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Abstract. In this paper, we investigate three particular algorithms: a sto-

chastic simulation algorithm (SSA), and explicit and implicit tau-leaping al-
gorithms. To compare these methods, we used them to analyze two infection

models: a Vancomycin-resistant enterococcus (VRE) infection model at the
population level, and a Human Immunodeficiency Virus (HIV) within host in-
fection model. While the first has a low species count and few transitions,

the second is more complex with a comparable number of species involved.

The relative efficiency of each algorithm is determined based on computational
time and degree of precision required. The numerical results suggest that all

three algorithms have the similar computational efficiency for the simpler VRE
model, and the SSA is the best choice due to its simplicity and accuracy. In
addition, we have found that with the larger and more complex HIV model,

implementation and modification of tau-Leaping methods are preferred.
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1. Introduction. Deterministic approaches involving ordinary differential equa-
tions to approximate large populations or sample sizes with a continuum, though
widely used, have proven less descriptive when applied to small populations/sample
sizes. To address this issue, continuous time Markov chain (CTMC) models are
often used when dealing with low species count. There are a variety of stochastic
algorithms that can be employed to simulate CTMC models. However, it seems
that none of these algorithms can be readily applied to all problems.

The goal of this paper is to illustrate how widely algorithm performances vary
between two stochastic infection models and demonstrate how one might perform
computational studies to aid in selection of appropriate algorithms. Specifically, we
examine three commonly used algorithms: a stochastic simulation algorithm SSA,
commonly referred to as the Gillespie algorithm, and explicit and implicit tau-
leaping methods. One of our test models is adopted from existing literature, and
this model is used to describe Vancomycin-resistant enterococcus (VRE) infection
in a hospital unit. The other model is derived in this paper based on an existing
deterministic Human Immunodeficiency Virus (HIV) infection model. This new
stochastic model is used to describe the dynamics of HIV during the early stage of
infection, where the target cells are still at very high numbers while the infected
cells are at a very low level.

The methodology illustrated in this paper is highly relevant to current researchers
in the biological sciences. As investigations and models of disease progression be-
come more complex and as interest in initial phases (i.e., HIV acute infection, initial
disease outbreaks) of infections or epidemics increases, the recognition increases that
many of these efforts require small population number models (for which ordinary
differentail equations (ODEs) are unsuitable). These efforts will involve multiscale
discrete valued stochastic models that have as limits (as population numbers in-
crease) ordinary differential equations for the expected population values or means
often used (in part because of the ease of their use in simulation studies) in math-
ematical treatments. As the interest in initial stages of infection grows, so also will
the need grow for efficient simulation with these small population numbers models.
A major contribution of this paper is a careful presentation of computational issues
arising in simulations with such models. A second contribution is the presenta-
tion and discussion of a new multiscale discrete stochastic model for HIV infection
which in the limit as population numbers increase is an existing clinical-data vali-
dated ODE model which has been instrumental in prediction of disease progression
and experimental design.

The outline of the remainder of this paper is as follows. In Section 2 we give a
short introduction of the stochastic simulation algorithm, and explicit and implicit
tau-leaping algorithms. In Section 3 we give some background on the VRE and
HIV models, and then apply these three stochastic algorithms to these two infec-
tion models and compare their computational efficiency. We conclude the paper in
Section 4 with some summary remarks and suggestions for future efforts.

2. Simulation algorithms. In this section, three computational algorithms for
solving stochastic systems will be examined, the stochastic simulation algorithm or
Gillespie algorithm, the explicit tau-leaping method and the implicit tau-leaping
method. Outlines for implementing each algorithm will be given along with moti-
vations for the algorithm and discussions about when one might want to use one
algorithm over another.
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Unless otherwise indicated, a capital letter is used to denote a random variable,
a bold capital letter is for a random vector, and their corresponding small letters
are for their realizations.

2.1. Stochastic simulation algorithm. The stochastic simulation algorithm
(SSA), also known as the Gillespie algorithm [11], is the standard method employed
to simulate continuous time Markov Chain models. The SSA was first introduced
by Gillespie in 1976 to simulate the time evolution of the stochastic formulation of
chemical kinetics, a process which takes into account that molecules come in whole
numbers as well as the inherent degree of randomness in their dynamical behavior.
However, in addition to simulating chemically reacting systems, the Gillespie algo-
rithm has become the method of choice to numerically simulate stochastic models
arising in a variety of other biological applications [3, 4, 18, 19, 25, 26].

Two mathematically equivalent procedures were originally proposed by Gillespie,
the “Direct method” and the “First Reaction method”. Both procedures are ex-
act procedures rigorously based on the chemical master equation [11]; however, the
direct method is the method typically implemented due to its efficiency. Likewise,
this is the method employed in this paper. The direct method can be described for
a general system by assuming X = (X1, X2, ..., Xn)T represents the state variables
of the system where Xi(t) denotes the number in state Xi at time t (Xi may be
the number of patients, cells, species, etc). Furthermore, it is assumed l transitions
(often referred to as reaction channels in biochemistry literature) are possible with
associated transition rates (often referred to as propensity functions in the biochem-
istry literature) represented by λi, i = 1, ..., l. Given this terminology, the direct
method for the Gillespie algorithm can be described by the following procedure:

S1. Initialize the state of the system x0;
S2. For the given state x of the system, calculate the transition rates λi(x), i =

1, ..., l;

S3. Calculate the sum of all transition rates, λ =

l∑
i=1

λi(x);

S4. Simulate the time, τ , until the next transition by drawing from an exponential
distribution with mean 1/λ;

S5. Simulate the transition type by drawing from the discrete distribution with
probability Prob(transition = i) = λi(x)/λ. Generate a random number r2

from a uniform distribution and choose the transition as follows: If 0 < r2 <
λ1(x)/λ, choose transition 1; if λ1(x)/λ < r2 < (λ1(x) + λ2(x))/λ choose
transition 2, and so on;

S6. Update the new time t = t+ τ and the new system state;
S7. Iterate S2-S6 until t ≥ tstop.

2.2. Tau-Leaping methods. Since the SSA method keeps track of each transition,
it can be impractical to implement for certain applications due to the computational
time required. As a result, Gillepsie proposed an approximate procedure, the tau-
leaping method, which accelerates the computational time while only sustaining a
small loss in accuracy [12]. Instead of taking incremental steps in time, keeping track
of X(t) at each time step as in the SSA method, the tau-leaping method leaps from
one subinterval to the next, approximating how many transitions take place during
a given subinterval. It is assumed that the value of the leap, τ , is small enough
that there is no significant change in the value of the transition rates along the
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subinterval [t, t+τ ]. This condition is known as the leap condition. The tau-leaping
method thus has the advantage of simulating many transitions in one leap while not
loosing significant accuracy, resulting in a speed up in computational time. In this
paper, we consider two tau-leaping methods, an explicit and an implicit version.

2.2.1. An Explicit Tau-Leaping Method. The explicit tau-leaping method is based
on an explicit formulation for the update in number of species X at time t+τ , given
X(t) = x. The basic explicit tau-leaping method approximates Kj , the number of
times a transition j is expected to occur within the time interval [t, t + τ ], by a
Poisson random variable Pj(λj(x), τ) with mean (and variance) λj(x)τ . Once the
number of transitions are estimated, the approximate number of species, known as
the tau-leaping approximation, of X at time t+ τ is given by the formula

X(t+ τ) = x +

l∑
j=1

Pj(λj(x), τ)vj (1)

with vj = (v1j , ..., vnj)
T where vij represents the change in state variable Xi caused

by transition λj [8]. However, as mentioned previously, the process for selecting
τ is critical in the tau-leaping method. If τ is chosen too small, tau-leaping will
essentially stop, leading to the standard SSA algorithm; on the other hand, if the
value of τ is too large, the leap condition may not be satisfied, possibly causing
significant inaccuracies in the simulation. In this paper, we use a τ -selection pro-
cedure based on the algorithm in [8]. For alternative procedures for selecting τ , we
refer the reader to references [8, 12, 13].

Let ∆Xi = Xi(t+τ)−xi with xi being the ith component of x, i = 1, 2, . . . n, and
ε be an error control parameter with 0 < ε� 1. In the given τ -selection procedure,
τ is chosen such that

∆Xi ≤ max

{
ε

gi
xi, 1

}
, i = 1, ..., n, (2)

which evidently requires the relative change in Xi to be bounded by
ε

gi
except that

Xi will never be required to change by an amount less than 1. The value of gi in (2)
is chosen such that the relative changes in all the transition rates will be bounded
by ε. For example, if the transition rate λj has the form λj(x) = cjxi with cj being
a constant, then the reaction j is said to be first order and the absolute change in
λj(x) is given by

∆λj(x) = λj(x + ∆x)− λj(x) = cj(xi + ∆xi)− cjxi = cj∆xi.

Hence, the relative change in λj(x) is related to the relative change in Xi by
∆λj(x)

λj(x)
=

∆xi
xi

, which implies that if we set the relative change in Xi by ε (i.e.,

gi = 1), then the relative change in λj is bounded by ε. If the transition rate λj has
the form λj(x) = cjxixr with cj being a constant, then the reaction j is said to be
second order and the absolution change in λj(x) is given by

∆λj(x) = cj(xi + ∆xi)(xr + ∆xr)− cjxixr = cjxr∆xi + cjxi∆xr + cj∆xi∆xr.

Hence, the relative change in λj(x) is related to the relative change in Xi by

∆λj(x)

λj(x)
=

∆xi
xi

+
∆xr
xr

+
∆xi
xi

∆xr
xr
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which implies that if we set the relative change in Xi by
ε

2
and the relative change

in Xr by
ε

2
(i.e., gi = 2, gr = 2), then the relative change in λj is bounded by ε to

the first order approximation.
The tau-leaping method employed in this paper also includes modifications de-

veloped by Cao, et al., [7] to avoid the possibility of negative populations. When
utilizing a tau-leaping method instead of the exact SSA method, as discussed previ-
ously, estimates are made about how many times a transition has occurred during
the leap-interval. From the estimate of the number of transitions and how each
transition effects the state variables, an estimate is obtained for the number of
species in each state, Xi, at the end of the leap-interval. In some instances, if a
population or number of species is small at the beginning of the leap-interval, the
estimate of the state variable after numerous transitions may result in a negative
population. To avoid this situation, Cao, et al., [7, 8] introduced another control
parameter, nc, a positive integer (normally set between 2 and 20) which is used to
separate transitions into two classes, critical transitions or noncritical transitions.
A transition j is deemed critical if after nc of these transitions, there is a danger
in one of the state variables involved in the transition reaching zero. An estimate
for the maximum number of times Lj , j = 1, ..., l that transition j can occur be-
fore reducing one of the state variables involved in the transition to 0 (or less) is
calculated by

Lj = min
{1≤i≤n;νij<0}

[
xi
|vij |

]
with the brackets indicating the floor function. If Lj is less than the control pa-
rameter nc, then the reaction is deemed critical. All critical transitions are then
restricted to a single transition during the leap period reducing the probability of a
negative population to nearly zero. All the remaining noncritical transitions use the
traditional tau-leaping method. The algorithm for the modified explicit tau-leaping
method is given below.

S1. Given X(t) = x, identify all critical transitions by first estimating the maxi-
mum number of times, Lj , that a transition can occur before causing a nega-
tive population where

Lj = min
{1≤i≤n;vij<0}

[
xi
|vij |

]
with the brackets indicating the floor function. A transition is considered
critical if Lj < nc. (In our calculations, we set nc =10)

Let

Jcr = {j ∈ {1, ..., l}|j is a critical transition}

and

Jncr = {j ∈ {1, ..., l}|j is a noncritical transition}.

S2. Choose a value for the error control parameter ε. (In our calculations, we set
ε = 0.03). Then, compute τ1 so each transition rate λj , j = 1, ..., l is bounded
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by ε, according to the following definitions:

µ̂i(x) =
∑
jεJncr

vijλj(x), i = 1, ..., n

σ̂2
i (x) =

∑
jεJncr

v2
ijλj(x), i = 1, ..., n

τ1 = min
{1≤i≤n}

{
max {εxi/gi, 1}
|µ̂i(x)|

,
max {εxi/gi, 1}2

σ̂2
i (x)

}
(3)

where gi as described in the text.
S3. Determine whether tau-leaping is appropriate by comparing τ1 to 1/λ. If τ1

is less than some multiple of 1/λ (chosen to be 10 in our calculations), then
abandon tau-leaping and execute a set number of single transition SSA steps
(chosen to be 100 in our calculations) and return to S2. Otherwise proceed;

S4. Compute

λc =
∑
j∈Jcr

λj(x)

(the sum of all critical transition rates). Generate a second candidate time
leap, τ2 as a sample of the exponential random variable with mean 1/λc.

S5. Let τ = min{τ1, τ2}. Approximate the number of transitions within the time
interval, Kj , as a sample of the Poisson random variable with mean λj(x)τ
for all j ∈ Jncr. For all critical reactions, define Kj as follows:
• If τ = τ1, set Kj = 0 for all j ∈ Jcr (no critical transitions occur).
• If τ = τ2, let jc be a sample of the integer random variable with point

probabilities λj(x)/λc for j ∈ Jcr. Set Kjc = 1 (jc indicates the only
critical transition which occurs) and Kj = 0 for j ∈ Jcr, j 6= jc (only one
critical transition occurs).

S6. If there is a negative component in x+
∑
j

Kjvj , reduce τ1 by half and return

to S3. Otherwise leap by replacing the time, t = t + τ and the update the
new system state,

x(t+ τ) = x +
∑
j

Kjvj .

S7. Iterate S1-S6 until t ≥ tstop.

2.2.2. An Implicit Tau-Leaping Method. In many applications, such as the HIV
model explained in Section 3.2, problems of “stiffness” may arise. Rathinam et al.,
[24], explored the nature of stiffness in discrete stochastic systems and demonstrated
that an implicit tau-leaping method (similar to implicit Euler methods for ordinary
differential equations) is capable of taking large time steps for stiff, discrete systems,
producing accurate results for such systems while significantly reducing the com-
putational time when compared to explicit tau-leaping methods [14]. The implicit
tau-leaping method replaces the explicit update formula given in equation (1) by
an implicit tau-leaping formula given by

X(t+ τ) = x +

l∑
j=1

(Pj(λj(x), τ)− λj(x)τ + λj(X(t+ τ))τ)vj ,
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Note that the above formula typically gives a non-integer vector for X(t + τ). To
overcome this difficulty, Rathinam et al., [24] proposed a two-stage process given
by

X̃ = x +

l∑
j=1

(
Pj(λj(x), τ)− λj(x)τ + λj(X̃)τ

)
vj , (4)

and

X(t+ τ) = x +

l∑
j=1

r
Pj(λj(x), τ)− λj(x)τ + λj(X̃)τ

z
vj , (5)

where JzK denotes the nearest non-negative integer corresponding to a real number
z.

The implicit tau-leaping method does not have a stability limitation as the
explicit tau-leaping does (i.e., the relative changes in all the transition rates are
bounded by ε) due to the implicitness of the scheme. In [9], the stepsize for the stiff
system is chosen to bound the relative changes of those transition rates resulting
from the non-equilibrium reactions by ε, thus, a larger stepsize is allowed. However,
as remarked by the authors in [9] that it is generally difficult to determine whether or
not a reaction is in partial equilibrium, and the partial equilibrium condition is only
formulated in [9] for those reversible reaction pairs for some biochemical systems.
To overcome this difficulty, in this paper we use (3) to choose τ1 for the implicit
tau-leaping method but with a larger ε to allow a possible large time stepsize.

To avoid the possibility of negative populations (i.e., to ensure (4) has non-
negative solution), the algorithm for implicit tau-leaping is implemented in the
same way as that for the explicit tau-leaping method except the update for states
(i.e., replace (1) by (4) and (5)).

3. Biological applications. In this section, we report on use of the SSA, and the
explicit and implicit tau-leaping algorithms with two stochastic infection models.
One is an existing stochastic model in the literature that is used to describe VRE
infection at the population level. The other is derived in this paper based on an
existing validated deterministic model for describing the HIV infection within a
host. All three algorithms were coded in Matlab, and all the simulation results
were run on a Linux machine with a 2GHz Intel Xeon Processor with 8GB of RAM
total. We do note that computational times depend on how Matlab codes are
written. Hence, all three algorithms are implemented in the same style as well as
using similar coding strategies (such as array preallocation and vectorization) to
speed up computations. Thus the comparison computational times given below
should be interpreted as relative to each other for the algorithms discussed rather
than in any absolute sense.

The following notation is used throughout the remainder of this paper: Zn is the
set of n-dimensional column vectors with integer components, and ei ∈ Zn is the
ith unit column vector, that is, the ith entry of ei is 1 and all the other entries are
zeros, i = 1, 2, . . . , n.

Before we introduce the VRE and HIV models, we give a brief comment on how
to numerically solve the system of nonlinear equations required in the implicit tau
leaping method. By (4) we know that the system of nonlinear equations to be solved
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are of the form

x̃ = x +

l∑
j=1

[pj − λj(x)τ + λj(x̃)τ ]vj , (6)

where pj is the realization of Pj(λj(x), τ). To solve (6) for x̃, we first convert the
nonlinear equation (6) into the form

g(y) = 0, (7)

where y = (y1, y2, . . . yn)T with x̃ = (y2
1 , y

2
2 , . . . , y

2
n)T , and

g(y) = (y2
1 , y

2
2 , . . . , y

2
n)T − x−

l∑
j=1

[
pj − λj(x)τ + λj(y

2
1 , y

2
2 , . . . , y

2
n)τ
]
vj .

Then we use the command fsolve in Matlab to obtain the numerical solution of (7),
and then the numerical solution for (6) is obtained by taking x̃ = (y2

1 , y
2
2 , . . . , y

2
n)T .

The reason for converting (6) into (7) is to avoid possible negative values of state
variables.

3.1. A VRE model. VRE is the group of bacterial species of the genus enterococ-
cus that is resistant to the antibiotic vancomycin, and it can be found in sites such as
digestive/gastrointestinal, urinary tracts, surgical incision, and bloodstream. The
bacteria responsible for VRE can be a member of the normal, usually commensal
bacterial flora that becomes pathogenic when they multiply in normally sterile sites.
VRE infection is one of the most common infections occurring in hospitals, and this
type infection is often referred to as a nosocomial or hospital-acquired infection
(these are evidence that hospitals provide not only medical care but also harbor
pathogens that pose serious risks of infections).

A stochastic model was developed in [19] to describe the dynamics of VRE infec-
tion in a hospital, and it will be used to demonstrate the computational efficiency
of the SSA, as well as the explicit and implicit tau-leaping methods. In this model,
the patients are classified as uncolonized U (those individuals with no VRE present
in the body), colonized C (those individuals with VRE present in the body) or
colonized in isolation J , as depicted in the compartmental schematic of Figure 1.
From this figure, we see that patients are admitted into the hospital at a rate of

Figure 1. Compartmental VRE Model.
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Λ per day, with some fraction m of patients already VRE colonized (0 ≤ m ≤ 1).
Uncolonized patients are discharged from the hospital at a rate of µ1U per day,
and colonized patients and colonized patients in isolation are discharged from the
hospital at rates of µ2C and µ2J per day, respectively. An uncolonized patient
becomes colonized at a rate β U [C + (1 − γ)J ] per day, where the hand-hygiene
policy applied to health care workers on isolated VRE colonized patients reduces
infectivity by a factor of γ (0 < γ < 1), and the rate of contact is assumed to
be proportional to the population size (i.e., mass action incidence). In addition, a
colonized patient is moved into isolation at rate αC per day.

3.1.1. Stochastic VRE Model. In [19], the dynamics of VRE infection are modeled
as a continuous time Markov chain. In addition, a constant population is assumed
for this model in which the hospital remains full all the time, that is, the overall
admission rate equals the overall discharge rate. Let N denote the total number
beds available in the hospital, and {XN (t), t ≥ 0} be a continuous time Markov
chain with XN = (XN

1 , X
N
2 , X

N
3 )T , where the meaning of the random variable XN

i ,
i = 1, 2, 3 are given in Table 1.

Variables Description

XN
1 (t)

Number of uncolonized patients at time t
in a hospital with N beds

XN
2 (t)

Number of VRE colonized patients at time t
in a hospital with N beds

XN
3 (t)

Number of VRE colonized patients in isolation at time t
in a hospital with N beds

Table 1. State variables for the VRE model.

In any small time interval of length ∆t, we assume {XN (t), t ≥ 0} jumps from
state xN to xN + vj with probability λj(x

N )∆t+ o(∆t), that is,

Prob
{
XN (t+ ∆t) = xN + vj |XN (t) = xN

}
= λj(x

N )∆t+o(∆t), j = 1, 2, . . . , l,
(8)

where xN = (xN1 , x
N
2 , x

N
3 )T ∈ Z3 , vj ∈ Z3, and λj is the transition rate for

reaction j. Based on the the assumption of constant population, the transition
rates are summarized in the second column of Table 2. From this table, we see that

Reactions λj(x
N ) vj

XN
1 → XN

2 mµ1x
N
1 + βxN1 (xN2 + (1− γ)xN3 ) −e1 + e2

XN
3 → XN

2 mµ2x
N
3 e2 − e3

XN
2 → XN

1 (1−m)µ2x
N
2 e1 − e2

XN
3 → XN

1 (1−m)µ2x
N
3 e1 − e3

XN
2 → XN

3 αxN2 −e2 + e3

Table 2. Transition rates λj(x
N ) as well as the corresponding

state changes vj for the stochastic VRE model (8), j = 1, 2, . . . , 5.

there are five transition rates (i.e, l = 5), and the corresponding states changes vj
are listed in the third column of this table.

In addition, the corresponding deterministic model for the stochastic model (8)
with transition rates given in Table 2 was derived in [19] by using the Kurtz Limit
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Theorem [16, 17] (that is, ordinary differential equations can be used to approximate
a (density dependent) CTMC when the sample size is sufficiently large), and this
model is given by

U̇N = −mµ1U
N − βUN (CN + (1− γ)JN ) + (1−m)µ2C

N + (1−m)µ2J
N

ĊN = mµ1U
N + βUN (CN + (1− γ)JN ) +mµ2J

N − (1−m)µ2C
N − αCN

J̇N = −µ2J
N + αCN ,

(9)
where UN (t), CN (t) and JN (t) denote the number of uncolonized patients, VRE
colonized patients and VRE colonized patients in isolation at time t in a hospital
with N beds.

3.1.2. Numerical Results. In this section we report on numerical results obtained
by applying the SSA, explicit tau-leaping and implicit tau-leaping methods to the
stochastic VRE model (8) with transition rates given in Table 2. We compare the
computational times of the SSA, explicit and implicit tau-leaping methods with
different values of N . All the simulations were run for the time period [0, 200] days
with parameter values given in the third column of Table 3 and initial conditions
(adapted from Table 3 in [19])

XN (0) = N

(
29

37
,

4

37
,

4

37

)T
, (10)

that is, all the simulations start with the same initial density

(
29

37
,

4

37
,

4

37

)T
.

Parameters Description Value
m VRE colonized patient on admission rate 0.04
β Effective contact rate 0.001 per day
γ Hand hygiene compliance rate 0.58
α Patient isolation rate 0.29 per day
µ1 Uncolonized patients discharged rate 0.16 per day
µ2 VRE colonized patients discharge rate 0.08 per day
Table 3. Description of model parameters in the stochastic VRE
model as well as the values of parameters used in the simulation.

To implement the tau-leaping methods, we need to find gi, i = 1, 2, 3. From Table
2 we see that all the reactions are first order except the first one. Let ∆λj(x

N ) =

λj(x
N+∆xN )−λj(xN ) with ∆xN being the absolute changes in the state variables,

j = 1, 2, . . . , 5. Note that

∆λ1(xN ) = mµ1∆xN1 + β(xN1 + ∆xN1 )(xN2 + ∆xN2 + (1− γ)(xN3 + ∆xN3 ))

−βxN1 (xN2 + (1− γ)xN3 )

= mµ1∆xN1 + β∆xN1 (∆xN2 + (1− γ)∆xN3 )

+β
[
xN1 (∆xN2 + (1− γ)∆xN3 ) + ∆xN1 (xN2 + (1− γ)xN3 )

]
,
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which implies that

∆λ1(xN )

λ1(xN )
=

mµ1∆xN1
mµ1xN1 + βxN1 (xN2 + (1− γ)xN3 )

+
βxN1 (∆xN2 + (1− γ)∆xN3 )

mµ1xN1 + βxN1 (xN2 + (1− γ)xN3 )

+
β∆xN1 (xN2 + (1− γ)xN3 )

mµ1xN1 + βxN1 (xN2 + (1− γ)xN3 )

+
β∆xN1 (∆xN2 + (1− γ)∆xN3 )

mµ1xN1 + βxN1 (xN2 + (1− γ)xN3 )
.

Hence, by the above equation and the positiveness of parameters and non-
negativeness of the state variables we have

|∆λ1(xN )|
λ1(xN )

≤ |∆x
N
1 |

xN1
+
|∆xN2 |
xN2

+
|∆xN3 |
xN3

+
|∆xN1 |
xN1

+
|∆xN1 |
xN1

(
|∆xN2 |
xN2

+
|∆xN3 |
xN3

)
.

Thus, from the above inequality we see that if we choose

|∆xN1 | ≤
ε

4
xN1 , |∆xN2 | ≤

ε

4
xN2 , |∆xN3 | ≤

ε

4
xN3 , (11)

then the relative change in λ1 is bounded by ε (to the first order approximation).
For all the other first-order reactions, to ensure the relative changes in the transition
rates are bounded by ε, we need to set the relative changes in the state variables to
be bounded by ε. Thus, by (11) we know that to have |∆λj(xN )| ≤ ελj(xN ) for all
j = 1, 2, . . . , 5, we need to set

gi = 4, i = 1, 2, 3.

For the implicit tau-leaping, the value of ε is taken as 0.3 (to allow a possible
larger time stepsize). This value is chosen based on the simulation results so that
the computational time is comparatively short without compromising the accuracy
of the solution.

Figure 2 depicts the computational times of each algorithm for an average of five
typical simulation runs with N varying from 37, 185, 370, 1850, 3700, 18500, 37000.
From this figure, we see that the computational times for all the algorithms increase
as the value N increases. This is expected for the SSA as the mean time stepsize
for the SSA is the inverse of the sum of all transition rates, which increases as
N increases (roughly proportional to N2 as can be seen from the transition rates
illustrated in Table 2). For the explicit tau-leaping method we found, for all the N
that we tried, the value of τ1 is often less than 10/λ, which implies that the SSA
is implemented most of the time as opposed to the tau-leaping method (based on
the algorithm in Section 2.2.1). This also explains why the SSA and the explicit
tau-leaping perform similarly. The same thing is also observed for the implicit tau-
leaping method when N = 37 and 185. However, when N increases to 370, we found
that the implicit tau-leaping method requires significant time for implementation,
and we also found that its time stepsize in this case is still not significantly larger
than those of the SSA. Note that systems of nonlinear equations must be solved
for the implicit tau-leaping method. Hence, the computational time in this case is
expected to be larger than for the other two methods (this can be observed from
this figure). As N continues increasing, we see that the computational times for
the implicit tau-leaping is similar to those of the SSA and the explicit tau-leaping
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Figure 2. Comparison of computational times for different algo-
rithms (SSA, Explicit Tau-Leaping and Implicit Tau-Leaping) for
an average of five typical simulation runs.

method; this is because the time stepsize becomes significantly larger than those
of these two methods in which solving systems of nonlinear equations comprises
the main time consuming cost. As one can see from (3) and the transition rates
illustrated in Table 2 that if εxi/gi > 1 then the first term inside of the minimum sign
of (3) is roughly proportional to 1/N while the second term is roughly proportional
to 1. The simulation results show that the first term inside of the minimum sign of
(3) is smaller than the second term when N increases to 1850 and above. Hence,
the time stepsize for the implicit tau-leaping method decreases as N increases when
N ≥ 1850, which implies that the computational time for the implicit tau-leaping
method increases as N increases. Based on the above discussions, we see that
the SSA has similar performance to that of the tau-leaping methods (and may be
slightly better in some cases). Due to its simplicity and accuracy, the SSA is the
best choice for this particular problem.

To have some idea on the dynamics of each state variable, we have plotted five
typical sample paths of each state of the stochastic VRE model (8) obtained by
each stochastic algorithm in comparison to the solution for the deterministic VRE
model (9). Figure 3 depicts the results obtained with N = 37. From this figure,
we observe that all the sample paths for each state variable oscillate around their
corresponding deterministic solution, and they exhibit very large differences.

In addition, Figure 3 reveals that the sample paths obtained by the SSA and
the tau-leaping methods exhibit similar variation. The results obtained with N =
370, 3700 and 37000 are given in Appendix A. From these figures we also observed
that the sample paths obtained by all three algorithms exhibit similar variation.
Note that results obtained by the SSA are exact. Hence, the difference between
histograms obtained by the SSA and those obtained by the tau-leaping methods
provide a measure of simulation errors in tau-leaping methods when the number of
simulation runs are sufficiently large. Thus, to provide further information on the
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Figure 3. Results in the left column are for uncolonized patients
(U) and colonized patients in isolation (J), and the ones in right
column are for the colonized patients (C). The (D) and (S) in the
legend denote the solution obtained with the deterministic VRE
model and stochastic VRE model, respectively, where the stochas-
tic results are obtained with the SSA (top two panels), the explicit
tau-leaping (middle two panels) and the implicit tau-leaping (bot-
tom two panels).

accuracy of the tau-leaping methods, we plotted the histograms of state solutions
to the stochastic VRE model (8) obtained by explicit and implicit tau-leaping algo-
rithms in comparison to those obtained by the SSA. For the purpose of demonstra-
tion, we present here the results only for the case with N = 370. These histograms
are shown in Figure 4 (where plots in the left column are for the histograms of state
solutions at t = 80 days, while those in the right column are for the histograms of
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state solutions at t = 160 days). They were obtained by simulating 1000 sample
paths of solutions to the stochastic VRE model. We observe from this figure that
the histograms obtained with the explicit tau-leaping algorithm approximately lie
on top of those obtained with the SSA, and the histograms obtained with the im-
plicit tau-leaping algorithm are reasonably close to those obtained with the SSA (a
similar behavior is also observed for the histograms of state solutions at other time
points). This is evidence that the accuracy of results obtained by the tau-leaping
methods are reasonably high.
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Figure 4. Histograms of state solutions to the stochastic VRE
model (8) at t = 80 days (left column) and t = 160 days (right
column), where histograms are obtained by simulating 1000 sample
paths of the solutions to the stochastic VRE model.

We also observe from Figure 3 as well as those figures in Appendix A that the
variation between the sample paths decreases as N increases, and become quite close
to the deterministic solution when N = 37000. This agrees with the expectations
in light of the Kurtz Limit theorem [16, 17].
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3.2. An HIV model. HIV is a retrovirus that targets the CD4+ T-cells in the
immune system. Once the virus has taken control of a sufficiently large proportion
of CD4+ T-cells, an individual is said to have AIDS. There are a wide variety
of mathematical models that have been proposed to describe the various aspects
of in-host HIV infection dynamics (e.g., [1, 2, 5, 6, 10, 21, 23]). The most basic
of these models typically include two or three of the key dynamic compartments:
virus, uninfected target cells, and infected cells. These compartmental depictions
lead to systems of linear or nonlinear ordinary differential equations in terms of
state variables representing the concentrations in each compartment and parameters
describing viral production and clearance, cell infection and death rate, treatment
efficacy, etc.

The stochastic model we use to demonstrate the computational efficiency of the
SSA, and explicit and implicit tau-leaping methods is based on the deterministic
HIV model proposed in [5]. Data fitting results validate this model and verify that
it provides reasonable fits to all the 14 patients studied. Moreover it has impressive
predictive capability when comparing model simulations (with parameters based
on estimation procedures using only half of the longitudinal observations) to the
corresponding full longitudinal data sets.

3.2.1. Deterministic HIV Model. The model in [5] includes eight compartments:
uninfected activated CD4+ T-cells (T1), uninfected resting CD4+ T cells (T2), along
with their corresponding infected states (T ∗1 and T ∗2 ), infectious free virus (VI),
non-infectious free virus (VNI), HIV-specific effector CD8+ T-cells (E1), and HIV-
specific memory CD8+ T-cells (E2), as depicted in the compartmental schematic
of Figure 5. In this model, the unit for all the cell compartments is cells/µl-blood

Figure 5. Solid gray arrows indicate birth/input. PI and RTI
denote protease inhibitors and reverse transcriptase inhibitors, re-
spectively.

and the unit for the virus compartments is RNA copies/ml-plasma 1. In addition,

1This unit is adopted in [5] because the viral load in the provided clinical data is reported as
RNA copies/ml-plasma. It is worth noting that there is no clear standard for reporting the viral
load in the literature and the measurements are usually taken using either plasma, whole blood,

or peripheral blood leukocytes (see [15] for details).
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protease inhibitor (PI, used to prevent viral replication) and reverse transcriptase
inhibitor (RTI, used to block new infection) are the two types of drug used to treat
HIV patients.

For simplicity, we only consider this model in the case without treatment, and will
exclude the non-infectious free virus compartment from the model. In addition, we
convert the unit for the free-virus from RNA copies/ml-plasma to RNA copies/µl-
blood to be consistent with the units of cell compartments, and modify the equation
based on this change. This conversion will make the derivation of the corresponding
stochastic HIV model more direct. With these changes in the model of [5], the state
variables and their corresponding units for the deterministic model that we use
in this paper is reported in Table 4. The corresponding compartmental ordinary

States Unit Description

T1 cells/µl-blood concentration of uninfected activated CD4+ T-cells
T ∗
1 cells/µl-blood concentration of infected activated CD4+ T-cells
T2 cells/µl-blood concentration of uninfected resting CD4+ T-cells
T ∗
2 cells/µl-blood concentration of infected resting CD4+ T-cells
VI RNA copies/µl-blood concentration of infectious free virus
E1 cells/µl-blood concentration of HIV-specific effector CD8+ T-cells
E2 cells/µl-blood concentration of HIV-specific memory CD8+ T-cells

Table 4. Model states for the deterministic HIV model.

differential equation model is given by

Ṫ1 = −dT1T1 − βT1VIT1 − γTT1 + nT

(
aTVI
VI+κV

+ aA

)
T2,

Ṫ ∗1 = βT1VIT1 − δV T ∗1 − δEE1T
∗
1 − γTT ∗1 + nT

(
aTVI
VI+κV

+ aA

)
T ∗2 ,

Ṫ2 = ζT
κs

VI+κs
+ γTT1 − dT2T2 − βT2VIT2 −

(
aTVI
VI+κV

+ aA

)
T2,

Ṫ ∗2 = γTT
∗
1 + βT2VIT2 − dT2T

∗
2 −

(
aTVI
VI+κV

+ aA

)
T ∗2 ,

V̇I = nV δV T
∗
1 − cVI − (βT1T1 + βT2T2)VI ,

Ė1 = ζE +
bE1T

∗
1

T∗
1 +κb1

E1 − dET
∗
1

T∗
1 +κd

E1 − dE1E1 − γE T1+T∗
1

T1+T∗
1 +κγ

E1 + nE
aEVI
VI+κV

E2,

Ė2 = γE
T1+T∗

1

T1+T∗
1 +κγ

E1 + bE2κb2
E2+κb2

E2 − dE2E2 − aEVI
VI+κV

E2,

(12)
with an initial condition vector

(T1(0), T ∗1 (0), T2(0), T ∗2 (0), VI(0), E1(0), E2(0))T .

A summary of the description of all the model parameters in (12) is given in Table
5. Next we present a brief description of model (12), and focus our discussion on the
interactions particularly relevant to the derivation of the corresponding stochastic
HIV model. The interested readers may refer to [5] for more detailed discussion of
the rational behind this model.

The terms dT1T1, dT2T2, dT2T
∗
2 , cVI , dE1E1 +

dET
∗
1

T∗
1 +κd

E1 and dE2E2 denote the

death (or clearance) of uninfected activated CD4+ T cells, uninfected resting CD4+
T cells, infected resting CD4+ T cells, infectious free virus, HIV-specific activated
CD8+ T cells and HIV-specific memory CD8+ T cells, respectively. The term
δEE1T

∗
1 is used to account for the elimination of infected activated CD4+ T cells
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Description Value

dT1 Natural death rate of T1 0.02 per day

βT1 Infection rate of active CD4+ T cells 10−2 µl-blood/(copies· day)

γT
Differentiation rate of activated CD4+ T cells

0.005 per day
to resting CD4+ T cells

nT
Number of daughter cells produced by one

2
proliferating resting CD4+ T cells

aT
Maximum activation rate of HIV-specific

0.008 per day
resting CD4+ T cells

κV Half saturation constant (for activation rate) 0.1 copies/µl-blood

aA
Activation rate of resting CD4+ T cells

10−12 per day
by non-HIV antigen

δV Death rate of T ∗
1 0.7 per day

δE Rate at which E1 eliminates T ∗
1 0.01 µl-blood/(cells · day)

ζT Maximum source rate of T2 7 cells/(µl-blood · day)

κs Saturation constant (for source rate of T2 ) 102 copies/(µl-blood)

dT2 Natural death rate of resting CD4+ T cells 0.005 per day

βT2 Infection rate of resting CD4+ T cells 10−6 µl-blood/(copies · day)

nV
Number of copies of virions produced by one

100
activated infected CD4+ T cells

c Natural clearance rate of VI 13 per day

ζE Source rate of E1 0.001 cells/(µl-blood · day)

bE1 Maximum birth rate of E1 0.328 per day
κb1 Half saturation constant (for birth rate of E1) 0.1 cells/µl-blood

dE
Maximum death rate of E1 due to the impairment

0.25 per day
of high number of infected activated CD4+ T cells

κd Half saturation constant (for death rate of E1) 0.5 cells/µl-blood
dE1 Natural death rate of E1 0.1 per day

aE Maximum activation rate of E2 to E1 0.1 per day

nE
Number of daughter cells produced by one

3
proliferating memory CD8+ T cell

γE Maximum differentiation rate of E1 to E2 0.01 per day

κγ Half saturation constant (for differentiation rate) 10 cells/µl-blood
bE2 Maximum proliferation rate of E2 0.001 per day

κb2 Saturation constant (for proliferation rate of E2) 100 cells/µl-blood

dE2 Natural death rate of E2 0.005 per day

Table 5. Description of model parameters in (12) as well as the
values of parameters used in the simulations.

T ∗1 by the HIV-specific effector CD8+ T cells (that is, T ∗1 is eliminated from the
system at rate δEE1, depending on the density of HIV-specific effector CD8+ T
cells).

The terms involving βT1VIT1 represent the infection process wherein infected
activated CD4+ T cells T ∗1 result from encounters between uninfected activated
CD4+ T cells T1 and free virus VI (that is, the activated CD4+ T cells T1 be-
come infected at a rate βT1VI , depending on the density of infectious virus), and
βT2VIT2 is the resulting term for the infection process wherein infected resting
CD4+ T cells T ∗2 result from encounters between uninfected resting CD4+ T cells
T2 and free virus VI (that is, the resting CD4+ T cells T2 become infected at rate
βT2VI , depending on the density of infectious virus). In addition, for simplicity it
is assumed that one copy of virion is responsible for one new infection. Hence, the



504 BANKS, HU, JOYNER, BROIDO, CANTER, GAYVERT AND LINK

term (βT1T1 + βT2T2)VI in the VI compartment is used to denote the loss of virions
due to infection.

The terms involving γTT1 (resp. γTT
∗
1 ) are included in the model to account for

the phenomenon of differentiation of uninfected (resp. infected) activated CD4+
T-cells into uninfected (resp. infected) resting CD4+ T-cells at rate γT . Similarly,

the term γE
T1+T∗

1

T1+T∗
1 +κγ

E1 is used to describe the phenomenon of differentiation of

HIV-specific activated CD8+ T cells into HIV-specific resting CD8+ T cells.

The terms
(

aTVI
VI+κV

+ aA

)
T2 and

(
aTVI
VI+κV

+ aA

)
T ∗2 represent the activation of

uninfected and infected resting CD4+ T cells, respectively, due to both HIV and
some non-HIV antigen. We assume that each proliferating resting CD4+ T cells
produce nT daughter cells. In addition, the term aEVI

VI+κV
E2 denotes the activation

of HIV-specific memory CD8+ T cells, and each proliferating HIV-specific CD8+
T cells produce nE daughter cells.

The infected activated CD4+ T cell dies at a rate δV , and produce nV copies of
virions during its lifespan (either continuously producing virions during its life or
release all its virions in a single burst simultaneous with its death 2).

The terms ζT
κs

VI+κs
and ζE+

bE1T
∗
1

T∗
1 +κb1

E1 denote the source rates for the uninfected

resting CD4+ T cells and HIV-specific effector CD8+ T cells, respectively. The term
bE2κb2
E2+κb2

E2 is used to account for the self proliferation of E2 (due to the homeostatic

regulation).

3.2.2. The Stochastic HIV Model. In this section, we derive a corresponding sto-
chastic HIV model based on the deterministic model (12). Let ν denote the volume
of blood (in units µl-blood), and the parameter vector κ = (κV , κs, κb1, κd, κγ , κb2)T

where κV , κs, κb1, κd, κγ , κb2 are the saturation constants in model (12). Then we

define k = νκ with k = (kV , ks, kb1, kd, kγ , kb2)T , which will be used in the transi-
tion rates for the stochastic model.

Let {Xν(t), t ≥ 0} be a pure jump Markov process with Xν = (Xν
1 , X

ν
2 , . . . , X

ν
7 )T ,

where the meanings of random variables Xν
i , i = 1, 2, . . . , 7 are stated as follows.

In any small time interval of length ∆t, we assume that there is only one event (or

Variables Description

Xν
1 (t) number of non-infected activated CD4+ T-cells in ν µl-blood at time t

Xν
2 (t) number of infected activated CD4+ T-cells in ν µl-blood at time t

Xν
3 (t) number of non-infected resting CD4+ T-cells in ν µl-blood at time t

Xν
4 (t) number of infected resting CD4+ T-cells in ν µl-blood at time t

Xν
5 (t) number of RNA copies of infectious free virus in ν µl-blood at time t

Xν
6 (t) number of HIV-specific effector CD8+ T-cells in ν µl-blood at time t

Xν
7 (t) number of HIV-specific memory CD8+ T-cells in ν µl-blood at time t

Table 6. State variables for the stochastic HIV model.

reaction) that occurs (e.g., a cell dies, a cell becomes infected, an activated cell is
differentiated into a resting cell, a resting cell becomes activated), and the process
{Xν(t), t ≥ 0} jumps from state xν to xν + vj with probability λj(x

ν)∆t+ o(∆t),

2For HIV infection, it has not yet been established whether a continuous or burst production
model is most appropriate [22].
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that is,

Prob {Xν(t+ ∆t) = xν + vj |Xν(t) = xν} = λj(x
ν)∆t+ o(∆t), j = 1, 2, . . . , l,

(13)
where xν = (xν1 , x

ν
2 , . . . , x

ν
7)T ∈ Z7 , vj ∈ Z7, and λj is the transition rate for the

jth reaction.
In this stochastic model, we assume a burst production for the viral load (that

is, an infected activated CD4+ T cell releases all its virions in a single burst si-
multaneous with its death). Based on this assumption as well as the discussions
in Section 3.2.1, we can obtain the transition rates, which are summarized in the
second column of Table 7. From this table, we see that there are 19 transition rates

Reactions λj(x
ν) vj

Death of uninfected activated CD4+ T cells dT1x
ν
1 −e1

Elimination of infected activated CD4+ T cells
δE

xν6
ν
xν2 −e2by HIV-specific effector CD8+ T cells

Death of uninfected resting CD4+ T cells dT2x
ν
3 −e3

Death of infected resting CD4+ T cells dT2x
ν
4 −e4

Natural clearance of virus cxν5 −e5

Death of HIV-specific effector CD8+ T cells

(
dE1 + dE

xν2
xν2 + kd

)
xν6 −e6

Death of HIV-specific memory CD8+ T cells dE2x
ν
7 −e7

Infection of activated CD4+ T cells βT1
xν5
ν
xν1 −e1 + e2 − e5

Infection of resting CD4+ T cells βT2
xν5
ν
xν3 −e3 + e4 − e5

Differentiation from uninfected activated CD4+
γT x

ν
1 −e1 + e3T cells to uninfected resting CD4+ T cells

Differentiation from infected activated CD4+
γT x

ν
2 −e2 + e4T cells to infected resting CD4+ T cells

Differentiation from HIV-specific effector CD8+
γE

xν1 + xν2
xν1 + xν2 + kγ

xν6 −e6 + e7T cells to HIV-specific memory CD8+ T cells

Activation of uninfected resting CD4+ T cells

(
aT

xν5
xν5 + kV

+ aA

)
xν3 nT e1 − e3

Activation of infected resting CD4+ T cells

(
aT

xν5
xν5 + kV

+ aA

)
xν4 nT e2 − e4

Activation of HIV-specific memory CD8+ T cells aE
xν5

xν5 + kV
xν7 nEe6 − e7

Production of new virions simultaneous with
δV x

ν
2 −e2 + nV e5the death of infected activated CD4+ T cells

Birth of uninfected resting CD4+ T cells

(
ζT

ks

xν5 + ks

)
ν e3

Birth of HIV-specific effector CD8+ T cells νζE + bE1
xν2

xν2 + kb1
xν6 e6

Proliferation of HIV-specific memory
bE2

kb2

xν7 + kb2
xν7 e7CD8+ T cells

Table 7. Transition rates λj(x
ν) as well as the corresponding

state changes vj for the stochastic HIV model (13).

(i.e., l = 19), and the corresponding states changes vj are listed the third column
of this table.
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3.2.3. Numerical Results. In this section, numerical results were obtained by apply-
ing the SSA, explicit tau-leaping and implicit tau-leaping methods to the stochastic
HIV model (13) with transition rates given in Table 7. We compare the compu-
tational times of the SSA, explicit and implicit tau-leaping methods with different
values of ν (the scale on the transition rates which effectively scales the population
counts). Each of the simulations were run for the time period [0, 100] days with
parameter values given in the third column of Table 5 (adapted from Table 2 in [5])
and initial conditions

Xν(0) = ν(5, 1, 1400, 1, 10, 5, 1)T . (14)

That is, each of the simulations start with the same initial concentrations given by
(5, 1, 1400, 1, 10, 5, 1)T .

To implement the tau-leaping methods, we need to find gi, i = 1, 2, . . . , 7. From
Table 7 we see that all the reactions are either zero order, or first order or second
order. However, a lot of them have transition rates with non-constant coefficients
(λ6, λ12, λ13, λ14, λ15, λ17, λ18, λ19). For these reactions, gi is not just one or
two. Here we will take reaction six as an example to illustrate this. Let ∆λi(x

ν) =
λi(x

ν + ∆xν)− λi(xν) with ∆xν being the absolute changes in the state variables,
i = 1, 2, . . . , 19. Note that

∆λ6(xν) = dE1∆xν6 + dE

[
(xν2 + ∆xv2)(xν6 + ∆xv6)

xν2 + ∆xv2 + kd
− xν2x

ν
6

xν2 + kd

]

= dE1∆xν6 + dE
[xν2∆xν6 + xν6∆xν2 + (∆xν2)(∆xν6)](xν2 + kd)− xν2xν6∆xv2

(xν2 + ∆xv2 + kd)(xν2 + kd)

= dE1∆xν6 + dE
xν2(xν2 + kd)∆x

ν
6 + kdx

ν
6∆xν2 + (xν2 + kd)∆x

ν
2∆xν6

(xν2 + ∆xv2 + kd)(xν2 + kd)
,

which implies that

∆λ6(xν)

λ6(xν)
=

dE1∆xν6

dE1xν6 + dE
xν2x

ν
6

xν2+kd

+
dE

xν2 (xν2+kd)∆xν6+kdx
ν
6∆xν2+(xν2+kd)∆xν2∆xν6

(xν2+∆xv2+kd)(xν2+kd)

dE1xν6 + dE
xν2x

ν
6

xν2+kd

.

Thus, by the above equation as well as the non-negativeness of the state variables
and the positiveness of the parameters we have

|∆λ6(xν)|
λ6(xν)

<
|∆xν6 |
xν6

+

∣∣∣∣xν2(xν2 + kd)∆x
ν
6 + kdx

ν
6∆xν2 + (xν2 + kd)∆x

ν
2∆xν6

(xν2 + ∆xv2 + kd)xν2x
ν
6

∣∣∣∣
≤ |∆xν6 |

xν6
+

xν2 + kd
|xν2 + ∆xv2 + kd|

|∆xν6 |
xν6

+
kd

|xν2 + ∆xv2 + kd|
|∆xν2 |
xν2

+
xν2 + kd

|xν2 + ∆xv2 + kd|
|∆xν2 |
xν2

|∆xν6 |
xν6

.

(15)

If the value of ε is set to be ε <
1

2
, we find |∆xνi | ≤ εixνi ≤

1

2
(xνi +kd), which implies

that

xν2 + kd
|xν2 + ∆xv2 + kd|

≤ 1

2
,

kd
|xν2 + ∆xv2 + kd|

≤ 1.
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Hence, by (3.2.3) and the above inequality we obtain

|∆λ6(xν)|
λ6(xν)

< 3
|∆xν6 |
xν6

+
|∆xν2 |
xν2

+ 2
|∆xν2 |
xν2

|∆xν6 |
xν6

.

Thus, from the above inequality we see that if we choose

|∆xν6 | ≤
ε

4
xν6 , |∆xν2 | ≤

ε

4
xν2 , (16)

then the relative change in λ6 is bounded by ε (to the first order approximation).
Similarly to have the relative changes in the other transition rates with non-constant
coefficient to be bounded by ε (either exactly or to the first order approximation),
we need to set

Reaction 12: |∆xν6 | ≤
ε

3
xν6 , |∆xν1 | ≤

ε

3
xν1 , |∆xν2 | ≤

ε

3
xν2 ,

Reaction 13: |∆xν3 | ≤
ε

4
xν3 , |∆xν5 | ≤

ε

4
xν5 ,

Reaction 14: |∆xν4 | ≤
ε

4
xν4 , |∆xν5 | ≤

ε

4
xν5 ,

Reaction 15: |∆xν7 | ≤
ε

3
xν7 , |∆xν5 | ≤

ε

3
xν5 ,

Reaction 17: |∆xν5 | ≤
ε

2
xν5 ,

Reaction 18: |∆xν2 | ≤
ε

3
xν2 , |∆xν6 | ≤

ε

3
xν6

Reaction 19: |∆xν7 | ≤
ε

2
xν7 .

(17)

For those transition rates with constant coefficient, we can easily see that to have
them be bounded by ε (to the first order approximation) we need to set the relative

changes in the state variables to be bounded by either
1

2
ε (to those second order

reaction) or ε (to those first order reaction). Thus, by (16) and (17) we know that
to have |∆λi| ≤ ελi for all i = 1, 2, . . . , 19, we need to set

gi =

{
4, i = 2, 3, 4, 5, 6

3, i = 1, 7.

For the implicit tau-leaping method, ε was taken as 0.12 (to allow a larger time
stepsize). This value is chosen based on the simulation results so that the com-
putational time is comparatively short without compromising the accuracy of the
solution.

Figure 6 depicts the computational time of each algorithm for an average of
five typical simulation runs with ν varying from 10, 50, 102, 2× 102, 5× 102, 103 for
the SSA and 10, 50, 102, 2 × 102, 5 × 102, 103, 104, 105, 106, 5 × 106 for the explicit
and implicit tau-leaping schemes. From this figure, we see that the computational
times for the SSA increase as the value ν increases. This is again expected as the
mean time stepsize for the SSA is the inverse of the sum of all transition rates,
which increases as ν increases (roughly proportional to ν, as can be seen from the
transition rates illustrated in Table 7). In addition, even with ν = 103, it took the
SSA more than 8000 seconds for one sample path (which is why we did not run any
simulations for the SSA when ν is greater than 103). Hence, it is impractical to
implement the SSA if we want to run this HIV model for a normal person (generally
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Figure 6. Comparison of computational times of different algo-
rithms (SSA, Explicit Tau-Leaping and Implicit Tau-Leaping) for
an average of five typical simulation runs.

having approximately 5× 106 µl-blood). This is expected due to the large value of
uninfected resting CD4+ T cells (as can be seen from the initial condition (14)).

From Figure 6 we also see that the computational times for the explicit tau-
leaping method increase as the value ν increases from 10 to 50, and decrease as
ν increases to 100. Then its computational times decrease dramatically as the
value of ν increases from 100 to 104, and stabilizes somewhat for ν ≥ 104. This
is due in some way to the formula for τ1. As we can see from (3) and transition
rates in Table 7 that if εxi/gi > 1 then the first term inside the minimum sign of
(3) is roughly in the same order for all the values of ν while the second term is
roughly proportional to the value of ν. In addition, we found from the simulation
results that the first term inside the minimum sign of (3) is much larger than the
corresponding second term until ν = 104, and becomes smaller than the second term
when ν ≥ 104. Hence, τ1 increases as ν increases when ν ≤ 104 and has roughly
similar values for all the cases when ν ≥ 104, which agrees with the observation
that the computational times decrease dramatically as the value of ν increases from
100 to 104, and stabilizes there for ν ≥ 104. The increase of computational times
as ν increases from 10 to 50 is because τ1 is so small that a large number of SSA
steps are implemented instead of tau-leaping.

We also observe from Figure 6 that the computational times for the implicit tau-
leaping method decrease as ν increases when ν ≤ 104 and then stabilizes there for
ν ≥ 104. This is for the same reason as that for the explicit tau-leaping method.
In addition, we see that the computational times for the implicit tau-leaping is
significantly higher than those of the SSA and the explicit tau-leaping at ν = 10,
which is because under this case the implicit tau-leaping is implemented many times
(solving systems of nonlinear equations in each implicit tau-leaping step is costly)
and the time stepsize is not significantly larger than those of the other two methods.

Based on the above discussions, we know that for smaller values of ν (less than
100) the SSA is the choice due to its simplicity, accuracy and efficiency. However,
for larger values the tau-leaping methods are definitely the choice with implicit
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tau-leaping performing better than explicit tau-leaping; this is expected due to
the stiffness of the system (large variations in both parameter values and state
variables).

To have some idea on the dynamics of each state variable, we plotted five typical
sample paths of solution to stochastic HIV model (13) (in terms of concentrations,
i.e., Xν(t)/ν) obtained by each stochastic algorithm in comparison to the solution
for the deterministic HIV model (12). Figures 7-8 depict the results obtained with
ν = 10 µl-blood, where the results in Figure 7 are for CD4+ T cells, and the ones
in Figure 8 are for the infectious virus and CD8+ T cells. The right column of
Figure 7 reveals that all the sample paths for the uninfected resting CD4+ T cells
(T2) are similar to their corresponding deterministic solutions, which is expected as
the value of the uninfected resting CD4+ T cells is so large that its dynamics can be
well approximated by the ordinary differential equation. While all the other state
variables oscillate around their corresponding deterministic solution (as can be seen
from these two figures), and the variations of the sample paths for the infectious
virus (VI) and CD8+ T cells (E1 and E2) are especially large. This is expected as
T2 has less effect on the dynamics of these three compartments (especially on E1

and E2, as observed from (12) and the parameter values in Table 5).
In addition, Figures 7 and 8 reveal that the sample paths obtained by the SSA

and the tau-leaping methods exhibit similar variation, which suggests that tau-
leaping methods have reasonably high accuracy. The results obtained by all three
algorithms with ν = 100, 1000 µl-blood are given in Appendices B.1 and B.2, and the
results obtained by the tau-leaping methods with ν = 104, 105 and 5×106 are given
in Appendices B.3-B.5. From the figures in Appendices B.1 and B.2 we observe that
the sample paths obtained by all three algorithms exhibit similar variation, and the
variation between the sample paths decreases as ν increases. The same conclusion
can be obtained from the figures in Appendices B.3-B.5. To gain further information
on the accuracy of the tau-leaping methods, we plotted the histograms of state
solutions to the stochastic HIV model (13) (in terms of concentration) obtained by
explicit and implicit tau-leaping methods in comparison to those obtained by the
SSA. Due to long computational times to obtain these histograms, we present here
the results only for the case with ν = 200 µl-blood (where computational times
required by both tau-leaping methods are significantly lower than those required
by the SSA, as can be seen from Figure 6). These histograms are shown in Figures
9 and 10; they are obtained by simulating 1000 sample paths of solutions to the
stochastic HIV model. The plots in Figure 9 are for histograms of state solutions
at t = 50 days, and those in Figure 10 are for histograms of state solutions at
t = 100 days. We observe from these two figures that the histograms obtained by
tau-leaping methods are reasonably close to those obtained by the SSA (similar
behavior is also observed for the histograms of state solutions at other time points).
This suggests that the accuracy of results obtained by tau-leaping methods are
acceptable (recall that results obtained by the SSA are exact, so the differences
between histograms obtained by the SSA and the ones obtained by tau-leaping
methods provide a measure of simulation errors in tau-leaping methods when the
number of simulation runs is sufficiently large).

We also observe from the figures in Appendix B.5 that the stochastic solutions
agree with the deterministic solutions when ν = 5×106 µl-blood. This suggests that
ordinary differential equations can be used to approximate the dynamics of HIV for
this particular problem (with the given parameter values and initial conditions).
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Figure 7. Results for uninfected and infected activated CD4+ T
cells (left column), and uninfected and infected resting CD4+ T
cells (right column). The (D) and (S) in the legend denote the so-
lution obtained by the deterministic HIV model and the stochastic
HIV model, respectively, where the stochastic results are obtained
by the SSA (top two panels), the explicit tau-leaping (middle two
panels) and the implicit tau-leaping (bottom two panels).

4. Concluding remarks. In this paper we present a detailed discussion on how
to apply the tau-leaping methods to two stochastic infection models with different
levels of complexity, and compared their computational efficiency along with that
of the SSA. One of these models is an existing stochastic model used for describing
the dynamics of VRE infection in a hospital unit. The other model is derived in this
paper based on an existing deterministic model used for describing the dynamics of
HIV infection within a host.
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Figure 8. Results for infectious virus (left column), and HIV-
specific CD8+ T cells (right column). The (D) and (S) in the legend
denote the solutions obtained by the deterministic HIV model and
the stochastic HIV model, respectively, where the stochastic results
are obtained by the SSA (top two panels), the explicit tau-leaping
(middle two panels) and the implicit tau-leaping (bottom two pan-
els).

Even though tau-leaping methods have now been widely used in biochemistry
literature, to our knowledge, tau-leaping methods have not been applied to com-
plex nonlinear dynamical infectious disease models such as the HIV model that we
presented in this paper (with transition rates being complicated nonlinear functions
of state variables rather than some simple polynomial functions). We do note that
the computational performance of these three methods vary from model to model
(as we demonstrated in this paper), which suggests that for a given model of interest
one might need to perform some initial simulation studies to select an appropriate
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Figure 9. Histograms of state solutions to the stochastic HIV
model (13) (in terms of concentrations) with ν = 200 µl-blood at
t = 50 days, where histograms are obtained by simulating 1000
sample paths of solutions to the stochastic HIV model.
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Figure 10. Histograms of state solutions to the stochastic HIV
model (13) (in terms of concentrations) with ν = 200 µl-blood at
t = 100 days, where histograms are obtained by simulating 1000
sample paths of solutions to the stochastic HIV model.
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algorithm (for example among those we propose in this paper). However, the step-
by-step implementation recipe demonstrated in this paper for these algorithms can
be applied to a wide range of other complex biological models, specifically those in
infectious disease progression and epidemics.

Simulation results reveal that for both models the computational times of the
SSA increase as the sample size (number of beds N in the VRE model and volume
of blood ν in the HIV model) increases. This is because the mean time stepsize
for the SSA is the inverse of the sum of transition rates, which increases as the
sample size increases. In addition, the results suggest all three algorithms have
comparable computational times for the VRE model because of the low number of
species and small number of transitions, and the SSA is the best choice for this
problem due to its simplicity and accuracy. For the HIV model both tau-leaping
methods have significantly lower computational costs than those of the SSA except
when the sample size ν is very small (e.g., less than 100 µl-blood). In addition,
the implicit tau-leaping method has lower computational costs than the explicit
tau-leaping method when the sample size is sufficiently large (due to the stiffness
of the system).

Note that the stochastic HIV model in this paper is of interest in early or acute
infection where the number of uninfected resting T cells is large (on the order
of 1000 cells per µl-blood). This explains why the SSA requires more than 8000
seconds to run even one sample path with ν = 1000 µl-blood. If one considers an
average person having 5 × 106 µl-blood, to run the SSA for even one sample path
is impractical at this scale. The numerical results demonstrate the dynamics of
uninfected resting CD4+ T cells can be well approximated by ordinary differential
equations even with ν = 10 µl-blood. In addition, Table 5 demonstrates there is a
large variation between the values of the parameters. Thus, the HIV model in this
paper is multi-scaled in both states and time. There are some hybrid simulation
methods (also referred to as multi-scale approaches) specifically designed for the
multi-scaled system (the interested readers may refer to [20] for an overview of these
methods). The basic idea of the hybrid methods is to partition the system into two
subsystems, one containing fast reactions and the other containing slow reactions.
Then the two subsystems are simulated iteratively by using numerical integration of
ordinary differential equations (or stochastic differential equations) and stochastic
algorithms (such as the SSA), respectively. Although these algorithms are very
attractive, they are most challenging to implement and require a great deal of
user intervention. Future efforts to study the transition from initial HIV infection
(with small numbers of viral particles and large numbers of target cells) to chronic
infection (with large numbers in all subpopulations so that continuum models with
ordinary differential equations are appropriate) will require such a multi-scale state
algorithmic approach.
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Appendix A. Simulation results for VRE model.

A.1. Results for N = 370. The results for VRE model obtained with N = 370 are
shown in Figure 11, where five typical sample paths of each state of the stochastic
VRE model (8) obtained by each stochastic algorithm are plotted in comparison to
the solution for the deterministic VRE model (9).

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

t (days)

N
um

be
r 

of
 p

at
ie

nt
s

SSA (N=370)

 

 

U (D)

U (S)

J (D)

J (S)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

t (days)
N

um
be

r 
of

 p
at

ie
nt

s

SSA (N=370)

 

 
C (D)
C (S)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

t (days)

N
um

be
r 

of
 p

at
ie

nt
s

Explicit Tau−Leaping (N=370)

 

 

U (D)

U (S)

J (D)

J (S)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

t (days)

N
um

be
r 

of
 p

at
ie

nt
s

Explicit Tau−Leaping (N=370)

 

 
C (D)
C (S)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

t (days)

N
um

be
r 

of
 p

at
ie

nt
s

Implicit Tau−Leaping (N=370)

 

 

U (D)

U (S)

J (D)

J (S)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

t (days)

N
um

be
r 

of
 p

at
ie

nt
s

Implicit Tau−Leaping (N=370)

 

 
C (D)
C (S)

Figure 11. Results in the left column are for uncolonized patients
(U) and colonized patients in isolation (J), and the ones in right
column are for the colonized patients (C). The (D) and (S) in the
legend denote the solution obtained by deterministic VRE model
and stochastic VRE model, respectively, where stochastic results
are obtained by SSA (top two panels), explicit tau-leaping (middle
two panels) and implicit tau-leaping (bottom two panels).
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A.2. Results for N = 3700. The results for VRE model obtained with N = 3700
are shown in Figure 12, where five typical sample paths of each state of the stochastic
VRE model (8) obtained by each stochastic algorithm are plotted in comparison to
the solution for the deterministic VRE model (9).
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Figure 12. Results in the left column are for uncolonized patients
(U) and colonized patients in isolation (J), and the ones in right
column are for the colonized patients (C). The (D) and (S) in the
legend denote the solution obtained by deterministic VRE model
and stochastic VRE model, respectively, where stochastic results
are obtained by SSA (top two panels), explicit tau-leaping (middle
two panels) and implicit tau-leaping (bottom two panels).
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A.3. Results for N = 37000. The results for VRE model obtained with N =
37000 are shown in Figure 13, where five typical sample paths of each state of
the stochastic VRE model (8) obtained by each stochastic algorithm are plotted in
comparison to the solution for the deterministic VRE model (9).
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Figure 13. Results in the left column are for uncolonized patients
(U) and colonized patients in isolation (J), and the ones in right
column are for the colonized patients (C). The (D) and (S) in the
legend denote the solution obtained by deterministic VRE model
and stochastic VRE model, respectively, where stochastic results
are obtained by SSA (top two panels), explicit tau-leaping (middle
two panels) and implicit tau-leaping (bottom two panels).
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Appendix B. Simulation results for HIV model.

B.1. Results for ν = 102. The results obtained with ν = 102 µl-blood are shown
in Figures 14 and 15, where five typical sample paths of solution to stochastic HIV
model (13) (in terms of concentrations) obtained by each stochastic algorithm are
plotted in comparison to the solution for the deterministic HIV model (12).
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Figure 14. Results for uninfected and infected activated CD4+
T cells (left column), and uninfected and infected resting CD4+
T cells (right column). The (D) and (S) in the legend denote the
solution obtained by deterministic HIV model and stochastic HIV
model, respectively, where stochastic results are obtained by SSA
(top two panels), explicit tau-leaping (middle two panels) and im-
plicit tau-leaping (bottom two panels).
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Figure 15. Results for infectious virus (left column), and HIV-
specific CD8+ T cells (right column). The (D) and (S) in the
legend denote the solution obtained by deterministic HIV model
and stochastic HIV model, respectively, where stochastic results
are obtained by SSA (top two panels), explicit tau-leaping (middle
two panels) and implicit tau-leaping (bottom two panels).
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B.2. Results for ν = 103. The results obtained with ν = 103 µl-blood are shown
in Figures 16 and 17, where five typical sample paths of solution to stochastic HIV
model (13) (in terms of concentrations) obtained by each stochastic algorithm are
plotted in comparison to the solution for the deterministic HIV model (12).
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Figure 16. Results for uninfected and infected activated CD4+
T cells (left column), and uninfected and infected resting CD4+
T cells (right column). The (D) and (S) in the legend denote the
solution obtained by deterministic HIV model and stochastic HIV
model, respectively, where stochastic results are obtained by SSA
(top two panels), explicit tau-leaping (middle two panels) and im-
plicit tau-leaping (bottom two panels).
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Figure 17. Results for infectious virus (left column), and HIV-
specific CD8+ T cells (right column). The (D) and (S) in the
legend denote the solution obtained by deterministic HIV model
and stochastic HIV model, respectively, where stochastic results
are obtained by SSA (top two panels), explicit tau-leaping (middle
two panels) and implicit tau-leaping (bottom two panels).
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B.3. Results for ν = 104. The results obtained with ν = 104 µl-blood are shown
in Figure 18, where five typical sample paths of solution to stochastic HIV model
(13) (in terms of concentrations) obtained by tau-leaping methods are plotted in
comparison to the solution for the deterministic HIV model (12).
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Figure 18. The (D) and (S) in the legend denote the solution
obtained by deterministic HIV model and stochastic HIV model,
respectively, where stochastic results are obtained by explicit tau-
leaping (left column), and implicit tau-leaping (right column).
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B.4. Results for ν = 105. The results obtained with ν = 105 µl-blood are shown
in Figure 19, where five typical sample paths of solution to stochastic HIV model
(13) (in terms of concentrations) obtained by tau-leaping methods are plotted in
comparison to the solution for the deterministic HIV model (12).
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Figure 19. The (D) and (S) in the legend denote the solution
obtained by deterministic HIV model and stochastic HIV model,
respectively, where stochastic results are obtained by explicit tau-
leaping (left column), and implicit tau-leaping (right column).
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B.5. Results for ν = 5 × 106. The results obtained with ν = 5 × 106 µl-blood
are shown in Figure 20, where five typical sample paths of solution to stochastic
HIV model (13) (in terms of concentrations) obtained by tau-leaping methods are
plotted in comparison to the solution for the deterministic HIV model (12).
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Figure 20. The (D) and (S) in the legend denote the solution
obtained by deterministic HIV model and stochastic HIV model,
respectively, where stochastic results are obtained by explicit tau-
leaping (left column), and implicit tau-leaping (right column).
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