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Abstract. When a newly emerging human infectious disease spreads through

a host population, it may be that public health authorities must begin facing
the outbreaks and planning an intervention campaign when not all intervention

tools are readily available. In such cases, the problem of finding optimal in-
tervention strategies to minimize both the disease burden and the intervention

costs may be addressed by considering multiple intervention regimes. In this

paper, we consider the scenario in which authorities may rely initially only on
non-pharmaceutical interventions at the beginning of the campaign, knowing

that a vaccine will later be available, at an exogenous and known switching

time. We use a two–stage optimal control problem over a finite time horizon
to analyze the optimal intervention strategies during the whole campaign, and

to assess the effects of the new intervention tool on the preceding stage of the

campaign. We obtain the optimality systems of two connected optimal control
problems, and show the solution profiles through numerical simulations.

1. Introduction. In the mathematical theory of epidemic control it is generally
assumed that social planners (e. g. governments, public health officers, etc.) choose
appropriate strategies to fight epidemic outbreaks when they occur. It is also as-
sumed that they have some intervention tools available, as therapeutic treatments
or preventive vaccines. Then, optimal control theory may suggest the best plan for
implementing such interventions to achieve the best outcome for the chosen strategy
during an intervention campaign [1, 3, 27].

A common assumption in the literature is that the set of available tools remains
unmodified throughout the whole campaign, from planning time to completion (see
[8, 9, 26, 30, 32] for some very recent contributions). However, when a newly emerg-
ing human infectious disease spreads through a host population, drugs, treatments
and/or vaccine might not be available when public health authorities begin con-
fronting the outbreaks and planning an intervention campaign. In such cases, as
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recent research indicates [12, 28], social planners must often rely on quarantine, iso-
lation, and other non-pharmaceutical interventions to contain outbreaks until new
interventions tools are available.

An example of such a scenario is given by the A/H1N1 influenza outbreak in
Italy. In March 2009 infection was caused by a novel influenza virus H1N1 that
spread from Mexico around the world. During the outbreak, the Italian Ministry
of Health activated a web site entitled La nuova influenza (the new influenza)
to inform the population about the outbreak’s status and intervention measures
taken [20]. The first step of the control strategy was a containment stage. Among
preventive measures considered more effective, there were: early identification of
cases in travelers from affected areas, prophylaxis of their close contacts, promotion
of hygiene rules and protective actions (e. g. hand washing). In a second stage, they
implemented all actions necessary to promote effective availability of the vaccine
against the virus. In Italy, the first deaths due to H1N1 influenza were reported in
September 2009 [21], and authorities agreed that vaccination activities, according
to the availability of the vaccine (and according to the schedule of production of the
pharmaceutical industry), had to take place from 15 October to 15 November 2009.
The Ministry also determined that once the manufacturer delivered vaccines, they
had to be distributed gradually to vaccinate at least 40% of the Italian population
[20].

Motivated by the above arguments, we consider the following scenario in this
paper: a new generic infectious disease begins to spread in a host population. The
disease is mostly unknown, but is apparently transmitted by close interpersonal
contacts. The authorities face the emergency by planning an intervention campaign.
At the beginning, they may rely on non-pharmaceutical interventions only. We
assume that they employ a health-promotion campaign; they aim to reduce the
spread of the epidemic via advertising (e. g. papers and television) and counseling,
in order to induce people to hygienic or risk-averse behavior. For practical purposes,
the campaign cannot be planned day by day, but held for a finite time (say, T ), which
is considered appropriate by public authorities to face the epidemic. Nevertheless,
at time of planning the authorities already know that at an intermediate time (say
t1 < T ), a vaccine will be available. We assume further that they know the exact
value of t1, because it is assured by the schedule of production of the pharmaceutical
industry.

The following questions arise: which is the optimal intervention strategy during
the whole campaign [0, T ]? How will using the vaccine during the time interval
[t1, T ] influence the health-promotion campaign during the preceding time interval
[0, t1]?

This problem may be addressed by considering two possible intervention regimes.
We will analyze the optimal control by using the finite-time horizon two–stage
approach described by Tomiyama and Rossana [33, 35]. The method is based on
solving two connected optimal control problems, which may be individually solved
by the Pontryagin’s maximum principle. This approach has been used in several
different contexts, both in cases of endogenous and exogenous switching time t1
(see e. g. [5, 6, 19, 33]), but, as far as we know, in the literature there are no
applications of the two–stage approach to management and control of epidemics.
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The dynamics inside each regime will be described by epidemic systems with
general nonlinear transmission terms proposed by Benchke [3], who studied op-
timal controls of epidemics with many different methods of intervention, such as
vaccination, quarantine and health-promotion campaigns.

The paper is organized as follows: in Section 2 the two–stage optimal control
problem is introduced. The necessary conditions are derived in Section 3. In Section
4 we give a short insight about the adopted numerical method. Section 5 is devoted
to illustrate and discuss the simulations. Final remarks are given in Section 6.

2. Two-stage disease control campaign. As mentioned in the introduction, we
assume that health authorities must face a newly human infectious disease outbreak.
At the time of planning the intervention strategy, the health promotion campaign
is the only available control tool. The authorities have to plan the campaign for an
appropriate finite time, T . They already know, however, that at an intermediate
time, t1, a vaccine will be ready to be administered to people. Moreover, they are
aware of both the costs associated with the health promotion campaign and the
future vaccine.

We adopt the model for health campaigns proposed in [3], which is derived by
advertising capital models like the Nerlove-Arrow model. Let us denote by S(t) and
I(t) the sizes of susceptible and infectious individuals at time t, respectively. Denote
by u(t) the control at time t. It measures the efforts for advertising, television and
other forms of campaigns, as counseling or hygienic aid. This builds up a capital
stock, w(t), which in some sense corresponds to goodwill in marketing.

Hence, in the first stage, that is for t ∈ [0, t1), the dynamics is ruled by the
following system:

Ṡ = −φ(w)f(S, I); İ = φ(w)f(S, I)− γI; ẇ = u(t)− δw. (1)

The disease transmission is described by the function f , which is assumed to be:
positive; nil if susceptibles or infectious are absent; increasing and concave with
respect to its arguments, and of almost first-order mass action type i. e.:

f(S, I) = 0, for S = 0 or I = 0
f(S, I) > 0, for S > 0, I > 0
fS , fI , fSI > 0, for S > 0, I > 0
fSS , fII ≤ 0, for S ≥ 0, I ≥ 0.

(2)

The efficiency of the campaign is described by the function φ. It is assumed that
campaign expenditures are increasingly less effective, so that:

φ(0) = 1, 0 < φ(w) ≤ 1,
φ′(w) < 0, φ′′(w) ≥ 0, φ′′′(w) ≤ 0.

(3)

The parameters in (1) are positive constants; γ denotes the removal rate of infectious
and δ denotes the rate of forgetting or decay of concern.

Starting from time t1, a preventive vaccine is available and may potentially be
administered to susceptibles. Hence, for the second stage, i.e., for t ∈ (t1, T ], we
have the system:

Ṡ = −φ(w)f(S, I)− g(S)v(t); İ = φ(w)f(S, I)− γI ẇ = u(t)− δw, (4)

where v is the vaccination effort, and the function g describes the efficiency or
effectiveness of vaccination [3]. It is assumed that:

g(S) ≥ 0, g′(S) ≥ 0, g′(0) > 0. (5)
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We assume that the functions f , φ and g are sufficiently smooth to guarantee, for
given non-negative initial conditions, the existence and uniqueness of the solutions
of systems (1) and (4). Examples of functions f , φ and g are as follows, where the
ki’s are positive constants:

f(S, I) = k1SI; (6)

φ(w) = k2 e
−w; (7)

g(S) = k3S. (8)

Due to technical and financial aspects, the controls are assumed to be bounded by
positive constants, that is:

0 ≤ u(t) ≤ u0, 0 ≤ v(t) ≤ v0. (9)

The goal here is to minimize epidemic costs, which include care of infectious indi-
viduals, economic losses and intervention costs. Hence, the optimal control problem
is to minimize the two–stage objective functional (or performance index ):

J(u, v) = J1(u) + J2(u, v), (10)

where

J1(u) =

∫ t1

0

[
I(t) +Au2(t)

]
dt, (11)

and

J2(u, v) =

∫ T

t1

[
I(t) +Au2(t) +B v2(t)

]
dt, (12)

subject to (1)–(5) and non negative initial data S(0) = S0; I(0) = I0, w(0) = w0.
In (11)–(12) the cost of an infectious individual per unit time is normalized to 1,
and A and B are two positive weight constants.

We assume that the intervention efforts are increasingly costly and that non-
linear increase may potentially arise at high intervention levels. Unfortunately,
we do not have real data, which would help in choosing the best functional form.
Therefore, we take quadratic expressions of the control, because they are the sim-
plest and most widely used nonlinear representation of intervention costs (see e.g.
[2, 4, 22, 23, 24, 26, 30, 32]). However, we call attention to the fact that it has been
argued that other nonlinear functions might provide a better description of the ac-
tual cost for vaccination, due to the increase of costs when most of the population
is already vaccinated or immune. In such cases dependence on the removed class
should be taken into account [17].

We will denote by J∗ the minimum value of the objective functional correspond-
ing to the optimal path (u∗, v∗), that is :

J∗ ≡ J(u∗, v∗) = min
Ω
J(u, v), (13)

where Ω is the set of admissible controls:

Ω =
{

(u, v) ∈ L1 (0, T ) / (u(t), v(t)) ∈ [0, u0]× [0, v0], ∀t ∈ [0, T ]
}
.

By admissible we mean that the controls satisfy the constraints, and a corresponding
solution exists for the system equation that satisfies the initial and final conditions.

Remark 1. Systems (1) and (4) are completed by the equations for removed indi-

viduals, Ṙ = γI, and Ṙ = γI + g(S)v, respectively. However, these equations can
be studied separately, because the right hand sides of systems (1) and (4), as well
as the objective functional, do not depend on R.
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Remark 2. System with no controls can be derived from equations (1) and (4)
with w0 = 0, u(t) = 0 and v(t) = 0 for all t ≥ 0. System with only health campaign
is given by the equations (1). We do not explicitly analyze this particular case,
because a similar study can be found in [3].

3. Necessary conditions. In this section we derive the necessary conditions fol-
lowing the approach given in [33, 35] for two-stage optimal control problems.
The basic idea is to decompose the original problem into a sequence of two connected
Pontryagin problems, one for each of the two–stages of the intervention campaign.
The problems are solved backward in time, so that the first problem refers to the
second stage, t ∈ [t1, T ].
Second stage. Given system (4), set the initial conditions:

S(t1) = S1; I(t1) = I1; w(t1) = w1, (14)

and final conditions,
S(T ); I(T ); w(T ); free.

Consider the control constraint (9) on [t1, T ]. We wish to find admissible optimal
controls u∗, v∗ which minimize the objective functional (12) over all admissible
controls.
We will denote by S∗(t), I∗(t), w∗(t), the corresponding optimal time–profile of the
state variables. This is a classical optimal control problem that may be addressed
by Pontryagin’s maximum principle [31]. The Hamiltonian is given by

H2(S, I, w, u, v) = I(t) +Au2(t) +B v2 − [φ(w)f(S, I) + g(S)v]λ1+
+ [φ(w)f(S, I)− γI]λ2 + (u− δw)λ3,

where λi; i = 1, 2, 3, are the adjoint variables. The adjoint equations are given by:

λ̇1 = −∂H2

∂S =
[
φ(w) ∂f∂S + v ∂g

∂S

]
λ1 − φ(w) ∂f∂Sλ2

λ̇2 = −∂H2

∂I = −1 + φ(w)∂f∂I λ1 −
[
φ(w)∂f∂I − γ

]
λ2

λ̇3 = −∂H2

∂w = ∂φ
∂wfλ1 − ∂φ

∂wfλ2 + δλ3.

The state variables are not assigned at the final time T so that we have the transver-
sality equations:

λ1(T ) = λ2(T ) = λ3(T ) = 0. (15)

In order to illustrate the characterization of the optimal controls u∗ and v∗, we
consider the optimality conditions:

∂H2

∂u
= 0,

∂H2

∂v
= 0,

at u = u∗ and v = v∗, respectively, on the set {t ∈ [t1, T ] : 0 ≤ u ≤ u0; 0 ≤ v ≤ v0}.
That is:

u∗(t) = − λ3

2A
, v∗(t) =

g(S∗)

2B
λ1,

and, taking into account the bounds on u∗, and v∗, the characterizations are:

u∗ =

 0 if λ3 > 0
−λ3/2A if − 2Au0 ≤ λ3 ≤ 0
u0 if λ3 < −2Au0,

(16)

and

v∗ =

 0 if λ1 < 0
g(S∗)λ1/2B if 0 ≤ λ1 ≤ 2B v0/g(S∗)
v0 if λ1 > 2B v0/g(S∗),

(17)
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which, in short form, may be written:

u∗(t) = min (max (0,−λ3/2A) , u0) ,

and

v∗(t) = min (max (0, g(S∗)λ1/2B) , v0) .

The optimal controls of this first problem depend on the choice of the initial con-
ditions (14), J∗2 = J∗2 (S1, I1, w1). Therefore, the goal of the minimization procedure
in the first stage is now to find an admissible control that minimizes the sum of the
objective functional (11) and J∗2 . In other words, a terminal index must be included
in the objective functional of the first stage. This is the basic idea to analyze the
second optimal control problem [35].
First stage. Given system (1), set the initial conditions:

S(0) = S0; I(0) = I0; w(0) = w0, (18)

and final conditions,

S(t1); I(t1); w(t1); free.

Consider the control constraint on u, given in (9), on [0, t1]. We wish to find optimal
control u∗(t) defined on [0, t1] which is admissible and minimizes the objective
functional:

JFS(u) =

∫ t1

0

[
I(t) +Au2(t)

]
dt+ J∗2 (S(t1), I(t1), w(t1)),

over all admissible controls. The Hamiltonian is given by

H1(S, I, w, u) = I(t) +Au2(t)− [φ(w)f(S, I)]µ1+
+ [φ(w)f(S, I)− γI]µ2 + (u− δw)µ3,

where µi; i = 1, 2, 3, are the adjoint variables. The adjoint equations are given by:

µ̇1 = −∂H1

∂S = φ(w) ∂f∂S µ1 − φ(w) ∂f∂Sµ2

µ̇2 = −∂H1

∂I = −1 + φ(w)∂f∂I µ1 −
[
φ(w)∂f∂I − γ

]
µ2

µ̇3 = −∂H1

∂w = ∂φ
∂wfµ1 − ∂φ

∂wfµ2 + δµ3.

Due to the terminal index, the transversality equations are:

µi(t1) =
∂J∗2
∂xi

(S∗(t1), I∗(t1), w∗(t1)) , (19)

where x1 = S;x2 = I;x3 = w. On the other hand, it is well known that (see, e. g.
[10], p. 64)

λi(t1) =
∂J∗2
∂xi

(S∗(t1), I∗(t1), w∗(t1)) ,

so that the following continuity condition holds

µi(t1) = λi(t1); i = 1, 2, 3 (20)

In order to illustrate the characterization of the optimal control u∗, we consider the
optimality condition:

∂H1

∂u
= 0,

at u = u∗, on the set {t ∈ [0, t1] : 0 ≤ u ≤ u0} and the characterization is the same
as in (16), with λ3 replaced by µ3.
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Remark 3. (i) The existence of the optimal control may be established as fol-
lows. For any fixed initial state

(
S1, I1, w1

)
, the problem set for the second stage,

over [t1, T ], is of standard form. The requirements of classical existence theorems
(Theorem III 4.1 and Corollary 4.1 in [16]) are satisfied. In particular, it can be
easily checked that the integrand of the objective functional is convex with respect
to (u, v) and the state equations depend linearly on controls u and v. This ensures
the existence of an optimal solution (see [17]). Then, similar arguments also ensure
the existence of the optimal control for the first stage, since we have assumed that
t1 is fixed and such that 0 < t1 < T , so that the problem for the first stage is also of
standard form, where J∗2 is a terminal index. Such an optimal control will minimize
JFS . This, together with the continuity condition (20) ensures the existence of an
optimal path for (S, I, w) for the whole time interval [0, T ].
(ii) An uniqueness result may be established, for sufficiently small time–intervals,
by using the approach given in [13, 22] and also employed in [14, 15, 17] for optimal
control problems of epidemics and cancer treatment.

4. Numerical method. Assume that the functions f , φ and g are given by (6), (7)
and (8), respectively. We solve numerically the two–stage optimal control problem
given by the objective functional (10) subject to (9), and the state equations:

Ṡ = −k1k2e
−wSI; İ = k1k2e

−wSI − γI; ẇ = u(t)− δw, (21)

for t ∈ [0, t1), and,

Ṡ = −k1k2e
−wSI − k3v(t); İ = k1k2e

−wSI − γI; ẇ = u(t)− δw, (22)

for t ∈ (t1, T ]. We stress that here the contact rate between individuals is assumed
to be affected by information produced by the social planner. The exponential
relationship (7) describes a quite strong effect due to the information campaign. In
principle, other functional forms may be considered. For example, a weaker effect,
described by the function 1/(1 + w), has been considered in [11].

In order to solve numerically the two-stage optimal control problem, we use
an indirect approach (see [7], [34] and the references therein), which leads to the
solution of the two boundary value problems.

On the first stage the optimality conditions consist of the control characterization
(16), with λ3 replaced by µ3, the six ordinary differential equations (21), and the
adjoint equations:

µ̇1 = k1k2e
−wIµ1 − k1k2e

−wIµ2

µ̇2 = −1 + k1k2e
−wSµ1 − [k1k2e

−wS − γ]µ2

µ̇3 = −k1k2e
−wSIµ1 + k1k2e

−wSIµ2 + δµ3,

with initial conditions of the state (18) and final time conditions of the adjoints
(19). On the second stage, the optimality conditions consist of the controls char-
acterization (16)-(17), the six ordinary differential equations (22) and the adjoint
equations:

λ̇1 = [k1k2e
−wI + k3v(t)]λ1 − k1k2e

−wIλ2

λ̇2 = −1 + k1k2e
−wSλ1 − [k1k2e

−wS − γ]λ2

λ̇3 = −k1k2e
−wSIλ1 + k1k2e

−wSIλ2 + δλ3,

with initial conditions of the state (14) and final time conditions of the adjoints
(15). The continuity condition (20) connects the two problems.

According to the procedure used in [18] in the multi-stage case, the algorithm
consists in proceeding iteratively on the first and second stages, starting from the
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Figure 1. Optimal time-profile for the health and vaccination cam-
paigns. The parameter set is given in (23). The initial conditions are:
S(0) = 0.9, I(0) = 0.1, w(0) = 0.

second one with an initial guess for the state variables. Within this process the
computation of a sequence of boundary value problems with control characteriza-
tions is required, that is a family of subproblems where the solution of one problem
serves as an initial guess for the neighboring one. In order to solve the problems of
this sequence, in each stage we use the so called forward-backward sweep method,
described in detail in [27].

The process begins with an initial guess on the control variable. Then, the state
equations are solved simultaneously forward in time, and next the adjoint equations
are simultaneously solved backward in time. The control is updated by inserting
the new values of states and adjoints into its characterization, and the process is
repeated until convergence occurs. As in [27], the solver used for the state and
adjoint systems is a Runge-Kutta fourth order procedure. A MATLAB c© code,
[29], has been built to perform the simulations.

5. Simulations and discussion. Our main goal is to show:
(i) the optimal interventions policy during the whole campaign [0, T ];
(ii) how the possibility to use the vaccine during the second stage [t1, T ] may influ-
ence the health-promotion campaign during the preceding stage [0, t1].

We consider an initial scenario in which the majority of the population is sus-
ceptible and there is a relatively small fraction of infectious: S(0) = 0.9; I(0) = 0.1.
We assume that the health-authorities consider T = 5 (possibly, months) as a rea-
sonable time span to plan the campaign against the outbreak. They start the health
campaign (w(0) = 0) well aware that a vaccine will be available at time t1 = 2.5.

In our simulations we will take for the other quantities the following values:

k1 = 2, k2 = 2.2, k3 = 3, γ = 0.1 δ = 0.01
u0 = 1, v0 = 1, A = 0.1, B = 0.001.

(23)

These values are only indicative and do not have any specific biological meaning.
More in depth knowledge about the field data certainly would give more realistic
parameter values.

The optimal time-profile of the two controls are depicted in Figure 1. It can be
seen, as expected, that both interventions must be at the highest possible effort at
the beginning. We may also note that it is optimal to continue the health campaign,
although at a low and decreasing effort, even when the vaccine is available. The
time-profile of the state variables corresponding to this optimal interventions are
depicted in Figure 2 (b). A rapid decrease of the susceptible population occurs when
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Figure 2. (a) Solutions of system (21), without controls. (b) Solutions
of systems (21) and (22), corresponding to the optimal interventions.
The parameter set is given in (23). The initial conditions are: S(0) = 0.9,
I(0) = 0.1, w(0) = 0.

the vaccination campaign starts. Comparing these curves with the uncontrolled case
(Figure 2 (a)) it can be seen that the uncontrolled disease spread is characterized
by higher and persistent level of infectious.

The effect of interventions on the disease prevalence may be ‘measured’ by the

quantity I =
∫ T

0
I(t)dt. In case of simulations depicted in Figure 1 we get I = 3.60

in absence of interventions and I = 3.00 when a health campaign and vaccination
are used. This means that 16% of infections are prevented due to interventions.

In order to stress the effect of the vaccination campaign on the optimal perfor-
mance index J∗, given in (13), we have assessed the sensitivity of J∗ with respect
to B (the vaccination cost parameter) and t1 (the vaccination campaign starting
time). Figure 3 (a) shows J∗ as function of B. It can be seen that lower vaccination
costs imply better optimal performances. These values are compared with the per-
formance index J0 that would come by using only the health campaign over [0, T ]
(in other words, J0 is the performance index (11) when t1 = T , subject to (21) and
the constraint 0 ≤ u(t) ≤ u0 given in (9); we call this case the no–vaccination case).
It can be seen that for a vaccination cost B one hundred times greater than the
health campaign cost A, there is little recourse to vaccination and J∗ approaches
the optimal value of J0, say J∗0 (in the plot, J∗0 ≈ 3.26).
The value of the switching time t1 is assumed to be exogenous and fixed. In Figure
3 (b) it can be seen J∗ as function of t1. We can deduce that the sooner the vaccine
is made available to health authorities, the better the result.

Let us focus now on the first stage. In the absence of any intervention the disease

burden over the first stage may be evaluated as I1 =
∫ t1

0
I(t)dt. In our case study,

with the values given in (23) it follows I1 = 1.78. Assume now that the social
planner decides to follow the optimal path of the no–vaccination case. On the first
stage, the performance index will be J10 = 1.5922, so that the result is better, as
expected. However, following this path means to plan without taking the vaccine
arrival into account. In the next, we want to assess how the performance index dur-
ing the first stage, J1, can be influenced by a schedule that does take the vaccine
arrival into account. With this aim, we will investigate the dependence of J1 on the
characteristic parameters of the model in the second stage, namely the vaccine cost
B, and the vaccine effectiveness rate, k3. The sensitivity analysis shows that:
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Figure 3. Optimal performance index J∗ plotted: (a) as function of
B; (b) as function of t1. The other parameter values are given in (23).
The initial conditions are: S(0) = 0.9, I(0) = 0.1, w(0) = 0. The dashed
lines correspond to the optimal performance index for the no-vaccination
case, J∗

0 .

(i) The cheaper the vaccine, the better the performance index (for the same effec-
tiveness) not only over the whole period [0, T ], where it is optimal, but also on the
first stage (Figure 4 (a));
(ii) Compared with the no–vaccination case, optimal schedules over [0, T ] obtained
by taking the vaccine arrival into account at t1, require less use of the health cam-
paign (Figure 4 (b)). Nevertheless, the performance index at the first stage will be
the same or better (less or equal to 1.5922, see Table 1);
(iii) If the vaccine is very effective and inexpensive, then it will be widely used (in
the second stage, when it is available). Consequently, the health campaign will be
little used in the first stage. This produces a significant reduction of J1, from 1.5922
to 1.5768 (reduction of 0.97%), see Table 1, first row.
(iv) If the vaccine is very effective but costly, then it will be used less, and a very
small reduction of J1 will occur, see Table 1, last row.

6. Final remarks. In this paper we have considered a specific but common sce-
nario. The health authorities face the emergency of a new infectious disease spread-
ing in a host population. They decide to adopt a health–promotion campaign for an
appropriate finite time T . Nevertheless, at time of planning, the authorities already
know that a vaccine will be available at an intermediate time, say t1 < T . We
assume further that they know the exact value of t1, because the pharmaceutical
industry’s schedule of production assures it.

The mathematical investigation has been performed by using the optimal control
theory. A two–stage optimal control problem has been introduced and specific
epidemic models, with general nonlinear transmission terms, have been considered
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Figure 4. (a) Performance index for the first stage, J1 plotted as
function of B; (b) Total effort provided for the health campaign,

U =
∫ t1
0

u(t)dt, plotted as function of B. The other parameter val-
ues are given in (23). The initial conditions are: S(0) = 0.9, I(0) = 0.1,
w(0) = 0. The dashed lines correspond to the same quantities computed
for the no-vaccination case.

B \ k3 0.01 0.1 0.5 1 2 3
0.001 1.5922 1.5909 1.5866 1.5831 1.5790 1.5768
0.01 1.5922 1.5918 1.5871 1.5834 1.5793 1.5770
0.1 1.5922 1.5922 1.5911 1.5887 1.5838 1.5805
1 1.5922 1.5922 1.5921 1.5918 1.5906 1.5890
1.1 1.5922 1.5922 1.5921 1.5918 1.5907 1.5892
10 1.5922 1.5922 1.5922 1.5922 1.5920 1.5918

Table 1. Values of the performance index J1, computed for different
values of the vaccination cost B and vaccine effectiveness k3. The other
parameter values are given in (23).

for each stage. The necessary conditions have been derived by using the Pontryagin
maximum principle and the problem has been solved numerically.

The model provides the optimal schedule of the two interventions over the entire
period [0, T ]. Following the optimal path, the social planner will get the minimum
(best) performance index J∗. The possibility to use the vaccine during the second
stage will influence use of the health–promotion campaign during the first stage.
Generally speaking, the more the vaccine will be used in the second period, the less
the health–campaign will be employed in the first. Nevertheless, this will produce
a better performance index also during the first stage, though this effect strongly
depends on vaccine cost and effectiveness. Thus, the social planner, when planning
the use of the health-campaign in the first stage, needs to be aware and take both
the cost and effectiveness of the arriving vaccine into account. Ignoring the vaccine
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arrival means planning interventions at the first stage according to the profile that
gives the optimal performance index over [0, T ] obtained using only the health–
campaign. This will produce, in the first stage, a bigger intervention effort and a
worse performance index.

In our approach, we have assumed that the switching time t1 is exogenous and
fixed. In the practice, it may be that planners do not know when the vaccine will
be available. This aspect has been considered in [28], where the optimal policy for
non–pharmaceutical interventions has been analyzed and the optimization horizon
T is assumed to be the vaccine arrival time. To capture the uncertainty, T is
assumed to follow an exponential distribution. This leads to a one–stage infinite
horizon discounted problem. The two–stage approach proposed in this paper allows
to explicitly obtain the optimal policy for vaccination and to assess the impact of
vaccine arrival on the previous stage of the intervention campaign. Furthermore,
insight into how switching time influences the optimal policy may be obtained by
varying t1, and we have shown how the switching time does affect the optimal
performance index.

Another interesting question related to two-stage optimal control problems is to
consider the switching time as a control variable and find it optimally. In our case,
this means that once the vaccine is available (at time t1), it might be optimal to
begin administering the vaccine to the public later (at t2 ∈ (t1, T ]). Our analysis
shows that vaccination must be administered at the highest possible effort once
available. This is in agreement with the result found in [17], where optimal vaccina-
tion policies have been investigated for several different epidemic models with SIR
and SEIR structure. The authors found that, regardless of the model structure,
vaccinating at the highest possible rate as early as possible is essential for control-
ling an epidemic. This holds if the vaccination is the new available intervention,
but different results might come for different interventions as treatment, quarantine,
screening, etc.

As mentioned in the introduction, the A/H1N1 influenza outbreak is an ex-
ample of a scenario for which our approach might be employed. Very recently,
modeling control strategies based on social distancing and antiviral treatments has
been considered for this kind of disease [25, 32]. The dynamics is described by a
high dimensional system of nonlinear ordinary differential equations. Here we have
considered oversimplified models, but our approach may be implemented for more
realistic (and complex) systems as in [25, 32]. In this way, it will be possible to see
how the optimal policies may change in view of vaccine arrival.

All the open questions above will be the subject of further investigations.
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