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Abstract. We introduce a computationally efficient approach to the gener-

ation of Digital Reconstructed Radiographs (DRRs) needed to perform three

dimensional to two dimensional medical image registration and apply this al-
gorithm to virtual surgery. The DRR generation process is the bottleneck of

any three dimensional to two dimensional registration system, since its com-

putational complexity scales with the number of voxels in the Computed To-
mography Data, which can be of the order of tens to hundreds of millions. Our

approach originates from the segmentation of the volumetric data into multi-

ple regions, which allows a compact representation via Octree Data Structures.
This, in turn, yields efficient storage and access of the attenuation indexes of

the volumetric cells, required in the projection procedure that generates the

DRR. A functional based on Mutual Information is then maximized to obtain
the alignment of the DRR with the two dimensional X-ray fluoroscopy scans

acquired during the operation. Promising experimental results on real data are
presented.

1. Introduction. In the context of minimally invasive surgical procedures, such
as those in the lungs, surgeons employ the tracking of surgical instruments in con-
junction with preoperative or intraoperative images in order to indirectly guide the
procedure. Often, a detailed three-dimensional description of the body structures
can easily be constructed before surgery using high resolution CT-scans. During
the actual surgical procedure, other modes of imaging are used, such as two dimen-
sional X-ray fluoroscopy, because they are fast, cheap and less toxic. The goal of
image guided surgery is to locate and track the position of the instruments during
surgery thanks to two dimensional imaging techniques and then project the result
back onto the three dimensional model. One of the main computational challenges
is the three dimensional to two dimensional registration algorithm to recover the
Pose (defined as the position, orientation and scale of three dimensional volumes)
and the subsequent tracking algorithms designed to follow the surgical instruments.

In order to compare comparable entities, the registration of a three dimensional
volume to a two dimensional image requires an intermediate step: The construction
of a so-called DRR, i.e. the two dimensional image obtained by casting virtual
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Figure 1. Schematic illustrating the virtual ray casting procedure
used to generate a Digitally Reconstructed Radiograph. The 2D
DRR in this figure is that obtained with the algorithm described
in the present paper.

X-rays through the three dimensional scan and measuring their attenuation due
to the attenuation index of the voxel they intersect (see figure 1). This process is
meant to mimic the physical process of obtaining two dimensional X-ray scans by
casting X-rays through a patient’s body. Once the DRR is constructed for a given
orientation of the three dimensional volume, it is possible to measure the difference
in some norm between the DRR and the two dimensional X-ray fluoroscopy scan.
This process can be repeated with different orientation of the three dimensional
volume and an optimization algorithm can be applied to register (or align) the
DDR with the target X-ray fluoroscopy scan.

The generation of DRRs is computationally expensive since the complexity scales
with the total number of voxels in the three dimensional CT data. This can therefore
be the bottleneck of the entire registration system. Since real-time procedures are
sought, fast algorithms need to be designed. Several algorithms have been proposed
in the recent past (see e.g. [17, 8] and the references therein) to address this problem,
but this is still believed to be an open problem. The difficulty stems from the fact
that both efficiency and accuracy must be considered. In all cases, most of the effort
is focused on reducing the computational complexity of the algorithm in order to
be able to obtain a real time computation of the registration parameters. In such
case, the three dimensional data can be maintained registered onto the X-ray image
during surgery, allowing for possible motion of the patient. In [17], the authors used
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Figure 2. Different steps of the three dimensional to two dimen-
sional registration procedure.

a sparse sampling of the DRR image for the computation of the image statistics,
in such a way that the complete generation of the DRR is not required. In [8],
the authors used an extension of light field rendering technique from the computer
graphics community [4] to generate the DRR. We take a different approach where
we exploit the optimal representation of the Octree data structure combined with
the segmentation of the CT-data into four regions.

2. Outline of the algorithm. We propose an approach based on segmentation
and we demonstrate how the CT data, which consists mostly of high quality images,
can be segmented in an effective way, which allows then to describe the three dimen-
sional structure in a very efficient way via Octree representation. This procedure
does not only makes extremely more compact the description, but also allows a very
fast access to the content of the three dimensional structure. This, in turn, becomes
crucial in speeding up the ray casting procedure required to create the DRR. We
detail the algorithm in this paper and provide preliminary results when it is applied
to real data. The proposed method can be summarized as follows, where the first
three steps focus on the construction of the DRR, the main focus of this paper, and
where the last step is an example of registration:

1. Segmentation of the CT data into 4 regions: bones, fat, muscle and
lungs/air. The step is performed using a modified version, extended to 4
regions, of the method presented in [3], along with the regularization procedure
of [1].

2. Representation of the three dimensional CT data using an Octree data
structure, where each leaf node (three dimensional cell) contains the average
gray level of the CT-scan in that cell. The segmentation result is used to
identify the regions in space where high resolution is needed to accurately
represent the regions’ boundary and the regions where a coarse representation
is sufficient. This step can be divided into two separate sub-steps:
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• Three dimensional Fast Marching Method (FMM) to compute the dis-
tance of each three dimensional voxel to the closest boundary given by
the segmentation algorithm.
• Construction of the Octree given the distance map output of the FMM.

3. Construction of the Digital Reconstructed Radiograph. This step
consists in casting virtual rays through the CT data to simulate the X-ray
fluoroscopy procedure in order to obtain a two dimensional DRR image that
can be registered onto the X-ray fluoroscopy image. The Octree structure
computed in the previous step reduces significantly the number of cells visited
and therefore the computational time.

4. Registration of the Fluoroscopy Image to the DRR. In this phase the
pose parameters are estimated to maximize a functional based on Mutual
Information, as in [17].

The different steps are graphically represented in figure 2, where the complete reg-
istration procedure is described using bounding boxes. In the following sections we
describe each step and we present experimental results obtained on real data.

3. Level sets based segmentation . Three-dimensional image segmentation can
be cast as a surface evolution problem in the sense that surfaces, initialized at ran-
dom on the data, are evolved until an optimal configuration is reached. This optimal
configuration is usually defined as the minimum of a particular cost function. Fol-
lowing [7], a surface Σ, the boundary of an open set Ri(Σ) ∈ V (i.e. Σ = ∂Ri(C)),
is implicitly represented as the zero level set of a continuous Lipschitz function
φ : V 7→ R. The function φ is positive for the points within the set Ri(C) and
negative elsewhere (i.e. for the points within Ro(C) = V \Ri(C)). Therefore the
Heaviside function H(φ), along with its complementary

(
1 − H(φ)

)
, can serve as

indicator functions for the points in Ri(C) and Ro(C) respectively [2]:

χ1 = H(φ) =

{
1 if φ > 0
0 elsewhere

(1)

χ2 =
(
1−H(φ)

)
=

{
1 if φ < 0
0 elsewhere

(2)

In [15] the authors described how k level set functions can be used to construct up
to n = 2k different indicator functions and therefore to represent up to n different
regions. Using this convention, in the case of n = 4 regions, we can write the four
characteristic functions as:

χ1 = H(φ1)H(φ2) =

{
1 if φ1 > 0 and φ2 > 0
0 elsewhere

χ2 = H(φ1)
(

1−H(φ2)
)

=

{
1 if φ1 > 0 and φ2 < 0
0 elsewhere

χ3 =
(

1−H(φ1)
)
H(φ2) =

{
1 if φ1 < 0 and φ2 > 0
0 elsewhere

χ4 =
(

1−H(φ1)
)(

1−H(φ2)
)

=

{
1 if φ1 < 0 and φ2 < 0
0 elsewhere
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Using this notation, [2, 15] designed a level-set segmentation algorithm based on
the Mumford-Shah functional. In particular, the energy functional:

E(φ1, φ2) =

4∑
i=1

∫
V

fi(x)χi(x)dx (3)

is minimized. In this energy, fi(x) : V 7→ R is an indicator function of how well
pixel x fits in the region denoted by χi. The functions fi are defined exploiting
prior information about the four regions to be segmented. Here

fi(x) = I(x)− µi(x) (4)

where I(x) is the intensity value of the CT-scan at voxel (x) and µi(x) is the
average value of each region. This functional is supplemented by a regularization
term involving the area and the volume of the surface. Minimizing the cost function
in (3) w.r.t. φ1 and φ2 produces parabolic-type partial differential equations. The
numerical solution of these equations with standard methods is slow, due to the
stringent ∆t = O(∆x2) time step restriction. In [3], the authors pointed out the
connection between standard k-means algorithms and Chan-Vese algorithms [2, 15].
They then designed a hybrid algorithm taking advantage of both the efficiency of
k-means and the regularization property of surface evolutions. In the present work,
we use the regularization introduced in Bertelli et al. [1]. A distinguishing feature
of the regularization of Bertelli et al. is that (1) the effect of the regularization
does not separate two overlapping contours and (2) two contours running close
to each other either snap onto each other or move apart from each other. These
two properties are not enforced by other regularization procedures and does matter
tremendously in the case of the segmentation of several regions. For example, figure
3 illustrates the artifacts produced by standard regularization procedures and the
ability to accurately segment data into four phases with our approach. Overall, the
combination of the extension of [3] with the regularization procedure of [1] produces
an efficient and accurate segmentation into four phases algorithm as illustrated in
figure 4.

4. Spatial representation and refinement criterion . The computational cost
for constructing the DRR is proportional to the number of cells visited. It is there-
fore desirable to lower the total number of cells used. On the other hand, it is
necessary to accurately describe the regions where the attenuation factor varies
rapidly, i.e. at the interface between phases such as the interface between bones
and muscles or muscles and fat. An adaptive structure is thus highly desirable.
We use a standard Octree data structure [9, 10] to efficiently represent the spatial
discretization of the physical domain: Initially, the root of the tree is associated
with the entire domain, then we recursively split each cell into eight children until
the desired level of details is achieved. In this work, we choose to impose that the
finest cells lie on the interface between regions, e.g. between bones and muscles. In
addition, we do not impose that the ratio between cells be constrained. We use the
criterion of [6, 5, 13] to automatically generate such grids, i.e. we split a cell C if:

min
v∈vertices(C)

|φ(v)| ≤ Lip(φ) · diag-size(C), (5)

where diag-size(C) refers to the length of the diagonal of the cell, Lip(φ) is the
Lipschitz constant and v refers to a vertex (node) of the current cell. Figure 5
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(a) Standard regularization (b) Regularization procedure of [1]

Figure 3. Effects of the regularization process used in the segmen-
tation algorithm of section 3, illustrating the successful removal of
spurious noise.

(a) Rib cage (b) Bones-muscle-fat-air

Figure 4. Three dimensional boundaries detected by the segmen-
tation algorithm described in section 3.

depicts a two dimensional projection of the Octree grid, superimposed to a section
of the segmented CT-scan.

4.1. Volume representation via Octree . In order to represent the CT volu-
metric data in a compact way using an Octree data structure and at the same time
preserving details about the boundaries between different region, we need a mea-
sure of how distant each voxel is to the closest boundary. This will be used in the
estimation of Lip(φ) in 5. In fact a voxel close to the boundary indicate the need
for a precise description of the volume in terms of very fine cells, whereas if voxel
farther away from the boundary can be described using coarser cells.
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Figure 5. Example of a two dimensional cross-section of the three
dimensional Octree grid obtained with algorithm 1, superimposed
onto the segmentation map. In practice, higher ratios between the
finest and coarsest cells can be considered.

In order to compute these distances we first ‘reinitialize’ the two level set func-
tions φ1 and φ2, such that they become signed distance function to their corre-
sponding boundaries. This is efficiently carried out using the Fast Marching Method
(FMM) [14, 11], which computes the distances by solving the Eikonal equation:

|∇D(x)| = 1, (6)

with complexity O(n log n), where n is the number of voxels. The initial conditions
for (6) are chosen such that D(x) = 0 for all the voxels x belonging to the interfaces
computed by the segmentation algorithm. Once we performed the reinitialization
of both φ1 and φ2, we have two signed distance functions D1 and D2. D1 will
encode information about distances from certain boundaries, while D2 will encode
the distances to the remaining boundaries. To combine the information of the two
distance functions we create:

D(x) = min(|D1(x)|, |D2(x)|).

Once the distance map D is constructed, we initialize a uniform grid Octree Gn and
we generate the adaptive grid Octree Gn+1 by splitting or merging the cells of Gn

according to Algorithm 1.
The parameter α, which appears in line 3 of Algorithm 1 can be thought of

being an approximation of Lip(φ) in equation (5) and controls the grading of the
octree grid. For instance if α > 1 the grid is built in a conservative way using
mostly fine cells. On the other hand decreasing α, we can increase the size of the
cells far away from the boundaries, obtaining a more compact representation of the
three dimensional structure. Figure 5 illustrates a two dimensional projection of
the Octree grid, superimposed to a section of the segmented CT-scan.
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Algorithm 1 Octree Grid Generation

Input Gn and TT

1: Gn+1 = Gn

2: C = root of Gn+1

3: if minv∈vertices(C) |D(v)| ≤ α · diag-size(C) then
4: if C is leaf then
5: split C
6: end if
7: for each child C ′ of C do
8: go to 3 with C = C ′

9: end for
10: else
11: merge C
12: end if

return(Gn+1)

5. Construction of the digital reconstructed radiograph . The Digital Re-
constructed Radiograph is computed by choosing a point in the three dimensional
space as the virtual source of X-rays and by computing the attenuation of those rays
passing through the CT volume and recording its value onto the DRR image plane.
In fact, each voxel in the CT data has a particular attenuation value (depending on
wether it is in the bone, muscle, fat or air regions), which can be considered directly
proportional to the CT-scan intensity value. Standard techniques to generate DRRs
via ray casting have a computational complexity O(n3), where n is the size of one
side of the DRR (which we assume almost equivalent to each of the sides of the CT
volume). In our case we can exploit the description of the CT volume obtained via
adaptive grids to significantly reduce the computational complexity.

The entire ray casting procedure boils down to determining if a particular ray
intersects a given three dimensional cell of the octree. If there is no intersection the
entire branch of the tree that originates from that cell can be ignored. In the case
there is an intersection, the children are recursively inspected. If a cell is a leaf and
it intersects the ray, its attenuation coefficient (previously pre-computed) is added
to the total attenuation index of that particular ray. The recursive algorithm is
summarized in Algorithm 2.

To compute the intersection of a ray with an Axis Aligned Bounding Box (i.e. each
cube of the octree structure) we used the state-of-the-art method proposed by
Williams et al. in [16], which extends that proposed by Smits in [12]. The function
ComputeIntersection in Algorithm 2, has been implemented following [16] and re-
turns the attenuation index of the cell multiplied by the length of the intersection,
in case there is an intersection, or a negative index, otherwise. Figure 1 depicts one
example of Digital Reconstructed Radiograph obtained using the algorithm detailed
in this section.

6. Registration of the fluoroscopy image to the DRR. The last step is the
actual registration of the 3D CT-scan onto the X-ray fluoroscopy image (using the
DDR). We follow the work of [17] and use a mutual information based method in
which the rigid registration parameters of the pose are estimated. The method
based on Mutual Information is very suitable to register image pairs produced from
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Algorithm 2 Ray Casting Procedure through the Octree Grid

Main Loop
Input: Octree Gn and Ray r, Output: λ (attenuation)

1: C = root of Gn and λ = 0
2: Call InspectCell(C, λ, r)
3: return(λ)

Function InspectCell(C, λ,r)

1: λt =ComputeIntersection(C, r)
2: if λt > 0 then
3: if C == leaf then
4: λ = λ+ λt
5: else
6: for each child C ′ of C do
7: InspectCell(C ′, λ, r)
8: end for
9: end if

10: end if

different sensors modalities (such as in our case, DRR vs X-ray Fluoroscopy images);
it aims at maximizing the amount of information that each pixel carries about the
corresponding pixel in the registration. If the images are lined up this information
is maximized. The proposed technique can be outlined as follows:

1. Initialize the rigid transformation T = T0, which defines the pose. Here
T , describing the pose, is a rigid transformation parameterized in terms of
rotation, translation and scale (RST) with a total of 7 degrees of freedom.

2. Compute the DRRs as described in sections 3 through 5.
3. Compute the functional that has to be maximized (i.e. the mutual information
I
(
U(X), V (T (X))

)
, where U(X) is the 2-D fluoroscope image and V (T (X))

is the DRR generated for the pose T ). Note that the value of the functional
is not needed, since we only need its gradient to update the pose parameters
in the direction of the gradient. The mutual information I can be expanded
as:

I
(
U(X), V (T (X))

)
= H(U(X)) +H(V (T (X)))

− H(U(X), V (T (X))),

where H(A) = EA(log p(A)) is the entropy of the random variable A. From
here the gradient w.r.t. the parameters of T is computed.

4. Compute the new pose parameters using the updates computed in the previous
step.

5. Go back to 2 and loop until convergence, i.e the L∞ difference between two
successive iterations is less than a threshold value.

Figure 6 depicts a sequence of results obtained with this algorithm demonstrating
that we can successfully register 3D CT-scan with 2D X-ray fluoroscopy scans using
the DRR.

7. Conclusion. We have presented a algorithm for the registration of 3D CT-scans
to 2D X-ray fluoroscopy scans. In particular, we have introduced a novel approach
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Figure 6. Top: 2D X-ray fluoroscopy on which we have outline
the principal boundaries. Bottom: Sequence of images obtained
with the registration procedure.

for the construction of the digital reconstructed radiographs needed for comparing
two dimensional objects. Our approach takes advantage of an efficient representa-
tion of the main features in the CT-scan using an Octree data structure. In particu-
lar, the Octree construction is based on the location of the main anatomical features
inferred from the segmentation of the CT-scan into four regions (bone, muscle, fat,
air). The significant reduction in the number of voxel representing the CT-scan,
while at the same time the accurate description of anatomical features, produces an
efficient and accurate algorithm for the construction of the DDR. We have applied
this framework to the registration of 3D CT-scans to 2D X-ray fluoroscopy scans
following the work of [17].
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