitivity analysis [21, 37] and asymptotic
statistical theory [18, 39], to quantify the uncertainties associated with parameter
estimates obtained by the use of least squares model fitting in an epidemiological
context. The theory also quantifies the correlation between estimates of the differ-
ent parameters, and we discuss the implications of correlations on the estimation
of R0. We investigate how the magnitude of uncertainty varies with both the num-
ber of data points collected and their collection times. We suggest an approach
that can be used to identify the times at which more intensive sampling would be
most informative in terms of reducing the uncertainties associated with parameter
estimates.

In order to make our presentation as clear as possible, we throughout employ the
simplest model for a single outbreak, the SIR model, and use synthetic data sets
generated using the model. This idealized setting should be the easiest one for the
estimation methodology to handle, so we imagine that any issues that arise (such as
non-identifiability of parameters) would carry over to, and indeed be more delicate
for, more realistic settings such as more complex models or real-world data sets.
The use of synthetic data allows us to investigate the performance and behavior of
the estimation for infections that have a range of transmission potentials, providing
a broader view of the estimation process than would be obtained by focusing on a
particular individual data set.

The paper is organized as follows: the simple SIR model employed in this study
is outlined in Section 2. The statistical theory and sensitivity analysis of the model
is presented in Section 3. Section 4 discusses the synthetic data sets that we use
to demonstrate the approach. Section 5 presents the results of model fitting, and
discusses the estimation of R0. The impact of sampling frequency and sampling
times are examined in Section 6. Section 7 explores parameter identifiability for the
SIR model. We conclude with a discussion of the results.

2. The model. Since our aim here is to present an examination of general issues
surrounding parameter estimation, we choose to use a simple model containing a
small number of parameters. We employ the standard deterministic Susceptible-
Infective-Recovered compartmental model (see, for example, [1, 19, 25]) for an infec-
tion that leads to permanent immunity and that is spreading in a closed population
(i.e., we ignore demographic effects). The population is divided into three classes,
susceptible, infectious and recovered, whose numbers are denoted by S, I, and R,
respectively. The closed population assumption leads to the total population size,
N , being constant and we have S + I +R = N .
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We assume that transmission is described by the standard incidence term βSI/N ,
where β is the transmission parameter, which incorporates the contact rate and the
probability that contact (between an infective and susceptible) leads to transmis-
sion. Individuals are assumed to recover at a constant rate, γ, which gives the
average duration of infection as 1/γ.

Because of the equation S + I + R = N , we can determine one of the state
variables in terms of the other two, reducing the dimension of the system. Here, we
choose to eliminate R, and we so focus our attention on the dynamics of S and I.
The model can then be described by the following differential equations

dS

dt
= −βSI

N
(1)

dI

dt
=
βSI

N
− γI, (2)

together with the initial conditions S(0) = S0, I(0) = I0.
The behavior of this model is governed by the basic reproductive number. For this

SIR model, R0 = β/γ. The average number of secondary infections per individual
at the beginning of an epidemic is given by the product of the rate at which new
infections arise (β) and the average duration of infectiousness (1/γ). R0 tells us
whether an epidemic will take off (R0 > 1) or not (R0 < 1) in this deterministic
framework.

This SIR model is formulated in terms of the number of infectious individuals,
I(t), i.e., the prevalence of infection. Disease outbreak data, however, is typically re-
ported in terms of the number of new cases that arise in some time interval, i.e., the
disease incidence. The incidence of infection over the time interval (ti−1, ti) is given

by integrating the rate of infection over the time interval:
∫ ti
ti−1

βS(t)I(t)/N dt. No-

tice that, since the SIR model does not distinguish between infectious and sympto-
matic individuals—even though this is not the case for many infections—we equate
the incidence of new infections and new cases. For the simple SIR model employed
here, the incidence can be calculated by the simpler formula S(ti−1)− S(ti), since
the number of new infections is given by the decrease in the number of susceptibles
over the interval of interest.

3. Methodology. Estimating the parameters of the model given a data set (solv-
ing the inverse problem) is here accomplished by using either ordinary least squares
(OLS) or a weighted least squares method known as either iteratively reweighted
least squares or generalized least squares (GLS) [18]. Uncertainty quantification
is then performed using asymptotic statistical theory (see, for example, Seber and
Wild [39]) applied to the statistical model that describes the epidemiological data
set. Although the application of this theory to epidemiological settings has been de-
veloped and explained in a number of previous works (see, for example, [3, 15, 16]),
to aid the reader we provide a brief general summary of this theory. In order to
facilitate comparison with previous papers cowritten by us, we largely follow the
development and notation laid out in [3, 15, 16], albeit with a few notational devi-
ations and changes in emphasis.

The statistical model assumes that the epidemiological system is exactly de-
scribed by some underlying dynamic model (for us, the deterministic SIR model)
together with some set of parameters, known as the true parameters, but that
the observed data arises from some corruption of the output of this system by noise
(e.g., observational errors). We write the true parameter set as the p-element vector
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θ0, noting that some of these parameters may be initial conditions of the dynamic
model if one or more of these are unknown. The n observations of the system,
Y1, Y2, . . . , Yn, are made at times t1, t2, . . . , tn. We assume the statistical model can
be written as

Yi = M(ti; θ0) + Ei, (3)

where M(ti; θ0) is our deterministic model (either for prevalence or incidence, as
appropriate) evaluated at the true value of the parameter, θ0, and the Ei depict the
errors. We write Y = (Y1, . . . , Yn)T .

The appropriate estimation procedure depends on the properties of the errors
Ei. We assume that the errors have the following form

Ei = M(ti; θ0)ξεi, (4)

where ξ ≥ 0. The εi are assumed to be independent, identically distributed random
variables with zero mean and (finite) variance σ2

0 . The random variables Yi have
means given by E(Yi) = M(ti; θ0) and variances Var(Yi) = M(ti; θ0)2ξσ2

0 .
If ξ is taken to equal 0 then Ei = εi, and the error variance is assumed to be

independent of the magnitude of the predicted value of the observed quantity. This
noise structure is often termed absolute noise in the literature. Positive values of ξ
correspond to the assumption that the error variance scales with the predicted value
of the quantity being measured. If ξ = 1, the standard deviation of the noise is
assumed to scale linearly with M : the average magnitude of the noise is a constant
fraction of the true value of the quantity being measured. This situation is often
referred to as relative noise. If, instead, ξ = 1/2, the variance of the error scales
linearly with M : we refer to this as Poisson noise.

The least squares estimator θ̂LS is a random variable obtained by consideration
of the cost functional

J(θ|Y ) =

n∑
i=1

wi(Yi −M(ti; θ))
2, (5)

in which the weights wi are given by

wi =
1

M(ti; θ)2ξ
. (6)

If ξ = 0, then wi = 1 for all i, and in this case the estimator is obtained by
minimizing J(θ|Y ), that is

θ̂LS = arg min
θ

J(θ|Y ). (7)

In this case, known as ordinary least squares (OLS), all data points are of equal
importance in the fitting process.

When ξ > 0, the weights lead to more importance being given to data points that
have a lower variability (i.e., those corresponding to smaller values of the model).
If the values of the weights were known ahead of time, estimation could proceed
by a weighted least squares minimization of the cost functional (5). The weights,
however, depend on θ and so an iterative process is instead used, employing esti-
mated weights. An initial ordinary (unweighted) least squares is carried out and the
resulting model is used to provide an initial set of weights. Weighted least squares
is then carried out using these weights, providing a new model and hence a new
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set of weights. The weighted least squares step is repeated with successively up-
dated weights until some termination criterion, such as the convergence of successive
estimates to within some specified tolerance, is achieved [18].

The asymptotic statistical theory, as detailed in [18, 39], describes the distribu-

tion of the estimator θ̂LS = θ̂
(n)
LS as the sample size n → ∞. (In this paragraph

we include the superscript n to emphasize sample size dependence.) Provided that
a number of regularity and sampling conditions are satisfied (discussed in detail
in [39]), this estimator has a p-dimensional multivariate normal distribution with
mean θ0 and variance-covariance matrix Σ0 given by

Σ0 = lim
n→∞

Σ
(n)
0 = lim

n→∞
σ2
0

(
nΩ

(n)
0

)−1
, (8)

where

Ω
(n)
0 =

1

n
χ(n)(θ0)TW (n)(θ0)χ(n)(θ0). (9)

So, θ̂LS ∼ N(θ0,Σ0).

We note that existence and invertibility of the limiting matrix Ω0 = limn→∞ Ω
(n)
0

is required for the theory to hold. In Equation (9), W (n)(θ) is the diagonal weight
matrix, with entries wi, and χ(n)(θ) is the n × p sensitivity matrix, whose entries
are given by

χ(n)(θ)ij =
∂M(ti; θ)

∂θj
. (10)

Because we do not have an explicit formula for M(ti; θ), the sensitivities must be
calculated using the so-called sensitivity equations. As outlined in [21, 37], for the
general m-dimensional system

ẋ = F (x, t; θ), (11)

with state variable x ∈ Rm and parameter θ ∈ Rp, the matrix of sensitivities, ∂x/∂θ,
satisfies

d

dt

∂x

∂θ
=
∂F

∂x

∂x

∂θ
+
∂F

∂θ
, (12)

with initial conditions
∂x(0)

∂θ
= 0m×p. (13)

Here, ∂F/∂x is the Jacobian matrix of the system. This initial value problem must
be solved simultaneously with the original system (11).

Sensitivity equations for the state variables with respect to initial conditions
can be derived in a similar way, except that the second term on the right side of
Equation (12) is absent and the appropriate matrix of initial conditions is Im×m.
The sensitivity equations for the specific case of the SIR model of interest here are
presented in the appendix.

Because the true parameter θ0 is usually not known, we use the estimate of θ in
its place in the estimation formulae. The value of σ2

0 is approximated by

σ2 =
1

n− p

n∑
i=1

wi(M(ti; θ)− yi)2, (14)

where the factor 1/(n− p) ensures that the estimate is unbiased. The matrix

Σ = σ2[χT (θ)W (θ)χ(θ)]−1 (15)

provides an approximation to the covariance matrix Σ0.
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Standard errors for the components of the estimator θ̂LS are approximated by
taking square roots of the diagonal entries of Σ, while the off-diagonal entries pro-
vide approximations for the covariances between pairs of these components. The
uncertainty of an estimate of an individual parameter is conveniently discussed in
terms of the coefficient of variation (CV), that is the standard error of an estimate
divided by the estimate itself. The dimensionless property of the CV allows for
easier comparison between uncertainties of different parameters. In a related fash-
ion, the covariances can be conveniently normalized to give correlation coefficients,
defined by

ρθ̂i,θ̂j =
cov(θ̂i, θ̂j)√

Var(θ̂i)Var(θ̂j)
. (16)

The asymptotic statistical theory provides uncertainties for individual parame-
ters, but not for compound quantities—such as the basic reproductive number—that

are often of interest. For instance, if we had the estimator θ̂LS = (β̂, γ̂)T , a simple

point estimate for R0 would be β/γ, where β and γ are the realized values of β̂
and γ̂. To understand the properties of the corresponding estimator we examine

the expected value and variance of the estimator β̂/γ̂. Because this quantity is the
ratio of two random variables, there is no simple exact form for its expected value

or variance in terms of the expected values and variances of the estimators β̂ and
γ̂. Instead, we have to use approximation formulas derived using the method of
statistical differentials (effectively a second order Taylor series expansion, see [29]),
and obtain

E

(
β̂

γ̂

)
≈ β0
γ0

(
1− cov(β̂, γ̂)

β0γ0
+

Var(γ̂)

γ20

)
, (17)

and

Var

(
β̂

γ̂

)
≈
(
β0
γ0

)2
(

Var(β̂)

β0
2 +

Var(γ̂)

γ02
− 2cov(β̂, γ̂)

β0γ0

)
. (18)

Here we have made use of the fact that E(β̂) = β0, the true value of the parameter,
and E(γ̂) = γ0.

The variance equation has previously been used in an epidemiological setting
by Chowell et al [13]. Equation (17), however, shows us that estimation of R0 by
dividing point estimates of β and γ provides a biased estimate of R0. The bias factor
can be written in terms of the correlation coefficient and coefficients of variation
giving (

1− cov(β̂, γ̂)

β0γ0
+

Var(γ̂)

γ20

)
=
(

1− ρβ̂,γ̂CVβ̂CVγ̂ + CV 2
γ̂

)
. (19)

This factor only becomes important when the CVs are on the order of one. In such
a case, however, the estimability of the parameters is already in question. Thus,
under most useful circumstances, estimating R0 by the ratio of point estimates of
β and γ suffices.

4. Generation of synthetic data, model fitting and estimation. In order to
facilitate our exploration of the parameter estimation problem, we choose to use
simulated data. This ‘data’ is generated using a known model, a known parameter
set and a known noise structure, putting us in an idealized situation in which we
know that we are fitting the correct epidemiological model to the data, that the
correct statistical model is being employed and where we can compare the estimated
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parameters with their true values. Furthermore, since we know the noise process,
we can generate multiple realizations of the data set and hence directly assess the
uncertainty in parameter estimates by fitting the model to each of the replicate data
sets. As a consequence, we can more completely evaluate the performance of the
estimation process than would be possible using a single real-world data set.

The use of synthetic data also allows us to investigate parameter estimation for
diseases that have differing levels of transmissibility. We considered three hypo-
thetical infections, with low, medium and high transmissibility, using R0 values of
1.2, 3 and 10, respectively. In each case we took the recovery rate γ to equal 1,
which corresponds to measuring time in units of the average infectious period. The
value of β was then chosen to provide the desired value of R0. (In terms of the
“true values” of our statistical model, we have γ0 = 1 and β0 = R0). We took a
population size of 10, 000, of which 100 people were initially infectious, with the
remainder being susceptible. (Altering the initial number of infectives makes no
qualitative difference to the results that follow.)

The model was solved for S and I using the MATLAB ode45 routine, starting from
t = 0, giving output at n+ 1 evenly spaced time points (0, t1, ..., tn). The duration
of the outbreak depends on R0 and so, in order to properly capture the time scale
of the epidemic, we choose tn to be the time at which I(t) falls back to its initial
value. A data set for prevalence was then obtained by adding noise generated by
multiplying independent draws, ei, from a normal distribution with mean zero and
variance σ2

0 by I(ti, θ0)ξ. Thus, our data,

y(ti, θ0) ≡ I(ti, θ0) + I(ti, θ0)ξei, i = 1, 2, . . . , n, (20)

satisfies the assumptions made in Section 3 and allows us to apply the asymptotic
statistical theory. Notice that, for convenience, we have chosen normally distributed
ei, but we re-emphasize that the asymptotic statistical theory does not require this.
Data sets depicting incidence of infection can be created in a similar way, replacing
I(ti) by S(ti)− S(ti−1), as discussed above, for i = 1, . . . , n.

Three different values of ξ, namely ξ = 0 (absolute noise), ξ = 1/2 (Poisson
noise) and ξ = 1 (relative noise), were used to generate synthetic data sets. Given
that prevalence (or incidence) increases with R0, the use of absolute noise, with the
same value of σ2

0 across the three transmissibility scenarios, leads to noise being
much more noticeable for the low transmissibility situation. This complicates com-
parisons of the success of the estimation process between differing R0 values. Visual
inspection of real-world data sets, however, indicates that variability increases with
either prevalence or incidence [23]. If this variability reflected reporting errors, with
individual cases being reported independently with some fixed probability, the vari-
ance of the resulting binomial random variable would be proportional to its mean
value. As a result, we direct most of our attention to data generated using ξ = 1/2.

Because we know the true values of the parameters and the variance of the noise,
we can calculate the variance-covariance matrix Σ0 (Equation 8) exactly, without
having to use estimated parameter values or error variance. This provides a more
reliable value than that obtained using the estimate Σ, allowing us to more easily
detect small changes in standard errors, such as those that occur when a single data
point is removed from or added to a data set as we do in Section 6. This approach
was employed to obtain many of the results that follow (in each instance, it will be
stated whether Σ0 or Σ was used to provide uncertainty estimates).
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5. Results: Parameter estimation. We could attempt to fit any combination
of the parameters and initial conditions of the SIR model, i.e., β, γ, N , S0 and
I0. We shall concentrate, however, on the simpler situation in which we just fit β
and γ, imagining that the other values are known. This might be the case if a new
pathogen were introduced into a population at a known time, so that the population
was known to be entirely susceptible apart from the initial infective. Importantly,
the estimation of β and γ allows us to estimate the value of R0. We shall return to
consider estimation of three or more parameters in a later section.

The least squares estimation procedure works well for synthetic data sets gen-
erated using the three different values of R0 (results not shown). Diagnostic plots
of the residuals were used to examine potential departures from the assumptions
of the statistical model: unsurprisingly, none were seen when the value of ξ used
in the fitting process matched that used to generate the data, and clear deviations
were seen when the incorrect value of ξ was used in the fitting process (results not
shown).

Table 1. Coefficients of variation (CV) for parameter estimates of
β, γ, R0, and the correlation coefficient between β and γ, ρβ,γ . The
coefficients of variation and correlation coefficient were obtained
from the asymptotic stastical theory where the variance-covariance
matrix Σ0 was calculated exactly (i.e., no curve-fitting was carried
out). Calculations were done under a Poisson noise structure, ξ =
1/2, with σ2

0 = 1, and n = 50 data points. Parameter values and
initial conditions used were β = R0, γ = 1, N = 10, 000, S0 = 9900,
and I0 = 100.

Parameter Value CV
β 1.2 0.0121
γ 1 0.0110
R0 1.2 0.0023
ρβ̂,γ̂ 0.9837 -

Parameter Value CV
β 3 0.0019
γ 1 0.0034
R0 3 0.0037
ρβ̂,γ̂ 0.1132 -

Parameter Value CV
β 10 0.0035
γ 1 0.0027
R0 10 0.0050
ρβ̂,γ̂ -0.3122 -

A Monte Carlo approach can be used to verify the distributional results of the
asymptotic statistical theory. A set of point estimates of the parameter (β, γ) was
generated by applying the estimation process to a large number of replicate data
sets generated using different realizations of the noise process, allowing estimates of
variances and covariances of parameter estimates to be directly obtained. Unsur-
prisingly, good agreement was seen when the correct value of ξ was employed in the
estimation process and the distribution of (β, γ) estimates appears to be consistent
with the appropriate bivariate normal distribution predicted by the theory.

Table 1 and Figure 1a demonstrate that estimates of β and γ are correlated,
with the sign and magnitude of the correlation coefficient depending strongly on
the value of R0. Standard errors for the estimates also depend strongly on the
value of R0 (Figure 1b).
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Figure 1. Dependence of the correlation coefficient and standard
errors for estimates of β and γ on the value of R0. Panel (a) displays
the correlation coefficient, ρ, between estimates of β and γ for a
range of R0 values. Panel (b) shows, on a log scale, standard errors
for estimates of β (solid curve) and γ (dashed curve). The variance-
covariance matrix Σ0 was calculated exactly (i.e., no curve-fitting
was carried out) under a Poisson noise structure, ξ = 1/2, with
σ2
0 = 1, and n = 250 data points. Parameter values and initial

conditions used were β = R0, γ = 1, N = 10, 000, S0 = 9900, and
I0 = 100.

As R0 approaches 1, the correlation coefficient approaches 1 and the standard
errors become extremely large. It is, therefore, difficult to obtain good estimates of
the individual parameters in this case. Examination of the cost functional J in the
(γ, β) plane reveals the origin of the strong correlation and large standard errors
(Figure 2a). Near its minimum value, the contours of J are well approximated by
long thin ellipses whose major axes are oriented along the line β = R0γ. Thus there
is a considerable range of β and γ values that give almost identical model fits, but
for which the ratio β/γ varies relatively little. In a later section we shall see that
these long thin elliptical contours arise as a consequence of sensitivities of the model
to changes in β and γ being almost equal in magnitude but of opposite signs. (The
derivation of these contour curves can be found in [9].)

For values of R0 that lead to lower correlation between estimates of β and γ,
the contours of J near its minimum point are closer to being circular and are less
tilted (Figure 2b), allowing for easier identification of the two individual parameters.
The standard error for the estimate of γ is seen to decrease with R0, while that of
β exhibits non-monotonic behavior. For a fixed value of γ, increasing R0 leads to
more rapid spread of the infection and hence an earlier and higher peak in prevalence
(Figure 3). For large values of R0, the majority of the transmission events occur
over the timespan of the first few data points, meaning that fewer points within
the data set are informative regarding the spread of the infection. Consequently, it
becomes increasingly difficult to estimate β as R0 is increased beyond some critical
value.
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Figure 2. Contours of the cost functional J in the (γ,β)-plane
(solid curves) for R0 equal to (a) 1.2, (b) 3, and (c) 10. A Poisson
noise structure was assumed (ξ = 1/2), with σ2

0 = 1 and n = 50
data points. Parameter values and initial conditions used were
β = R0, γ = 1, N = 10, 000, S0 = 9900, and I0 = 100. Contours
are at heights 1000, 2500, 5000, 7500, 10000, 25000, 50000, 75000
and 100000. For clarity, not all contours are labeled with their
height.

As seen in Table 1, estimates of β and γ have relatively large uncertainties when
R0 is small. It would, for instance, be difficult to accurately estimate the average
duration of infection, 1/γ, for an infection such as seasonal influenza—which is
typically found to have R0 about 1.3 (ranging from 0.9 to 2.1) [14]—using the least
squares approach. Importantly, however, the estimate of R0 has a much lower
variation (as measured by the CV) than the estimates of β and γ. The strong
positive correlation between the estimates of β and γ reduces the variance of the
R0 estimate, as can be seen in Equation (18), and reflecting the earlier observation
concerning the orientation of the contours of the cost functional along lines of the
form β = R0γ.

6. Results: Sampling schemes and uncertainty of estimates. Biological
data is often difficult or costly to collect, so it is desirable to collect data in such a
way to maximize its informativeness. Consequently it is important to understand
how parameter estimation depends on the number of sampled data points and the
times at which the data are collected. This information can then be used to guide
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future data collection. In this section we examine two approaches to address this
question: sensitivity analysis and data sampling.

6.1. Sensitivity. The sensitivities of a system provide temporal information on
how states of the system respond to changes in the parameters [21, 37]. They can,
therefore, be used to identify time intervals where the system is most sensitive to
such changes. Noting that the sensitivities are used to calculate the standard errors
in estimates of parameters, direct observation of the sensitivity function provides
an indication of time intervals in which data points carry more or less information
for the estimation process [4, 5]. For instance, if the sensitivity to some parameter
is close to zero in some time interval, changes in the value of the parameter would
have little impact on the state variable. Conversely, more accurate knowledge of
the state variable at that time could not cause the estimated parameter value to
change by much.

For low values of R0, for example R0 = 1.2, we see that the sensitivity func-
tions of I(t) with respect to β and γ are near mirror images of each other (Figure
3a). This mirror image phenomenon allows a change in one parameter to be easily
compensated by a corresponding change in the other parameter, giving rise to the
strong correlation between the estimates of the two parameters. Early in the epi-
demic, we see a similar phenomenon for all values of R0. We comment further on
this observation in the next section.

As R0 increases, the two sensitivity functions take on quite different shapes.
Prevalence is much less sensitive to changes in β than to changes in γ. The sensi-
tivity of prevalence to β is greatest right before the epidemic peak, before becoming
negative, but small, during the late stages of the outbreak. The sensitivity becomes
negative because an increase in β would cause the peak of the outbreak to occur
earlier, reducing the prevalence at a fixed, later time. I remains sensitive with
respect to γ throughout much of the epidemic, reaching its largest absolute value
slightly later than the time at which the outbreak peaks.

While the sensitivity functions provide an indication of when additional, or more
accurate data, is likely to be informative, they have clear limitations, not least
because they do not provide a quantitative measure of how uncertainty estimates,
such as standard errors, are impacted. Being a univariate approach they cannot
account for any impact of correlation between parameter estimates, as we shall
see below, although they can indicate instances in which parameter estimates are
likely to be correlated. Furthermore, they do not account for the different weighting
accorded to different data points on account of the error structure of the model,
such as the relationship between error variance and the magnitude of the observa-
tion being made. Another type of sensitivity function, the generalized sensitivity
function (GSF) introduced by Thomaseth and Cobelli [40], which is based on the
Fisher information matrix, does account for these two factors. While the GSF does
provide qualitative information that can guide data collection, its interpretation is
not without its own complications [4] and, given that we found that it provided
little additional insight in the current setting, we shall not discuss it further here.

6.2. Data sampling. In order to gain quantitative information about sampling
schemes on parameter estimation, as opposed to the qualitative information pro-
vided by inspection of the sensitivity functions, we carried out three numerical
experiments in which different sampling schemes were implemented. The first ap-
proach involves altering the frequency at which data are sampled within a fixed
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Figure 3. Sensitivities of I(t) (i.e., prevalence) with respect to the
model parameters β (solid curves) and γ (dashed curves) are shown
on the upper panels of the graphs for a) R0 = 1.2, b) R0 = 3 and c)
R0 = 10. The lower panel of each graph displays the corresponding
prevalence-time curve. The initial conditions of the SIR model were
S0 = 9900, I0 = 100, with N = 10, 000 and γ was taken equal to
one, so β = R0.

observation window that covers the duration of the outbreak. The second approach
considers sampling at a fixed frequency but over observation windows of differing
durations. The third approach examines increasing the sampling frequency within
specified sub-intervals of a fixed observation window.

In the first sampling method we alter the frequency at which observations are
taken while keeping the observation window fixed. In other words, we increase n
while fixing t0 = 0 and tn = tend. For incidence data, increasing the observation
frequency—i.e., reducing the period over which each observation is made—has the
important effect of reducing the values of the observed data and the corresponding
model values. Under relative observational error (ξ = 1) there is a corresponding
change in the error variance, keeping a constant signal to noise ratio. If ξ < 1,
increasing n decreases the signal to noise ratio of the data.

Adding additional data points in this way increases the accuracy of parameter
estimates, with standard errors eventually decreasing as n−1/2 (Figure 4, in which
prevalence data is used), in accordance with the asymptotic theory [39]. This is
still the case for incidence data even when ξ < 1 where the signal to noise ratio
decreases in n. We point out that changing the sampling frequency will typically
not be an option in epidemiological settings because data will be collected at some
fixed frequency, such as once each day or week, although, conceivably, a weekly
sampling frequency could be replaced by daily sampling.
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Figure 4. Standard errors of β (solid curve) and γ (dashed curve)
as the number of observations, n, changes while maintaining a con-
stant window of observation (fixed tend). Apart from the smallest
few values of n, the points fall on a line of slope − 1

2 on this log-log
plot. Standard errors are calculated using Equation (8), using the
true values of the parameters. The variance-covariance matrix Σ0

was calculated exactly (i.e., no curve-fitting was carried out) with
the disease prevalence under a Poisson noise structure, ξ = 1/2,
with σ2

0 = 1. Parameter values and initial conditions used were
β = 3, γ = 1, N = 10, 000, S0 = 9900, and I0 = 100.

For real-time outbreak analysis, the amount of available data will increase over
time as the epidemic unfolds. Consequently, it is of practical importance to un-
derstand how much data—and hence observation time—is required to obtain reli-
able estimates and the extent to which estimates will improve with additional data
points. Using Equation (8) and the known values of the parameters, we calculated
standard errors for parameter estimates based on the first nused data points, where
p + 1 ≤ nused ≤ n. As seen in Figures 5a and 5b, when only one parameter is fit-
ted, the standard error decreases rapidly at first, but its decrease slows significantly
just before the peak of the epidemic. Once this point in time has been reached,
subsequent data points provide considerably less additional information than did
earlier data points. In this setting, the most important time interval extends from
the initial infection to just before the peak of the outbreak. However, when both
β and γ are fitted, the interval of steep descent extends slightly beyond the peak
of the epidemic, as seen in Figure 6a. This indicates that it would be useful to
collect data over a longer interval in this case. Notice the log scale on the vertical
axis for each of the aforementioned plots. These figures suggest that the amount of
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Figure 5. Impact of increasing the length of the observation win-
dow on standard errors of estimates of (a) β and (b) γ when each is
estimated separately from prevalence data. The observation win-
dow is [0, tnused

], i.e., estimation was carried out using nused data
points. Because data points are equally spaced, the horizontal axis
depicts both the number of data points used and time since the
start of the outbreak. For reference, the prevalence curve, I(t), is
shown in the lower panel of each graph. Standard errors are plotted
on a logarithmic scale. The exact formula for Σ0 was used, with
σ2
0 = 1, S0 = 9900, I0 = 100, N = 10, 000, β = 3 and γ = 1. The

Poisson noise structure, ξ = 1/2, was employed.

information contained in the earliest portion of an outbreak is orders of magnitude
higher than that contained in later portions.

Figure 6b shows the correlation coefficient between estimates of β and γ as the
epidemic progresses. It can be seen that estimates of β and γ are highly correlated
until the first inflection point of the epidemic curve, causing the significantly higher
standard errors as seen in Figure 6a. This behavior is not unexpected due to the
two sensitivity curves for prevalence being near mirror images early in the outbreak,
during the exponential growth phase.

Our final sampling method investigated the impact of removing a single data
point as a means of identifying the data points which provide the most information
for the estimation of the parameters. A baseline data set consisting of fifty evenly-
spaced points taken over the course of the outbreak was generated using absolute
noise (ξ = 0). Fifty reduced data sets were created by removing, in turn, a single
data point from the baseline data set. Standard errors were then computed for
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Figure 6. Illustrated in graph (a) is the impact of increasing the
length of the observation window on standard errors of estimates
of β (solid curve) and γ (dashed curve) when both are estimated
simultaneously. Graph (b) displays the effect on the correlation
coefficient between estimates of β and γ. The observation window
consists of nused data points in the time interval [t0, tnused

]. For
reference, the prevalence curve, I(t), is shown on the lower panels.
All parameter values and other details are as in the previous figure.

the reduced data sets using the true covariance matrix Σ0 (Equation (8)). (For
this experiment, use of the true covariance matrix allowed us to accurately observe
the small effects on standard errors that resulted from the removal of single data
points. Errors introduced by solving the inverse problem would have obscured the
patterns we observed.) The largest standard error values in this group of data sets
correspond to the most informative data points since the removal of such points
leads to the largest increase in uncertainty of the estimate.

As Figure 7 shows, when β is the only parameter fitted and ordinary least squares
estimation is used, the local maxima of the standard error curve occur at the same
times as the local extrema of the sensitivity curve, and the local minima occur
when the sensitivity is close to zero. In this case, the sensitivity function correctly
identifies subintervals in which data are most or least informative about β.

The picture is not quite as straightforward when β and γ are estimated simul-
taneously using ordinary least squares. Figure 8 shows that the local maxima of
the standard error curves no longer line up directly with the local extrema of the
sensitivity curves (this effect is more easily seen in Figure 8b). This is likely due
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Figure 7. Standard errors for the estimation of β from prevalence
data using the single point removal method as discussed in the text
(solid curve) with the baseline standard error (without removing
any points) also plotted (horizontal dashed line). Standard errors
were calculated using Equation (8) and each is plotted at the time
ti corresponding to the removed data point. For comparison, the
sensitivity of I(t) with respect to β is also shown (dotted curve).
Synthetic data was generated using the parameter values σ2

0 = 104,
S0 = 9900, I0 = 100, N = 10, 000, β = 3 and γ = 1. The additive
noise structure, ξ = 0 was assumed.

to the correlation between the estimates of β and γ: the off-diagonal terms of
χT(θ)W (θ)χ(θ) involve products of sensitivities with respect to the two different
parameters. As a consequence, it is no longer sufficient to examine individual sen-
sitivity curves, but, as we have seen, the selective reductive method described here,
based on the asymptotic theory, can identify when additional data should ideally
be sampled.

Similarly, having a weight matrix other than the identity (i.e., when GLS, rather
than OLS, is to be used) leads to the sensitivity curves misidentifying the subinter-
vals in which data are most or least informative for parameter estimation (results
not shown; see [9]). This occurs whether single or multiple parameters are esti-
mated, and happens because the sensitivity curves do not, by themselves, account
for the relative importance placed on different data points. Again, the selective re-
duction method accounts for this effect and correctly identifies time intervals when
additional data would be most informative.

7. Results: Parameter identifiability. Until now, we have only considered the
introduction of an infection into a virgin population, assuming a known initial num-
ber of infectives in an otherwise susceptible population. For an endemic infection,
such as seasonal flu, only a fraction of the population would be susceptible at the
start of an outbreak. In such instances, the general reproductive number, Rt, the
average number of secondary infections at any point in time, is a more relevant
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Figure 8. Standard errors for the simultaneous estimation of β
and γ from prevalence data using the single point removal method
as discussed in the text (solid curves). Standard errors were cal-
culated using Equation (8), and each is plotted at the time ti of
the removed data point. Panel (a) shows the standard error for the
estimate of β (solid curve), together with the baseline (i.e., with-
out removing any points) standard error (horizontal dashed line)
and the sensitivity of I(t) with respect to β (dotted curve). Panel
(b) shows the standard error for the estimate of γ (solid curve),
together with the baseline standard error (horizontal dashed line)
and the sensitivity of I(t) with respect to γ (dotted curve). All
parameter values and other details are as in the previous figure.

quantity than R0. For the SIR model, Rt is given by

Rt = R0
S(t)

N
. (21)

In the virgin population considered above, we saw that as R0 approached one there
was considerable difficulty in independently estimating a pair of parameters. In the
endemic setting, this phenomenon occurs as Rt approaches one, so the parameter
identifiability issue can arise even if R0 is significantly greater than one.

In the endemic setting, we would be unlikely to know the initial numbers of
infectives and susceptibles, so we would also need to estimate the values of S0

and I0. Given the difficulty in estimating a pair of parameters that has already
been illustrated, it seems reasonable to expect that parameter identfiability would
become a more delicate issue if larger sets of parameters were estimated. In this
section we shall explore the identifiability of parameters when combinations of β,
γ, S0 and I0 are estimated. This method is generally referred to as subset selection
and has been explored by in the context of identifiability by a number of authors
(for example, [7, 8, 15, 28]).

It has been shown by Evans et al. in [22] that the SIR model with demography
is identifiable for all model parameters and initial conditions. They use a strict
definition of non-identifiability, where in such a model, a change in one parameter
can be compensated by changes in other parameters. However, the authors also
concede that while the model may be identifiable, that property alone does not give
insight into the ease of estimation of certain subsets of parameters. For example,
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by their definition, two parameters whose estimates have a correlation coefficient of
0.99 would be identifiable, yet they may not be easily estimated. In this section, we
use quantitative methods to assess ease of parameter identifiability in the context
of subset selection.

It was stated above that the asymptotic statistical theory requires the limiting
matrix Ω0 to be invertible. With a finite-sized sample, we instead require this of

Ω
(n)
0 . Non-identifiability leads to these matrices being singular, or close to singular

[8], and so one method for determining whether model parameters are identifiable

involves calculating the condition number of Ω
(n)
0 , or, equivalently the condition

number of the matrix Σ(n) [15]. The condition number, κ(X), of a nonsingular
matrix X is defined to be the product of the norm of X and the norm of X−1.
If we take the norm to be the usual induced matrix 2-norm, we have that the
condition number of X is the ratio of the largest singular value (from a singular
value decomposition) of X to the smallest singular value of X [34].

Initially, we investigate the case where only β and γ are fitted. In this situation,
we are able to find an expression for κ(Σ)

κ(Σ) =
σ2
β̂

+ σ2
γ̂ +

√
σ4
β̂

+ σ4
γ̂ − 2σ2

β̂
σ2
γ̂ + 4ρ2

β̂,γ̂
σ2
β̂
σ2
γ̂

σ2
β̂

+ σ2
γ̂ −

√
σ4
β̂

+ σ4
γ̂ − 2σ2

β̂
σ2
γ̂ + 4ρ2

β̂,γ̂
σ2
β̂
σ2
γ̂

. (22)

If the standard errors were fixed, Equation 22 shows that as the correlation be-
tween estimates of β and γ approaches one, the condition number goes to infinity.
However, in reality standard errors do depend on the values of β and γ; Figure
9 provides a more complete picture of how the condition number changes over a
range of R0 values. As the figure shows, it is more difficult to rely on estimates of
β and γ when R0 approaches one, corroborating what we have previously seen for
the correlation coefficient (see Figure 1a).

Numerical experiments indicate that when more parameters are fitted to the
data, identifiability becomes a more serious issue. In such a case, while we can no
longer give a simple expression for κ(Σ0) since it is a function of the parameters, the
initial conditions and even the data, it provides insight into parameter identifiability.
We examine κ(Σ0) across different subsets of fitted parameters as seen in Table 2.
As we increase the number of parameters fitted, the condition number can increase
by multiple orders of magnitude. This is evident whenever we fit both β and S0.
Notice that for the larger κ values, the magnitude of ρ is very near to one, indicating
strong correlation. Thus, we can surmise that as we increase the number of fitted
parameters, our ability to identify individual parameters decreases, especially if the
parameters added to θ have correlated estimates.

In this example, if we assume the initial conditions are known, our ability to
estimate β and γ is good. Yet, once we have to estimate one or both initial coni-
ditions, our ability to estimate either β or γ worsens considerably. Given that in
most situations initial conditions are not known exactly, parameter identifiability
has the potential to be of widespread concern.

8. Discussion. Parameter values estimated from real-world data will always be
accompanied by some uncertainty. Estimates of this uncertainty allow us to judge
how reliable the parameter estimates are and how much faith should be put in
any predictions made on their basis. As such, uncertainty estimates should always
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Table 2. Standard errors of β and γ, the correlation coefficient
between estimates of β and γ and the condition number of the
χTWχ matrix when R0 = 3 when fitting different sets of parame-
ters. ξ = 1/2, N = 10, 000, S0 = 9900, I0 = 100, β = R0, γ = 1
and σ2

0 = 104.

Parameters Fitted σβ̂ σγ̂ ρ κ

β, γ 0.3419 0.1142 -0.2067 5.2211× 100

β, γ, S(0) 17.094 1.9936 -0.9984 5.5760× 109

β, γ, I(0) 1.7536 0.1176 0.3534 1.2000× 106

β, γ, S(0), I(0) 44.655 3.3060 -0.9548 1.4383× 1010

accompany estimates of parameter values. The asymptotic statistical theory em-
ployed here provides a reasonably straightforward way to obtain such information
when least-squares fitting is used as the estimation process.

The use of a number of synthetic data sets, generated under a number of different
scenarios concerning the transmissibility of infection, has allowed us to get a broader
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understanding of the parameter estimation process than would have been possible if
we had limited attention to a single data set. As we have demonstrated, the uncer-
tainties that accompany parameter estimation, and even our ability to separately
identify parameters—even with this simplest of SIR models—can be extremely var-
ied based on the underlying parameter values and the parameter set being fitted.
A primary reason for difficulties in estimation and identifiability stems from corre-
lations between parameter estimates. Even if individual parameter estimates have
large uncertainties it can still be possible to estimate epidemiologically important
information, e.g., the basic reproductive number R0, with much less uncertainty.

Increasing the number of observations made at critical times during the epidemic
can provide a substantial gain in the precision of the estimation process. While the
sensitivity equations of the model provide a general idea of times at which additional
data will be most informative, they do not tell the whole story. The asymptotic
statistical theory, together with the data point removal technique, can be used to
guide data collection. This approach can be employed once a parameter set is
known: this might be one based on a preliminary set of estimates, expert opinon,
or even a best-guess. Some aspects of our discussion do, however, require more
detailed information on the magnitude and nature of the noise in the data.

We have focused on identifiability in the least squares context, but one cannot
escape a lack of parameter identifiability simply by using a different method of
parameter estimation. Bayesian methods, including Markov Chain Monte Carlo,
(see, for example, [11] and [31]), provide an alternative suite of approaches that are
commonly used to solve the inverse problem. Yet, since identifiability is primarily
a feature of the mathematical model and less dependent on the fitting process,
switching estimation techniques often does not remove the problem of parameter
identifiability, so it remains an important concern when solving the inverse problem
in any respect.

It should be noted that all experiments presented here were conducted with
knowledge of the underlying model, that is, the correct model was fit to the data.
However, in scenarios with real data this assumption is not valid and results in a
further layer of uncertainty. This type of structural uncertainty has received far less
attention but in some circumstances it can dwarf uncertainty due to noise in the
data. As an example, a number of authors have shown that estimates of the basic
reproductive number obtained by fitting models to data on the initial growth of an
outbreak can be highly sensitive to model assumptions [32, 33, 35, 42].

We chose to focus our attention on perhaps the simplest possible setting for
the estimation process, one for which the SIR model was appropriate. Unfortu-
nately, few real-world disease transmission processes are quite this simple; in most
instances, a more complex epidemiological model, accompanied by a larger set of
parameters and initial conditions, would be more realistic. It is not hard to imag-
ine that many of the issues discussed here would be much more delicate in such
situations: parameter identifiability, in particular, could be a major concern. The
approach employed here would reveal whether such problems would accompany es-
timation using a given model, and indeed can be used to guide the selection of
models and/or parameter sets that can be used or estimated reliably. Again, this
emphasizes the need for the estimation process to be accompanied by some account
of the uncertainties, but not only in terms of uncertainties of individual estimates
but also of correlation between estimates.
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Appendix: Sensitivity equations for the SIR model. Here we present the
sensitivity equations that are relevant for SIR model-based estimation. If preva-
lence data is being used, then the relevant sensitivities are ∂I(ti)/∂θ. Analysis of
incidence data would instead make use of ∂S(ti−1)/∂θ−∂S(ti)/∂θ. (Recall that, for
the SIR model considered here, the number of cases that occur over a time interval
is equal to the decrease in the number of susceptibles over that time).

Writing the sensitivities of the state variables with respect to the model param-
eters as φ1 = ∂S/∂β, φ2 = ∂S/∂γ, φ3 = ∂I/∂β, and φ4 = ∂I/∂γ, the following
sensitivity equations are obtained

dφ1
dt

= −βI
N
φ1 −

βS

N
φ3 −

SI

N
(23)

dφ2
dt

= −βI
N
φ2 −

βS

N
φ4 (24)

dφ3
dt

=
βI

N
φ1 +

(
βS

N
− γ
)
φ3 +

SI

N
(25)

dφ4
dt

=
βI

N
φ2 +

(
βS

N
− γ
)
φ4 − I, (26)

with the initial conditions φ1(0) = φ2(0) = φ3(0) = φ4(0) = 0.
For the sensitivities of the state variables with respect to initial conditions, writ-

ing φ5 = ∂S/∂S0, φ6 = ∂S/∂I0, φ7 = ∂I/∂S0, and φ8 = ∂I/∂I0, we have that

dφ5
dt

= −βI
N
φ5 −

βS

N
φ7 (27)

dφ6
dt

= −βI
N
φ6 −

βS

N
φ8 (28)

dφ7
dt

=
βI

N
φ5 +

(
βS

N
− γ
)
φ7 (29)

dφ8
dt

=
βI

N
φ6 +

(
βS

N
− γ
)
φ8, (30)

together with the initial conditions φ5(0) = φ8(0) = 1, and φ6(0) = φ7(0) = 0.
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