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Abstract. The presence of a pathogen among multiple competing species has
important ecological implications. For example, a pathogen may change the

competitive outcome, resulting in replacement of a native species by a non-

native species. Alternately, if a pathogen becomes established, there may be a
drastic reduction in species numbers. Stochastic variability in the birth, death

and pathogen transmission processes plays an important role in determining

the success of species or pathogen invasion. We investigate these phenomena
while studying the dynamics of deterministic and stochastic models for n com-

peting species with a shared pathogen. The deterministic model is a system of

ordinary differential equations for n competing species in which a single shared
pathogen is transmitted among the n species. There is no immunity from in-

fection, individuals either die or recover and become immediately susceptible,
an SIS disease model. Analytical results about pathogen persistence or ex-

tinction are summarized for the deterministic model for two and three species

and new results about stability of the infection-free state and invasion by one
species of a system of n − 1 species are obtained. New stochastic models are

derived in the form of continuous-time Markov chains and stochastic differ-

ential equations. Branching process theory is applied to the continuous-time
Markov chain model to estimate probabilities for pathogen extinction or species
invasion. Finally, numerical simulations are conducted to explore the effect of

disease on two-species competition, to illustrate some of the analytical results
and to highlight some of the differences in the stochastic and deterministic

models.

1. Introduction. Interspecific interactions between multiple species and their re-
lation to species coexistence has long been an important issue in ecology [28]. The
interactions of hosts with their parasites or pathogens are also important to species
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coexistence [26, 28], and to the emergence of novel infectious diseases [13]. Mathe-
matical models aid in understanding how these different interactions, such as com-
petition, predation and mutualism, affect individual species or the entire system
and how a pathogen affects these interactions.

The interaction between competition and disease has received a lot of attention
in the context of non-spatial deterministic models of two competing hosts with a
shared pathogen spread directly either by density-dependent (mass action) [39] or
by frequency-dependent (standard) disease incidence [12, 24, 28, 37]. In particular,
an important question in this context is: can the presence of disease reverse the
outcome of competition, leading to invasion of native species by exotic, non-native
species? Some examples of hosts and pathogens where this behavior has been ob-
served include the red and grey squirrel populations and the pathogen Parapoxvirus
in the United Kingdom [51], larval amphibians and a pathogenic water mold Sapro-
legnia ferax [33] and annual and perennial grass species in western California and the
Barley/Cereal yellow dwarf suite of viruses [11, 44]. These example systems suggest
the ability of pathogens and disease to change the outcome of direct competition,
or to change the outcome of species interactions by parasite-mediated competition
(apparent competition) [18, 22, 30, 46, 50].

The interaction between competition and disease in the stochastic setting has
received much less attention. Models based on stochastic differential equations have
been formulated for multiple hosts and pathogens but with no assumptions about
interspecific interactions (e.g., [5, 41, 42]). There is also a collection of work that has
examined competition and coexistence or host-pathogen coexistence in stochastic
models such as interacting particle systems (spatial and non-spatial) [15, 16, 17, 35,
36, 45]). The models in [17, 35, 36] consider disease by including parameters such
as the degree of specificity of the pathogens and the effect of the pathogens on the
fecundity and mortality of their hosts. Competition for space is included in these
models through an additional component: a spatial structure that takes the form of
a connected graph. The models that we consider in this paper are non-spatial and
include parameters which measure the strength of the competition between species.

In this investigation, we formulate new stochastic models based on continuous-
time Markov chains (CTMCs) and stochastic differential equations (SDEs) for
n competing species with a shared pathogen and consider important questions
about species or pathogen invasion and species coexistence. The stochastic models
are based on an underlying deterministic system of ordinary differential equations
(ODEs) for n competing species with a single shared pathogen. There is no immu-
nity from infection, individuals either die or recover. If they recover, they become
immediately susceptible again, referred to as an SIS disease model. Both density-
dependent and frequency-dependent incidence rates are considered as well as birth
and death rates that have an explicit competitive regulation. Analytical results
about pathogen persistence or extinction are summarized for the ODE model for
two and three species. New results for the ODE model regarding stability of the
infection-free state in terms of the basic reproduction number, and invasion by one
species of a system of n−1 species are obtained. Branching process theory is applied
to the CTMC model to estimate probabilities for successful pathogen or species inva-
sion when the basic reproduction number is greater than unity. Numerical examples
are presented, with sample paths from the CTMC and SDE models compared to
solutions of the ODE model, to illustrate three distinct cases. In two cases, the
probability of an outbreak is computed (successful pathogen invasion) when the
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two-species competitive (infection-free) equilibrium becomes unstable after the in-
troduction of disease. In case 1, the disease introduction results in extinction of
one of the species and in case 2, a new two-species infected coexistence equilib-
rium is established with reduced population densities. In case 3, a single stable
host-pathogen system is invaded and replaced by a new host-pathogen system.

2. ODE model. We consider a general Susceptible (S)-Infected (I) model of n
competing species where all species share a single pathogen that is directly trans-
mitted among the n species. The system of ODEs consists of 2n equations, n
equations for Si, the population density of healthy and susceptible individuals and
n equations for Ii, the population density of infected and infectious individuals,
i = 1, 2, . . . , n:

dSi
dt

= biNi

1−
n∑
j=1

aij
Nj
θij

− diSi
1 +

n∑
j=1

(1− aij)
Nj
ψij

 (1)

− Si
n∑
j=1

αij(Nj)
Ij
Nj

+ γiIi,

dIi
dt

= Si

n∑
j=1

αij(Nj)
Ij
Nj
− γiIi − diIi

1 +

n∑
j=1

(1− aij)
Nj
ψij

− δiIi, (2)

dNi
dt

= riNi

1−
n∑
j=1

Nj
Kij

− δiIi, (3)

where Ni = Si + Ii is the total population density of species i. Initial conditions
are non-negative, Si(0) ≥ 0, Ii(0) ≥ 0, i = 1, . . . , n but not all zero. All parameters
are strictly positive with the exception that 0 ≤ aij ≤ 1, δi ≥ 0 and γi ≥ 0. The
competitive interactions are of Lotka-Volterra form.

In model (1)-(3), it is assumed that increased densities through intraspecific
crowding and interspecific competition have a negative impact on reproduction and
survival. In particular, the birth rate can be reduced,

biNi

1−
n∑
j=1

aij
Nj
θij

 , (4)

whereas the death rate can be increased,

diNi

1 +

n∑
j=1

(1− aij)
Nj
ψij

 , (5)

when population densities Nj , j = 1, . . . , n, increase. The parameters 0 ≤ aij ≤ 1
subdivide the density-dependent effects into those affecting births (aij) and those
affecting deaths (1 − aij). The intrinsic per capita growth rate for each species i
is defined as ri = bi − di > 0. The parameters θij = (biKij)/ri, ψij = (diKij)/ri
are susceptibilities to crowding, with Kii the carrying capacity of species i (in the
absence of competition and pathogen effects) and Kij = Kii/cij , i 6= j, where cij are
the competition coefficients. The quantity 1/Kij can be defined as the inhibition
strength of species j on species i [49].
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The coefficients αii(Ni) are pathogen transmission rates within species i and
αij(Nj), i 6= j are the transmission rates between different species, i and j. These
transmission rates are either constant, αij(Nj) = βij , which results in incidence
rates that are frequency-dependent

βijSi
Ij
Nj

,

or proportional to the population density, αij(Nj) = βijNj , resulting in density-
dependent incidence rates,

βijSiIj ,

[39]. We assume there is no vertical transmission and that the disease does not im-
pact reproduction, although the disease may shorten the life span of those infected,
via the parameter δi = disease-related mortality rate. The disease does not confer
immunity, so that individuals may recover and become infected again, where γi is
the rate of recovery of infected individuals. For each species i, the model is of SIS
type.

It is straightforward to show that solutions are non-negative and bounded. Bound-
edness follows from the non-negativity and from the fact that

dNi
dt
≤ riNi

(
1− Ni

Kii

)
.

The birth rate (4) must also be non-negative which requires1−
n∑
j=1

aij
Nj
θij

 ≥ 0. (6)

We assume that parameters aij/θij are chosen sufficiently small and the initial
conditions restricted so that solutions (N1, . . . , Nn) lie in a bounded region Ω ⊂ Rn+,
where (6) holds.

The inclusion of density-dependent effects in both births and deaths, equations
(4) and (5), in the competition model (1)-(3) has been studied in special cases for
n = 2 or 3 species [10, 12, 20, 24, 37, 49, 51, 53]. In the next section, we summarize
some of the known results for model (1)-(3) in these two cases. Then we present
some new results for the n-species case.

2.1. Summary of results for n = 2, 3. Bowers and Turner [12] studied model (1)-
(3) with density-independent death rates, aij = 1, and density-dependent incidence.
Their emphasis was on understanding how forces of competition and infection com-
bine to determine the long-term equilibrium structure of the system. Their conclu-
sion was that these forces do not add linearly, but there is an additional positive
factor which is a combination of the two forces that indicates resistance to invasion.
They also distinguish different ways in which infected coexistence is possible. In
particular, two hosts that would not coexist stably in the absence of disease, do
so through pathogen-mediated host coexistence when there is strong intraspecific
infection and/or weak interspecific infection. Manore [37] studied this case in more
detail using persistence theory, and showed that the persistence of the system of
two species is determined by a few key ecologically relevant parameters including
the basic reproduction numbers, parameters that measure the relative magnitudes
of interspecific and intraspecific competition, and parameters related to invasion
criteria.
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Saenz and Hethcote [49] studied two-species models with frequency-dependent
incidence for two cases (1) aij = 1, density-independent death rates, and (2) aij = 0,
density-independent birth rates but with a reduction in the birth rate of infectives.
In case (2), the classic endemic model behavior is seen; a modified reproduction
number determines the asymptotic behavior, either the disease dies out if the basic
reproduction number R0 < 1 or approaches a globally attractive endemic equilib-
rium if R0 > 1. The four competitive outcomes (species 1 wins; species 2 wins;
stable coexistence; winner depends on initial conditions) are possible. However,
there is also an additional outcome in which the disease may drive one or both
host populations to extinction due to disease-related deaths and/or disease-reduced
reproduction. This latter outcome does not occur with density-dependent incidence
rates [12, 24, 37]. Case (1) was studied in more detail by Manore [37], who proved
existence of a unique endemic equilibrium and showed for the case δi = 0, i = 1, 2
that the endemic equilibrium is globally asymptotically stable if R0 > 1, and the
disease-free equilibrium is globally asymptotically stable if R0 < 1.

Han and Pugliese [24] analyzed model (1)-(3) with density-dependent incidence
in the case 0 ≤ aii ≤ 1, aij = 0, i 6= j. Their model has explicit competition in
the death rate and self-regulation in the birth rate. Applying persistence theory
the authors came to three conclusions: (1) a species i that becomes extinct in the
absence of disease, may weakly persist in the presence of disease; that is, there
exists ε > 0 such that

lim sup
t→∞

Ni(t) > ε,

(2) a species that would coexist with its’ competitor without infection, may be
driven to extinction with infection, and (3) an infection that would die out may
strongly persist in both species if cross-species transmission is present,

lim inf
t→∞

min{I1(t), I2(t)} > ε.

Hopf bifurcation theory and numerical investigations revealed complicated model
behavior. In particular, periodic solutions may exist, dependent on the form of
the disease incidence rate. Periodic solutions were also shown by Greenman and
Hudson [20] and van den Driessche and Zeeman [53] for some special cases with two
hosts and density-dependent incidence rates. With frequency-dependent incidence
rates in the models of Saenz and Hethcote [49], no periodic solutions were observed.

Finally, Bokil and Leung [10] considered a simplified three-species model with
density-dependent incidence and density-independent deaths, aij = 1. The species
have the same birth and death rates, except that interspecific competition is asym-
metric and the intraspecific and interspecific disease transmission rates are the same
(as in the red, grey squirrel system considered in [51]). There are no disease-related
deaths or recovery. For this simplified model, equilibrium analysis is tractable, and
it is shown that the presence of disease does not reverse the competitive outcome.
A similar result was shown in [37] for a two-species model with either density-
dependent or frequency-dependent incidence.

Other types of models with competition and a shared pathogen for two species
have been considered, including SIRS models, models with disease affecting only one
species and models when there is no explicit competition among the species (see
e.g., [6, 9, 23, 29, 40, 42, 49, 53, 54]). We do not consider these types of models.
In our models, disease impacts all species and there is explicit competition between
species.
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2.2. Analytical results, n ≥ 2. We consider two cases: pathogen invasion or
species invasion. In the first case, we derive conditions for a pathogen to invade a
persistent healthy competitive system. In the second case, we derive conditions for
a new species to invade a system with a pathogen already established.

In the first case, formulas are derived for the basic reproduction number via the
next generation matrix approach [52]. We assume there exists a stable positive equi-
librium, N̄j =positive constant, j = 1, . . . , n for the n-species competition model.
That is, N̄j is a solution to

n∑
j=1

N̄j
Kij

= 1; i = 1, 2, . . . , n. (7)

For two competing species, the positive stable equilibrium is well-known for the
Lotka-Volterra system. For the general case of three or more competing species,
conditions for existence and stability of equilibria are much more complex (e.g.,
[38, 56]). We will assume that a unique stable equilibrium exists in the interior
of Rn+. It is straightforward to show for the disease-free equilibrium (DFE) N̄j ,
j = 1, . . . , n, that the next generation matrix has the following form [52]:

K =


α̂11

D1

α̂12

D2
· · · α̂1n

Dn
...

... · · ·
...

α̂n1
D1

α̂n2
D2

· · · α̂nn
Dn

 , (8)

where α̂ij = N̄iαij(N̄j)/N̄j , i, j = 1, . . . , n and

Di = γi + δi + di

1 +

n∑
j=1

(1− aij)
N̄j
ψij

 , i = 1, . . . , n. (9)

Similar expressions for matrix K have been obtained by others for n-species mod-
els [14, 37, 42]. The basic reproduction number R0 is the spectral radius of K,
R0 = ρ(K). If R0 < 1, then the pathogen cannot invade; the DFE is locally
asymptotically stable.

Suppose there are n−1 species that persist in the presence of a shared pathogen,
that is, the following stable equilibrium exists, (S̄1, Ī1, . . . , S̄n−1, Īn−1), with N̄j =
S̄j+ Īj , 1 ≤ j ≤ n−1. We consider whether it is possible for the nth species (Sn, In)
to invade this system for the case of density-dependent incidence, αij(Nj) = βijNj .
Calculating the Jacobian matrix of system (1)-(3), evaluated at the equilibrium
(S̄1, Ī1, . . . , S̄n−1, Īn−1, 0, 0), leads to a matrix with the following form:

J =

[
J11 J12
0 J22

]
.

where the 2(n − 1) × 2(n − 1) matrix J11 is stable, the 2 × 2(n − 1) matrix 0 is a
matrix of zeros, and the 2× 2 matrix J22 is equal to

rn

1−
n−1∑
j=1

N̄j
Knj

− n−1∑
j=1

βnj Īj bn

1−
n−1∑
j=1

anjN̄j
θnj

+ γn

n−1∑
j=1

βnj Īj −dn

1 +

n−1∑
j=1

(1− anj)N̄j
ψnj

− δn − γn

 . (10)
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Table 1. Five types of events and the infinitesimal probabilities
Pj∆t+ o(∆t) for species i = 1, 2, . . . , n.

Event j Change ∆X Type Probability Pj∆t

5i− 4 e2i−1 Birth biNi

(
1−

∑n
`=1 ai`

N`

θi`

)
∆t

= Bi∆t

5i− 3 −e2i−1 Susceptible diSi

(
1 +

∑n
`=1(1− ai`) N`

ψi`

)
∆t

Death = Di∆t

5i− 2 −e2i Infected diIi

(
1 +

∑n
`=1(1− ai`) N`

ψi`

)
∆t

Death +δiIi∆t = µi∆t

5i− 1 −e2i−1 + e2i Infection Si
∑n
`=1 αi`(N`)

I`
N`

∆t = Ti∆t

5i e2i−1 − e2i Recovery γiIi∆t

Species n is able to invade if either the Trace(J22) > 0 or det(J22) < 0.
Model (1)-(3) serves as the deterministic skeleton in formulating analogous sto-

chastic models that account for the variability in births, deaths, transmission and
recovery. We derive a CTMC model, where time is continuous but the random
variables for the states are discrete and an SDE model, where time is continuous
and the random variables are also continuous.

3. Continuous-Time Markov chain model. We consider the random vector
X(t) = (S1(t), I1(t), S2(t), I2(t), . . . , Sn(t), In(t))tr, which takes values in a set E ⊂
N2n

0 , with N0 the set of non-negative integers. The superscript notation “tr” means
transpose. We assume that in a small time interval each of the states Si(t) or
Ii(t) can change by −1, 0 or 1. There are a total of 2n states and 5n changes or
events (n for births, n for deaths of susceptible individuals, n for deaths of infected
individuals, n for infection and n for recovery). Define the infinitesimal transition
probability for the jth event as

px,y(∆t) = Prob(X(t+ ∆t) = y|X(t) = x) = Pj∆t+ o(∆t).

Order the 5n events according to species, with each set of five events for the n
species representing birth, death of a susceptible individual, death of an infected
individual, infection and recovery (Table 1). Suppose that the system is in the state
X(t) = x at time t, x ∈ E . Define ei to be the ith unit column vector in the space
N2n

0 . Let

∆X = X(t+ ∆t)−X(t) = (∆S1,∆I1,∆S2,∆I2, . . . ,∆Sn,∆In)tr, (11)

be the change in the states in a small time interval ∆t. The changes in ∆X and
their associated probabilities are listed in Table 1 (see e.g., [4, 32]). Because of
the Markov assumption, the interevent time is exponentially distributed with a
parameter that is equal to

∑5n
j=1 Pj .

Techniques from branching processes are used to define probability generating
functions (pgfs) for the offspring of this continuous-time process. Below, we present
heuristic arguments to compute the probability of an outbreak and the probability
of species invasion. The “offspring” can be new infections or new species trying to
invade. We consider two cases similar to the two cases in the analytical results for
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the ODE model discussed in Section 2.2. In the first case, we assume there is a
competitive system of healthy individuals at a stable equilibrium and a pathogen
is introduced resulting in new infections. In the second case, we assume there is an
equilibrium consisting of n− 1 species with a shared pathogen and a new species is
introduced.

Continuous-time Galton-Watson branching process theory applied to the one-
species SIS CTMC process provides a good approximation to the probability of an
outbreak when the initial number of infectives is small and the population density
is large. The approximation for the probability of an outbreak if R0 = α̂11/D1 > 1
is

1− (1/R0)i1 ,

where I1(0) = i1 [7, 55]. The reason the branching process approximation works
well for R0 > 1 is that sample paths of the branching process either hit zero with
probability (1/R0)i1 or increase exponentially with probability 1− (1/R0)i1 . In the
limit of the SIS CTMC model there is almost sure extinction of the entire popula-
tion. However, prior to absorption at zero, the population reaches a quasistationary
distribution, a distribution conditioned on nonextinction, whose mean is close to
the endemic equilibrium of the deterministic model. For example, for practical pur-
poses, an outbreak level OL and time tend can be defined for the stochastic model,
1 � OL ≤ Ī (Ī the endemic level of infection), so that we can say “an outbreak
has occurred” for a given sample path if there exists a time t ≤ tend such that
I(t) > OL. If R0 < 1, then all sample paths of the branching process eventually hit
zero with probability one. These results provide information about the stochastic
process that cannot be obtained from the deterministic model. That is, if a small
number of infected individuals are introduced, then the outbreak may not occur,
even if R0 > 1. We apply this theory to the more complex CTMC model based on
Table 1 to make predictions about the probability of an outbreak or the probability
of species invasion.

3.1. Probability of an outbreak. Assume there is a stable equilibrium for the
competitive system Sj = N̄j , given by (7). All variables Sj = N̄j are approx-
imately constant and we consider whether a pathogen can invade. We apply
continuous-time, multitype Galton-Watson branching process theory to approx-
imate the continuous-time process of the random variables I1, . . . , In when the
number of infected individuals is small and the population densities N̄j are large
[25, 31, 32, 43, 48]. It is important to note that this is only an approximation to
ultimate pathogen extinction since an assumption in the Galton-Watson theory is
that the offspring random variables are independent, a reasonable assumption for a
small initial number of infected individuals. In addition, the number of infectives
in the deterministic model must grow to a sufficiently large density near the unsta-
ble DFE to ensure that the exponential growth of the branching process is a good
approximation. Given I1(0) = i1, . . . , In(0) = in, the Galton-Watson branching
process has a limiting probability of extinction [25, 31, 32, 43, 48],

P0 = lim
t→∞

Prob{(I1(t), . . . , In(t)) = 0}.

The value 1 − P0 is a good approximation for the probability of an outbreak, as-
suming that the number of infected individuals introduced is small and the number
of infected individuals in the deterministic model reach a sufficiently large density.
On a practical level, we say “an outbreak has occurred” for a given sample path in
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the stochastic model if for some t ≤ tend, tend large, and predefined outbreak level
OL � 1,

∑
j Ij(t) > OL. The term “Galton-Watson” is more frequently applied to

the discrete-time process since the original application considered by Galton and
Watson was for extinction of family names in discrete generations (sometimes re-
ferred to as Bienaymé-Galton-Watson process). The extinction theory for discrete
random variables in continuous time also applies to this process [25, 32, 43, 48].

Let pi(s1, s2, . . . , sn) denote the probability an infected individual of type i has
s1 offspring of type 1, s2 offspring of type 2, etc. The term offspring is used in
a general sense in that offspring of an infected individual of type i (species i) are
either susceptible individuals of the same type i or another type j 6= i that become
infected from type i. Let {Yij}nj=1 denote the collection of random variables for the
offspring of type j from type i, where we assume that the offspring random variables
are independent with the same pgf for each individual of type i. Then

pi(s1, s2, . . . , sn) = Prob{Yi1 = s1, . . . , Yin = sn}.

We construct offspring pgfs for each infected state Ii given that Ii(0) = 1 and
Ij(0) = 0 for j 6= i, defined as

fi(u1, u2, . . . , un) =

∞∑
sn=0

· · ·
∞∑
s1=0

pi(s1, s2 . . . , sn)us11 u
s2
2 · · ·usnn ,

i = 1, . . . , n, where u = (u1, . . . , un) ∈ [0, 1]n. In addition, we assume that each fi
is not simple, where the term simple means fi is linear in u1, u1, . . . , un, with no
constant term [48]. The expectation matrix for the number of offspring of type j
produced by an i type individual is given by a matrix M1 of size n× n whose (i, j)
element is

∂fi
∂uj

∣∣∣∣
u∗=1

,

where u∗ = 1 = (1, 1, . . . , 1). It follows from the theory of multitype Galton-
Watson branching processes that if the fi are not simple, M1 is irreducible and
ρ(M1) < 1, then the probability of extinction is one, P0 = 1 [25, 32, 43, 48].
In this case, the pathogen does not become established and the process is known
as subcritical. Alternately, if ρ(M1) > 1, then there exists a unique fixed point
q = (q1, q2, . . . , qn) ∈ (0, 1)n of f [fi(q) = qi, i = 1, . . . , n] such that

P0 = qi11 q
i2
2 · · · qinn , (12)

with Ik(0) = ik, k = 1, 2, . . . , n [25, 32, 43, 48]. The irreducibility of M1 ensures
that 0 < qi < 1 when ρ(M1) > 1. In this latter case, the process is referred to
as supercritical. Although the value of P0 is the limiting value, this limit is often
approached rapidly in the subcritical or supercritcal cases.

Now we write the offspring pgf for Ii. Let the susceptible population be constant,
Si = N̄i. Then the offspring pgf for a type i infected individual, given Ii(0) = 1
and Ij(0) = 0, j 6= i, is

fi(u1, u2, . . . , un) =

α̂iiu
2
i +Di +

n∑
j 6=i

α̂jiuiuj

Di +

n∑
j=1

α̂ji

, (13)
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where Di is defined in (9). The first term in (13) represents new infections of
type i, α̂iiu

2
i /(Di +

∑
α̂ji). This term is multiplied by u2i because the original

type i individual remains infective and also causes one new infection of type i.
The second term represents the probability the infective individual of type i dies
without causing any new infections Di/(Di +

∑
α̂ji). The last term represents all

interspecies infections, species i infects species j,
∑
j 6=i α̂jiuiuj/(Di +

∑
α̂ji).

It is easy to see that each fi in (13) is not simple. There always exists at least
one fixed point, u∗ = 1. The n× n expectation matrix is

M1 =



α̂11 +
∑
j α̂j1

D1 +
∑
j α̂j1

α̂21

D1 +
∑
j α̂j1

· · · α̂n1
D1 +

∑
j α̂j1

...
... · · ·

...

α̂1n

Dn +
∑
j α̂jn

α̂2n

Dn +
∑
j α̂jn

· · ·
α̂nn +

∑
j α̂jn

Dn +
∑
j α̂jn

 . (14)

Performing an element-wise comparison of M1 with an n × n diagonal matrix D

given as D =diag

{
α̂ii +

∑
j α̂ji

Di +
∑
j α̂ji

}
, implies ρ(D) ≤ ρ(M1) [47]. Thus, a necessary

condition for ρ(M1) ≤ 1 is that all diagonal elements be less than or equal to unity.
Matrix M1 is irreducible if α̂ij > 0 for i 6= j.

For the special case of two species, it can be shown that R0 > 1 (R0 ≤ 1)
if and only if ρ(M1) > 1 (ρ(M1) ≤ 1). (See the Appendix.) If R0 > 1 and
interspecies transmission α̂ij > 0, then there exists a unique fixed point of the pgfs
fj(q1, q2) = qj , where 0 < qj < 1, j = 1, 2. The probability of an outbreak given
Ij(0) = ij , j = 1, 2, is approximately

1− P0 = 1− qi11 q
i2
2 . (15)

Verification of the probability of an outbreak will be done through stochastic nu-
merical simulations of the CTMC model in Section 5 and compared to the estimate
1− P0 in the case of two species.

3.2. Probability of species invasion. We apply a similar technique in defining
the pgfs as demonstrated in the previous section, except that we define the offspring
pgfs for the nth species that is trying to invade a stable community consisting of n−1
species. Assume there is a stable equilibrium given by (S̄1, Ī1, . . . , S̄n−1, Īn−1) with
density-dependent incidence so that the variables Sj = S̄j , Ij = Īj , j = 1, . . . , n− 1
are approximately constant. We have N̄j = S̄j + Īj , 1 ≤ j ≤ n − 1. Next, we
consider the invading species, the random variables Sn and In. Applying a similar
technique as in the preceding section, we write offspring pgfs for Sn and In. Again
we use the term offspring in a general sense. Assume Sn(0) = 1, In(0) = 0 and

1−
n−1∑
j=1

anj
N̄j
θnj

> 0. (16)
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The approximate pgf for the offspring of Sn is

g1(u1, u2) =

bn

1−
n−1∑
j=1

anj
N̄j
θnj

u21 + dn

1 +

n−1∑
j=1

(1− anj)
N̄j
ψnj

+

n−1∑
j=1

βnj Īju2

bn

1−
n−1∑
j=1

anj
N̄j
θnj

+ dn

1 +

n−1∑
j=1

(1− anj)
N̄j
ψnj

+

n−1∑
j=1

βnj Īj

=
A1u

2
1 +A2 +A3u2

A1 +A2 +A3
,

(17)

where the Ai > 0, i = 1, 2, 3 are the constant coefficients. The three terms
A1u

2
1/(A1 + A2 + A3), A2/(A1 + A2 + A3) and A3u2/(A1 + A2 + A3) represent

birth of a susceptible individual of species n, death of a susceptible individual of
species n without becoming infective and a susceptible individual of species n be-
coming infective through contact with an infective of species 1, . . . , n − 1. Since
Sn(0) is small, the intraspecific density-dependent effects are set to zero.

Assume Sn(0) = 0, In(0) = 1 and condition (16) holds. The approximate pgf for
the offspring of In is

g2(u1, u2) =

bn

1−
n−1∑
j=1

anj
N̄j
θnj

u1u2 + dn

1 +

n−1∑
j=1

(1− anj)
N̄j
ψnj

+ δn + γnu1

bn

1−
n−1∑
j=1

anj
N̄j
θnj

+ dn

1 +

n−1∑
j=1

(1− anj)
N̄j
ψnj

+ δn + γn

=
A1u1u2 +A2 + δn + γnu1

A1 +A2 + δn + γn
.

(18)

The three terms A1u1u2/(A1 +A2 + δn + γn), (A2 + δn)/(A1 +A2 + δn + γn) and
γnu1/(A1+A2+δn+γn) represent birth of a susceptible individual from an infected
individual of species n, death of an infected individual of species n without causing
any new infections and recovery of an infected individual of species n.

The expectation matrix, calculated from the offspring pgfs, is given by

M2 =


2A1

A1 +A2 +A3

A3

A1 +A2 +A3
A1 + γn

A1 +A2 + δn + γn

A1

A1 +A2 + δn + γn

 . (19)

Since Ai > 0, i = 1, 2, 3, the offspring pgfs are not simple and matrix M2 is ir-
reducible. If ρ(M2) < 1, then species n cannot invade, that is, the probability of
extinction for species n equals one. But if ρ(M2) > 1, then there is a unique fixed
point, gi(q1, q2) = qi, 0 < qi < 1, i = 1, 2, such that the probability species n can

invade is approximately 1−P0, where P0 = qsn1 qin2 with Sn(0) = sn and In(0) = in.
In the numerical examples, we compute ρ(M2) and check the stability of the matrix
J22 from the deterministic formulation, equation (10). In Section 5, we define a
sufficiently large time tend and species invasion level Sinv � 1 and say “a species
invasion has occurred” for a given sample path if there exists t ≤ tend such that
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Sn(t)+In(t) > Sinv. The probability of species invasion is calculated as the propor-
tion of sample paths satisfying this criteria. Numerical simulations of the CTMC
model will be compared with the estimate 1− P0.

4. Stochastic differential equation model. To derive an SDE model corre-
sponding to model (1)-(3), we calculate the expected change and the covariance
matrix for the change ∆X, applying the method discussed in [1, 2, 4]. The SDE
model corresponds closely to the CTMC model when the values of the random
variables are sufficiently large [1, 2, 5, 41, 42]. We first compute the SDE model
for the case of two interacting species and then do the computation for the general
n-species case.

4.1. SDE for two interacting species. Using the changes and probabilities from
Table 1, the expected value to order ∆t is

E(∆X) ≈ ∆t {e1(B1 −D1 − T1 + γ1I1) + e2(−µ1 + T1 − γ1I1)

+e3(B2 −D2 − T2 + γ2I2) + e4(−µ2 + T2 − γ2I2)} ,

which is a 4 × 1 vector, that is, ∆t times the right-hand side of the ODE system
(1)-(2) for the variables X = (S1, I1, S2, I2)tr. The covariance matrix for the change
∆X can be approximated to first order as

E(∆X(∆X)tr) ≈ ∆t

[
A1 0
0 A2

]
,

where 0 is a 2×2 matrix of zeros, and the 2×2 block matrices Ai, i = 1, 2 are given
as

Ai =

[
Bi +Di + γiIi + Ti −(γiIi + Ti)
−(γiIi + Ti) µi + γiIi + Ti

]
. (20)

Define f(t,X) = E(∆X)/∆t. Since, ∆t will be chosen to be small, and since
E(∆X(∆X)tr) = o(∆t2), we will set the covariance matrix

Σ(t,X) = E(∆X(∆X)tr)/∆t.

Because of the difficulty of computing square roots of 2n × 2n matrices for n > 2,
instead of computing the 4× 4 matrix Σ1/2 in the associated SDE

dX = fdt+ Σ1/2dW(t),

where W is a vector containing 4 independent Wiener processes, we will use an
equivalent approach in which we construct a 4× 8 matrix G such that Σ = G(G)tr

[1, 2, 4]. In this case the corresponding SDE is

dX = fdt+GdW∗(t),

in which W∗ is a vector containing 8 independent Wiener processes. The 4 × 8
matrix G is equal to
√
B1 +D1 0 −

√
T1 0

√
γ1I1 0 0 0

0 0
√
T1 0 −

√
γ1I1 0 −√µ1 0

0
√
B1 +D1 0 −

√
T2 0

√
γ2I2 0 0

0 0 0
√
T2 0 −

√
γ2I2 0 −√µ2

 .
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4.2. SDE for n interacting species. In this section, we extend the computation
of the SDE to n interacting species. From Table 1, the expected value is approxi-
mately

E(∆X) ≈
n∑
i=1

{e2i−1 (Bi −Di − Ti + γiIi) + e2i (−µi + Ti − γiIi)}∆t.

The covariance matrix for the change ∆X to first order is given by

E(∆X(∆X)tr) ≈ ∆t

{
n∑
i=1

(Bi +Di + γiIi + Ti)e2i−1(e2i−1)tr

+(µi + γiIi + Ti)e2i(e2i)
tr − (γiIi + Ti)

(
e2i(e2i−1)tr + e2i−1(e2i)

tr
)}
.

The covariance matrix is ∆t times a n × n block diagonal matrix in which the ith
diagonal block representing events related to species i is Ai as defined in (20). Using
the definition of Ai, the covariance matrix can be compactly written as

E(∆X(∆X)tr) ≈ ∆t

n∑
j=1

IjAjItrj ,

where the n× 2 matrix Ij = (e2i−1, e2i).
Following a similar process as in the case of two interacting species, we do not

compute the 2n× 2n square root matrix Σ1/2 in the associated SDE

dX = fdt+ Σ1/2dW(t),

where W is a vector containing 2n independent Wiener processes. Instead we
apply an equivalent approach in which we construct a 2n× 4n matrix G such that
Σ = G(G)tr, and the corresponding SDE is

dX = fdt+GdW∗(t)

(see e.g., [1, 2, 4]). In the SDE, W∗ is a vector of 4n independent Wiener processes.
The matrix G can be defined in terms of its columns, where the kth column of G,
Gk, k = 1, 2, . . . , 4n, is given as

Gk =


√

(Bk +Dk)e2k−1, k = 1, 2, . . . , n

−
√
Tk−ne2(k−n)−1 +

√
Tk−ne2(k−n), k = n+ 1, . . . , 2n√

γk−2nIk−2ne2(k−2n)−1 −
√
γk−2nIk−2ne2(k−2n), k = 2n+ 1, . . . , 3n

−√µk−3ne2(k−3n), k = 3n+ 1, . . . , 4n.

5. Numerical simulations. Three numerical examples of the ODE, SDE and
CTMC systems are presented for the case of n = 2 species. The SDE models
are simulated using the Euler-Maruyama method [27, 34], and the CTMC mod-
els are simulated using the Stochastic Simulation Algorithm by Gillespie [19, 27].
The three cases illustrate pathogen and species invasion, where the presence of
a pathogen causes a change in a stable two-species competitive equilibrium or a
second species invades a stable one-species host-pathogen system. In cases 1 and
2, the probability of an outbreak computed by applying the theory of branching
processes in Section 3.1 is verified against simulations from the CTMC model. In
the third case, the probability of a species invasion computed by applying the the-
ory of branching processes in Section 3.2 is verified against simulations from the
CTMC model. Parameter values for the three cases are presented in Table 2 and
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the existence and local stability results for the ODE model are summarized in Ta-
ble 3. The values of the basic reproduction numbers are computed for each species
(Si, Ii), R0i, and for the system (S1, I1, S2, I2), R0, and are summarized in Table
4 for the three cases. In all three cases, the trivial equilibrium for the ODE model
(S1, I1, S2, I2) = (0, 0, 0, 0) is unstable.

Table 2. Parameter Values for Cases 1, 2 and 3

Parameter Interpretation Case 1 Case 2 Case 3

Density Dependence
aii, i = 1, 2 Self regulation 0.5 1.0 1.0
aij , i 6= j Cross-species regulation 0.5 1.0 1.0
Species 1
b1 Intrinsic birth rate 0.6 0.6 1.0
d1 Natural mortality 0.4 0.2 0.4
K11 Carrying capacity 8000 8000 6000
c12 Competition coefficient 1.2 0.6 0.61
β11 Intraspecies virus 0.005 1 0.007

transmission rate
β12 Interspecies virus 0.001 1 0.007

transmission rate
δ1 Disease related mortality 0.05 0.2 5
γ1 Recovery rate 4.0 0 0
Species 2
b2 Intrinsic birth rate 0.5 0.8 1.2
d2 Natural mortality 0.3 0.4 0.4
K22 Carrying capacity 6000 8000 8000
c21 Competition coefficient 0.3 0.5 1.65
β22 Intraspecies virus 0.001 1 0.007

transmission rate
β21 Interspecies virus 0.001 1 0.007

transmission rate
δ2 Disease related mortality 0.5 0.2 0
γ2 Recovery rate 0 0 13

Table 3. Equilibria in the form (S1, I1, S2, I2) and their local sta-
bility for the ODE model (1)-(3) with parameters given in Table 2,
U=unstable, S=stable.

Case 1 Case 2 Case 3
Equilibria S/U Equilibria S/U Equilibria S/U

(8000, 0, 0, 0) U (8000, 0, 0, 0) U (6000, 0, 0, 0) U
(0, 0, 6000, 0) U (0, 0, 8000, 0) U (0, 0, 8000, 0) U

(906, 5382, 0, 0) S (2240, 3360, 0, 0) U (771, 88, 0, 0) U
(0, 0, 820, 385) U (0, 0, 3840, 2560) U (0, 0, 1914, 6086) S

(1250, 0, 5625, 0) U (4571, 0, 5714, 0) U
(527, 1982, 1108, 2778) S
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Table 4. The basic reproduction number R0 and species repro-
duction numbers R01, and R02 for the three cases.

Case R0 R01 R02

1 6.58 8.79 6.67
2 4.17 2.50 1.67
3 - 7.78 4.18

5.1. Case 1: Probability of an outbreak: Density-dependent incidence.
For case 1, consider the ODE model (1)-(3) with density-dependent incidence and
birth and death rates density-dependent. There is a stable coexistence equilibrium
(S1, S2) = (1250, 5625) in the pure competition model without disease. However,
the corresponding equilibrium (S1, I1, S2, I2) = (1250, 0, 5625, 0) is unstable in the
two-species model (Table 3). The only stable equilibrium in model (1)-(3) is the
single-species one host-pathogen equilibrium (S1, I1, S2, I2) = (906, 5382, 0, 0). The
presence of the pathogen results in replacement of the two-species equilibrium by a
single species. Saenz and Hethcote considered model (1)-(3) in [49]; however, they
provided analysis only for the cases of density-independent births or deaths. Thus,
to our knowledge, this case has not been analyzed in the literature.

For the CTMC model, we apply branching process theory to compute the prob-
ability of pathogen invasion (outbreak). At the stable coexistence equilibrium, the
offspring pgf f defined in equation (13), and the expectation matrix M1 defined
in (14), are easily computed using the parameter values in Table 2. The spec-
tral radius of M1, ρ(M1) ≈ 1.7 > 1, which implies there exists a unique fixed
point (q1, q2) ∈ (0, 1) × (0, 1) of f . The fixed point is computed numerically to be
q1 = 0.336, q2 = 0.137. The probability of an outbreak (1 − P0), defined in (15)
is then verified by computing the proportion of 1000 sample paths of the CTMC
model in which there is an outbreak. That is, the CTMC model is simulated
1000 times over a given time period, [0, tend] (tend = 3) with the initial conditions
S1(0) = 1250, S2(0) = 5625 and a small number of infected individuals. In each
run of the model, the condition I1(tend) > OL = 100 is checked. For example, in
the ODE model I1(tend = 3) ≈ 751 when I1(0) = 0 and I2(0) = 1. The probability
of an outbreak is computed as the fraction of simulations (out of 1000) in which
the number of infected individuals of species 1 was above OL at tend. Longer time
intervals gave similar results. The simulation results presented in Table 5 show good
agreement with the predicted value of the probability of an outbreak.

Figure 1 illustrates three sample paths of the SDE model with the solution of the
ODE model when S1(0) = 1250, S2(0) = 5625, I1(0) = 0, I2(0) = 1, i.e., we start at
the DFE and introduce an infected individual of species two. All three sample paths
of the SDE model follow the ODE solution (this was the case for all the simulations
we performed for the SDE model). This behavior differs from the sample paths of
the CTMC model in Figure 2. The sample paths of the simulated CTMC model were
chosen to illustrate some cases of pathogen extinction (P0 = 0.131). The sample
paths from the CTMC and SDE models that follow the ODE solution illustrate the
variability due to births, deaths, transmission and recovery.

5.2. Case 2: Probability of an outbreak: Frequency-dependent incidence.
For the second case, consider the ODE model (1)-(3) with frequency-dependent
incidence. The parameter values are given in Table 2. The natural mortality rates
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Table 5. Case 1: Probability of an outbreak (1 − P0) computed
from the theory of branching processes, and based on 1000 sample
paths of the CTMC model for various initial values of I1 and I2.

I1(0) I2(0) 1− P0 CTMC
1 0 0.658 0.657
0 1 0.869 0.870
1 1 0.969 0.952
2 0 0.892 0.892
0 2 0.979 0.980

Figure 1. Comparison of ODE and SDE (3 sample paths) solu-
tions for Case 1. We start the simulation at the DFE and add one
infected individual of species 2, S1(0) = 1250, S2(0) = 5625, I1(0) =
0, I2(0) = 1.

(d1, d2) are density-independent, all the competitive effects are incorporated in the
birth terms, and there is disease-related mortality, δi = 0.2, i = 1, 2. There is
a stable coexistence equilibrium (S1, S2) = (4571, 5714) in the pure competition
model with no disease. However, the corresponding equilibrium (S1, I1, S2, I2) =
(4571, 0, 5714, 0) is unstable in the two-species model, while the infected coexistence
equilibrium (S1, I1, S2, I2) = (527, 1981, 1108, 2778) is locally stable. In the ODE
model, the presence of the pathogen results in a new stable infected coexistence
equilibrium with reduced population densities.

The ODE model with frequency-dependent transmission and aij = 1, δi = 0 = γi
was analyzed by Manore [37] which differs from case 2 (in case 2, δi = 0.2, Table
2). Manore showed for δi = 0 and R0 > 1 that the infected coexistence equilibrium
is globally asymptotically stable. However, we expect that the infected coexistence
equilibrium remains globally stable in this case too.

For the CTMC model, the offspring pgfs f , defined in (13), and the expectation
matrix M1, defined in (14), are computed using the parameter values in Table 2.
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Figure 2. Comparison of ODE and CTMC (3 sample paths) solu-
tions for Case 1. We start the simulation at the DFE and add one
infected individual of species 2, S1(0) = 1250, S2(0) = 5625, I1(0) =
0, I2(0) = 1 (P0 = 0.131).

The spectral radius of M1 is ρ(M1) ≈ 1.59 > 1 so that a unique fixed point exists
for f in (0, 1) × (0, 1). The fixed point is computed numerically to be q1 = 0.193,
q2 = 0.310. The probability of an outbreak (1 − P0), defined in (15), is tested by
computing the proportion of sample paths out of 1000 in which an outbreak occurs,
see Table 6. One thousand sample paths were simulated until tend = 7 with initial
conditions S1(0) = 4571, S2(0) = 5714 and a small number of infective individuals.
In each run of the model, the condition

∑
j Ij(tend) > OL = 100 was checked.

For example, in the ODE model, I1(tend = 7) ≈ 2714 and I2(tend = 7) ≈ 3105
when I1(0) = 0 and I2(0) = 1. Longer time intervals gave similar results. The
simulation results indicate that in both cases 1 and 2, Galton-Watson theory is a
good approximation to the probability of outbreak or pathogen invasion.

Table 6. Case 2: Probability of an outbreak (1 − P0) computed
using the theory of branching processes, and based on 1000 sample
paths of the CTMC model for various initial values of I1 and I2.

I1(0) I2(0) 1− P0 CTMC
1 0 0.807 0.793
0 1 0.690 0.681
1 1 0.940 0.938
2 0 0.963 0.967
0 2 0.904 0.899

Figures 3 and 4 illustrate three sample paths of the SDE model and CTMC model,
respectively. In all cases simulated, the SDE model followed the ODE solution, but
in the simulations for the CTMC model, sample paths were chosen to illustrate
some cases of pathogen extinction (P0 = 0.31).
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Figure 3. Comparison of ODE and SDE (3 sample paths) solu-
tions for Case 2. We start the simulation at the DFE and add one
infected individual of species 2, S1(0) = 4571, S2(0) = 5714, I1(0) =
0, I2(0) = 1.

Figure 4. Comparison of ODE and CTMC (3 sample paths) solu-
tions for Case 2. We start the simulation at the DFE and add one
infected individual of species 2, S1(0) = 4571, S2(0) = 5714, I1(0) =
0, I2(0) = 1 (P0 = 0.31).

5.3. Case 3: Probability of invasion - density-dependent incidence. In
the third case, the ODE model (1)-(3) with density-dependent incidence illustrates
species invasion. Parameter values are given in Table 2. The natural mortality rates
(d1, d2) are density-independent, and all the competitive effects are incorporated in
the birth terms. The pathogen causes disease-related mortality only in species 1,
δ1 = 5 and δ2 = 0. There is no recovery for species 1 but the recovery rate for species
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2 is very fast, γ1 = 0 and γ2 = 13. In the purely competitive system, species 1 wins
the competition. However, the presence of disease changes the outcome. There
is a stable host-pathogen equilibrium (S1, I1) = (771, 88) for species 1. However,
the corresponding equilibrium (S1, I1, S2, I2) = (771, 88, 0, 0) is unstable in the two-
species model as matrix J22, defined in equation (10), is unstable. The equilibria
and their local stability for the two-species model are summarized in Table 3.

Similar to this case, Manore [37] studied the ODE model (1)-(3) but with the
assumption of no recovery (γi = 0). It was shown that if the parameters ξ1 =
1/K11 − c21/K22, and ξ2 = 1/K22 − c12/K11 have opposite signs ξ1ξ2 < 0, and
if R01 > 1, both species are present, and an infected individual of at least one
species is present, then the disease persists uniformly strongly in at least one of the
species. The parameters chosen for case 3 are such that the ξi’s and R01 satisfy
the inequalities above and we see stability of the infected one-species equilibrium
for species 2.

In the CTMC model, the pgfs g, defined in (17) and (18), and M2, defined in
(19), are computed using the parameters in Table 2. The spectral radius ρ(M2) ≈
1.26 > 1 so that a unique fixed point of g exists in (0, 1) × (0, 1). The fixed point
q is approximately q1 = 0.378 and q2 = 0.378. These extinction probabilities
are used to compute the probability of invasion of species 1 by species 2, (1 −
P0 = 1 − qS2(0)

1 q
I2(0)
2 ), as described in Section 3.2, and verified with 1000 sample

paths of the CTMC model in Table 7. One thousand simulations were run until
tend = 15 with the initial conditions S1(0) = 771, I1(0) = 88 and S2(0), I2(0) small.
The probability of invasion was computed as the fraction of simulations in which
S2(tend) + I2(tend) > Sinv = 100 at tend = 15. For example, in the ODE model
S2(tend = 15) ≈ 1946 and I2(tend = 15) ≈ 4552 when S2(0) = 1 and I2(0) = 0.
Longer time intervals gave similar results.

Sample paths of the SDE model and CTMC model are compared with the ODE
solution in Figures 5 and 6 for the initial conditions S1(0) = 771, S2(0) = 1, I1(0) =
88, I2(0) = 0, i.e., we start with the infected equilibrium of species one and add
a susceptible individual of species two. In this case as in the two other cases,
Galton-Watson theory is a good approximation to the probability of invasion.

Table 7. Case 3: Probability of invasion (1− P0) of species 1 by
species 2 computed using the theory of branching processes, and
based on 1000 sample paths of the CTMC model for various initial
values of S2 and I2.

S2(0) I2(0) 1− P0 CTMC
1 0 0.622 0.620
0 1 0.622 0.600
1 1 0.875 0.861
2 0 0.875 0.862
0 2 0.875 0.863

6. Discussion and conclusions. In this investigation, a general deterministic
model for n- species competition with a shared pathogen is introduced which serves
as a skeleton on which to build new stochastic models, CTMC and SDE mod-
els. The competitive dynamics of the mixed community of species were studied,



480 LINDA J. S. ALLEN AND VRUSHALI A. BOKIL

Figure 5. Comparison of ODE and SDE (3 sample paths) so-
lutions for Case 3. We start the simulation at the infected one
host equilibrium for species 1 and add one susceptible individual
of species 2, S1(0) = 771, S2(0) = 1, I1(0) = 88, I2(0) = 0.

Figure 6. Comparison of ODE and CTMC (3 sample paths) so-
lutions for Case 3. We start the simulation at the infected one
host equilibrium for species 1 and add one susceptible individual
of species 2, S1(0) = 771, S2(0) = 1, I1(0) = 88, I2(0) = 0 (P0 =
0.378).

with a particular emphasis on the case n = 2. As documented in the literature
[11, 33, 44, 51], the outcome of competition between two or more species can be
changed in the presence of a shared pathogen. A native species may be invaded
by an exotic, non-native species or a pathogen invasion may result in reduction of
population densities because of disease-related mortalities. Whether the pathogen
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or species invasion is successful depends on the initial density of invading pathogens
or species. Thus, it is important to consider the stochastic variability due to births,
deaths and transmission that impact the success of the invasion. We derive new
CTMC and SDE models to account for this variability, using the assumptions in
the deterministic model as the basis for our derivation.

New analytical results are presented for the ODE model in the case of n ≥ 2 for
pathogen or species invasion (Section 2.2). The basic reproduction number R0 > 1
indicates pathogen invasion and the instability of matrix J22 is an indication of
species invasion for the ODE model, but when stochastic variability is included,
R0 and J22 do not predict invasion success. Applying branching process theory to
the CTMC model, we obtain estimates for probability of pathogen extinction P0 or
failure of a species invasion P0 which depend on the initial number of pathogens or
species invading and the fixed point of the offspring pgfs.

Application of branching process theory to the prediction of pathogen extinction
is not new. For example, pathogen extinction was applied as early as 1955 by
Whittle [55] to a simple SIR model, to a vector-host model in 1964 by Bartlett [8]
and more recently by Griffiths and Greenhalgh to a respiratory disease in cattle
[21]. However, application of branching process theory to multitype processes is
not well-known in the epidemiological or ecological literature, nor is it well-known
how to define the offspring pgfs. Our application of branching process theory to
the n-species competitive system is new (Section 3). Careful attention must be
paid to the underlying assumptions of the branching process theory. As with any
linear approximation, these assumptions are only realistic near the equilibrium for
small number of initial invaders in a large population. Whether the branching
process approximation for probability of invasion is a good approximation must be
verified for each model. After the invasion is successful, the SDE model provides an
alternative to the CTMC model, especially useful for numerical simulation of large
populations [1, 4, 27].

Our numerical examples highlight cases where the branching process predictions
for pathogen or species invasion provide good estimates for the success of the in-
vasion. Verification of the predicted estimate was checked via simulations of the
CTMC model. A pathogen or species invader may not be successful on the first
attempt but with repeated attempts or with a large number of invaders the prob-
ability of a successful invasion increases. These applications of branching processes
to the n-species competition model with disease have a wider applicability to the
emergence of new diseases and to species invasions in other settings.
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Appendix. We verify that ρ(M1) > 1 iff ρ(K) > 1 for the case n = 2, where both
M1 and K are irreducible. Then it follows from continuous-time Galton-Watson
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branching process theory that ρ(K) > 1 iff there exists a unique fixed point of the
pgfs fi(q1, q2) = qi, i = 1, 2.

Theorem 6.1. For the case n = 2, ρ(M1) > 1 iff ρ(K) > 1, where matrices K and
M1 are defined in (8) and (14), respectively.

Proof. The spectral radius of a 2× 2 nonnegative matrix B = [bij ], ρ(B) < 1 iff the
Jury conditions hold [3]:

trace(B) < 1 + det(B) < 2. (21)

Alternately, ρ(B) > 1 iff at least one of the inequalities in (21) is reversed, that is,

(i) bii > 1 for some i = 1, 2 or
(ii) bii ≤ 1 for i = 1, 2 and (1− b11)(1− b22) < b12b21.

For the 2×2 matricesK = [kij ] andM1 = [mij ], defined in (8) and (14), respectively,
the matrix elements are kii = α̂ii/Di, kij = α̂ij/Di, mii = (α̂ii + ci)/(Di + ci) and
mij = α̂ji/(Di + ci), with ci = α̂ii + α̂ji, i, j = 1, 2, i 6= j. We show the conditions
in (i) and (ii) are equivalent for bij replaced by kij or mij .

It is straightforward to show that kii > 1 (≤ 1) iff mii > 1 (≤ 1). The second
condition in (ii) for matrix K is

(1− k11)(1− k22) < k12k21 (22)

which is equivalent to

(D1 − α̂11)(D2 − α̂22) < α̂12α̂21.

This latter inequality is equivalent to

(D1 + c1 − [α̂11 + c1])(D2 + c2 − [α̂22 + c2]) < α̂12α̂21

which, in turn, is equivalent to

(1−m11)(1−m22) < m12m21.

Thus, ρ(M1) > 1 iff ρ(K) > 1.

It follows from the properties of the pgfs (13) (fi are not simple), the properties
of matrix M1 (M1 is nonnegative and irreducible) and the preceding theorem that a
unique fixed point (q1, q2), 0 < qi < 1 exists to the pgfs (13) for n = 2 iff ρ(K) > 1
[25, 32, 43, 48].

Alternately, the preceding result, ρ(K) > 1 iff there exists a unique fixed point
(q1, q2), 0 < qi < 1 of the pgfs (13) for n = 2, can be verified directly. Rewrite the
equations for the pgfs ui = fi(u1, u2) as the functions, uj = hi(ui), i, j = 1, 2, i 6= j.
That is,

hi(ui) =
−b1iu2i + ui − b2i

b3iui
,

where

b1i =
α̂ii
Di + ci

, b2i =
Di
Di + ci

and b3i =
α̂ji
Di + ci

, j 6= i.

Then the fixed point (q1, q2) is the unique point of intersection of these two functions
in the region (0, 1) × (0, 1). Whether the curves hi intersect in the open region
(0, 1)× (0, 1) depends on the slope of these two curves at the point (1,1). It can be
verified in a manner similar to the proof of Theorem 4.1 in reference [42] (page 24,
where the fixed point at the origin is translated to the point (1,1)), that there exists
a unique fixed point in the following four cases: (a) kii > 1, i = 1, 2, (b) k11 > 1
and k22 < 1, (c) k11 < 1 and k22 > 1, and (d) kii ≤ 1, i = 1, 2 and inequality (22).
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Cases (a)-(c) correspond to condition (i) and case (d) to condition (ii) in the proof
of Theorem 6.1. See Figure 7.
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Figure 7. The functions u1 = h2(u2) and u2 = h1(u1) have a
unique point of intersection in the region (0, 1)× (0, 1) in the four
cases: (a) kii > 1, i = 1, 2; (b) k11 > 1 and k22 < 1; (c) k11 < 1
and k22 > 1; (d) kii ≤ 1, i = 1, 2 and inequality (22).
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