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Abstract. A mutualism-parasitism system of two species is considered, where
mutualism is the dominant interaction when the predators (parasites) are at

low density while parasitism is dominant when the predators are at high den-

sity. Our aim is to show that mutualism at low density promotes coexistence
of the species and leads to high production of the prey (host). The mutualism-

parasitism system presented here is a combination of the Lotka-Volterra co-

operative model and Lotka-Volterra predator-prey model. By comparing dy-
namics of this system with those of the Lotka-Volterra predator-prey model,

we present the mechanisms by which the mutualism improves the coexistence

of the species and production of the prey. Then the parameter space is di-
vided into six regions, which correspond to the four outcomes of mutualism,

commensalism, predation/parasitism and neutralism, respectively. When the

parameters are varied continuously among the six regions, it is shown that the
interaction outcomes of the system transition smoothly among the four out-

comes. By comparing the dynamics of the specific system with those of the
Lotka-Volterra cooperative model, we show that the parasitism at high density

promotes stability of the system. A novel aspect of this paper is the simplicity

of the model, which allows rigorous and thorough analysis and transparency of
the results.

1. Introduction. Since the Lotka-Volterra predator-prey model was established
by Lotka (1925) and Volterra (1926), it has been a powerful tool for explaining
and predicting ecological phenomena (Murray 1998). In the model, the predators
have a negative effect on the prey through consumption of the prey, while the prey
have a positive effect on the predators by providing them with resources. Thus the
feedback from the other species is either purely positive or purely negative, without
variation in sign. Interactions in nature are not always so invariant. Therefore, these
models with fixed interaction types need to be expanded in order to describe the
situations in which the type of interaction (having a positive or negative effect) that
is displayed at a given time is density-dependent; for example, an interaction that is
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a mutualism when a species that consumes another is at low population density and
is a parasitism when it is at high density. In fact, the so-called mutualism-parasitism
interactions have been demonstrated in real situations for years.

In plant-animal systems, there exist many examples of mutualism-parasitism
interactions. As shown by Miyaki and Kikuzawa (1988), mice that hoard acorns
(e.g. Apodemus speciosus and A. argentus) function as both acorn consumers and
acorn dispersers. The mice transport the acorns, scatterhoard them and bury some
of them. Although the mice later utilize some of the buried acorns, some survive.
Because the mice tend to disperse the buried acorns away from the parent tree,
sometimes to more favorable locations, these acorns may have a better chance to
germinate and grow up into oaks. When the population density of the mice is small,
they eat only a small fraction of the acorns, and there may be a net increase in the
recruitment rate of oaks associated with the mice over those that are not. Hence
mutualism is the dominant interaction between the mice and oaks when the mice
are at low density. However, when the population density of the mice is large, most
of the acorns are likely to be directly eaten, and only a small fraction buried. In
that case the negative effect of the mice on the oaks exceeds their positive effect.
Hence seed parasitism is the dominant interaction between the mice and oaks when
the mice are at high density. Therefore, the two species form a density-dependent
mutualism-parasitism system.

Another example of mutualism-parasitism is the interaction between the senita
cactus and the senita moth, which is classified as an obligate mutualism, meaning
that the senita moth is the only pollinator of the senita cactus and the senita cactus
the only food source of the senita moth. As described by Holland and DeAngelis
(2010), and references in those papers, senita moths work as both pollinators and
seed eaters of senita cacti. Adult senita moths oviposit on senita cactus flowers and
the larvae eat the seed and fruit of the senita cacti. When the population density
of the moths is small, the positive effect of the moths through pollinating is larger
than its negative effect by consuming the seed and fruits. Thus the net balance
from the moths to the senita cacti is positive and, hence, the senita cacti and
senita moths are in mutualism when the senita moths are at low density. However,
when the population density of the moths is large, the larvae are so abundant
that the negative effect from the moths exceeds their positive effect. Thus the net
balance from the moths to the senita cacti is negative. Hence, the senita cacti and
senita moths are in parasitism when the moths are at high density. Therefore, the
interactions between the two species are an example of mutualism-parasitism.

The interactions between herbivores and both grasses and woody plants may
also display a form of mutualism-parasitism. A number of studies of herbivore
grazing on grasslands have indicated that net primary production was maximized
under intermediate levels of herbivory, compared with both zero or very low levels
and high levels of herbivory (McNaughton 1976, 1979, Hilbert et al. 1981, Dyer et
al. 1993). This has come to be known as the herbivore-optimization hypothesis.
Although questions have been raised concerning the validity of the hypothesis under
many circumstances (e.g. Belsky 1986), studies have shown that the population
densities of the herbivores can often determine whether processes such as nutrient
cycling are increased, leading to increases in primary production (Molvar et al. 1994,
Kielland et al. 1997). A recent study on North American elk, browsing on woody
vegetation, supports the herbivore-optimization hypothesis. Experiments showed
that low population densities of elk (and hence low levels of browsing) resulted in
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higher levels of net primary production than either zero population or high densities
of elk (Stewart et al. 2006).

In order to describe the density-dependent interactions between species, Holland
and DeAngelis (2009) established a general uni-directional consumer-resource (C-R)
model, which is a part of their C-R theory. In the model, one species has both posi-
tive and negative effects on the other, which is represented by positive and negative
terms in the equation for the population growth of the second species, each con-
taining the population density of the first species. The second species has either a
positive or negative feedback on the first, but not both. Numerical simulations on a
specific system showed that varying parameters and/or initial population densities
of the species lead to transitions of interaction outcomes among mutualism (+ +),
commensalism (+ 0), predation/parasitism (+ −), and neutralism (0 0). Here, the
interaction types are defined by the outcomes. For example, predation/parasitism
(+ −) represents the situation in which species 2, through interaction with species
1, approaches a population density larger than its carrying capacity (i.e., high pro-
duction), while species 1 approaches a density less than its carrying capacity when
in isolation from species 2. In another study, Neuhauser and Fargione (2004) pre-
sented a mutualism-parasitism continuum model to describe the phenomenon that
plant-mycorrhizae interactions shift from mutualism to parasitism when the soil
fertility varies. Analysis of the model demonstrated that the interaction outcomes
transition among mutualism, commensalism and predation/parasitism as the host
carrying capacity varies. Here, the host carrying capacity increases with the soil
fertility. For more discussion about transition of interaction outcomes, we refer to
Wang and Wu (2011), and Wang and DeAngelis (2011). While the results of Hol-
land and DeAngelis (2009) and Neuhauser and Fargione (2004) are novel in showing
the transitions of interaction outcomes, the mechanisms by which coexistence and
high production are promoted by the mutualism at low density need to be shown
in a more rigorous way.

In this paper, we analyze dynamics of a specific mutualism-parasitism system
of two species. A novel aspect of this paper is that a simple pair of linear terms
is used to represent the shift between a Lotka-Volterra cooperative (mutualism)
model, when the predators are at low density, and a Lotka-Volterra predator-prey
model, when they are at high density. This extremely simplified model allows a
rigorous analysis and transparency of results that could not be achieved in a more
complex model. By comparing the dynamics of the specific system with those of the
Lotka-Volterra predator-prey model, we demonstrate the mechanism by which the
mutualism promotes the coexistence of the species. We also show the situations in
which the prey approaches high rates of productivity, and show the mechanism by
which the interaction outcomes vary with the parameters and/or initial population
densities of the species. By comparing the dynamics of the specific system with those
of the traditional Lotka-Volterra mutualism model, we show that the parasitism at
high density enhances stability of the system.

2. Model. In this section, we consider a predator-prey model in which the species
are in mutualism when the predators are at low density, while they are in parasitism
when the predators are at high density. The model is

dx/dt = x(r1 + b1y0 − b1|y − y0|∗ − d1x),

dy/dt = y(−r2 + b2x− d2y),
(1)
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Figure 1. Phase portrait diagrams for population dynamics of
the mutualism-parasitism system. The green and red lines are zero-
growth isoclines for x and y, respectively. Vector fields in the phase
plane are shown with grey arrows, which display the direction and
speed of population trajectories at particular points. Stable and
unstable equilibria are represented by filled and open circles, re-
spectively. In Fig. 1a, A1 denotes the top of l1(l11 and l12), and l0
is the line segment connecting A1 and A2(r2/b2, 0). In the following
numerical simulations, fix r1 = 0.2, d1 = b1 = 0.01, y0 = 10. In Fig.
1b, let r2 = 0.03, b2 = 0.015, d2 = 0.01. Then r1/d1 > r2/b2 and
k2 > k0. All orbits in intR2

+ converge to P2 with p21 < r1/d1. In
Fig. 1c, let r2 = 0.006, b2 = 0.003, d2 = 0.01. Then r1/d1 > r2/b2
and k2 ≤ k0. All orbits in intR2

+ converge to P1 with p11 > r1/d1.
In Fig. 1d, let r2 = 0.016, b2 = 0.08, d2 = 0.01. Then r1/d1 = r2/b2
and k2 > k0. All orbits in intR2

+ converge to P2 with p21 > r1/d1.

where x denotes the population density of the prey and y denotes that of the
predators. All parameters in the system are positive.

In the first equation of (1), let y0 = 0, we have dx/dt = x(r1− b1y−d1x). Hence
the parameter r1 denotes the intrinsic growth rate of the prey, and r1/d1 represents
its carrying capacity when in isolation from the predators. The parameter b1 denotes
the negative effect of the predators on the prey.
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Let L1(x, y) = r1+b1y0−b1|y−y0|∗−d1x. Here, the function |y−y0|∗ is defined as
the smoothed version of the absolute function |y−y0|, where the function x = |y−y0|
is smoothed in a very small neighborhood of its vertex (0, y0). Hence, the isocline
l1 : L1(x, y) = 0 is smooth. Then the function f1(x, y) = xL1(x, y) is smooth and
satisfies

∂f1/∂y = b1x > 0 as y < y0,

∂f1/∂y = −b1x < 0 as y > y0.

Hence the predators have a positive effect on the prey when they are at low density
(y < y0), while they have a negative effect on the prey when they are at high
density (y > y0). Here, the parameter b1 also represents the strength of mutualism
of the predators when they are at low density. The parameter y0 denotes the
critical threshold of the predators near which the effect of the predators on the
prey transitions between positive and negative values. The region of low density,
0 < y < y0, represents the mutualism range between the predators and prey. In
the example of mice and acorns in section 1, y0 represents the threshold that when
the density of the mice is less than it, the net balance of their dispersing and eating
acorns is positive; when the density of the mice is larger than it, the net balance
becomes negative.

In the second equation of (1), we have dy/dt = y(−r2 + b2x − d2y), where it
is assumed that there are no costs to the predator in conferring a positive effect
on the prey. The constant r2 corresponds to the mortality of the predators in
the absence of the prey. The parameter d2 denotes the strength of intraspecific
competition among the predators, while b2 represents the positive effect of the prey
on the predators. The isocline l2 : −r2 + b2x− d2y = 0 is as shown in Fig. 1a. We
denote f2(x, y) = y(−r2 + b2x− d2y).

The system (1) is a combination of the Lotka-Volterra cooperative model and
predator-prey model. Indeed, when the predators are at low density, i.e., y < y0,
the system (1) becomes the Lotka-Volterra cooperative model

dx/dt = x(r1 − d1x + b1y),

dy/dt = y(−r2 + b2x− d2y).
(2)

However, when the predators are at high density, i.e., y > y0, the system (1) becomes
the Lotka-Volterra predator-prey model

dx/dt = x(r1 + 2b1y0 − d1x− b1y),

dy/dt = y(−r2 + b2x− d2y).
(3)

3. Dynamics. In this section, we show nonexistence of periodic orbits and all
possible dynamic behavior of (1).

Theorem 3.1. There is no periodic orbit in (1).

Proof. Let

H(x, y) =
1

xy
,

then we have
∂(Hf1)

∂x
+

∂(Hf2)

∂y
= −d1

y
− d2

x
< 0.

It follows from Bendixson-Dulac Theorem (Hofbauer and Sigmund 1998) that there
is no periodic orbit in (1).
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As shown in Fig. 1a, there are two equilibria of (1) on the axes, namely O(0, 0)
and O1(r1/d1, 0). The Jacobian matrix of (1) at O is

J(O) =

(
r1 0
0 −r2

)
.

Thus the equilibrium O is a saddle. In order to consider the interior equilibria of
(1), we divide the isocline l1 into l11 and l12 as follows

l11 : r1 − d1x + b1y = 0, 0 < y < y0,

l12 : r1 + 2b1y0 − d1x− b1y = 0, y > y0,

where l1 is smoothed in a small neighborhood of its vertex A1((r1 + b1y0)/d1, y0).
Thus there are at most two isolated interior equilibria. As shown in Fig. 1a,
let P1(p11, p12) denote the intersection of l11 and l2; let P2(p21, p22) denote the
intersection of l12 and l2. Then we have

p11 =
r1d2 − r2b1
d1d2 − b1b2

, p12 =
r1b2 − r2d1
d1d2 − b1b2

,

p21 =
r1d2 + r2b1 + 2d2b1y0

d1d2 + b1b2
, p22 =

−r2d1 + r1b2 + 2b1b2y0
d1d2 + b1b2

.

Let k11 (respectively, k2) denote the slope of l11 (respectively, l2), and let k0
denote the slope of l0, which is the line segment between points A1 and A2(r2/b2, 0).
Here, the point A2 is intersection of l2 and the x-axis. Then we have

k11 =
d1
b1

, k2 =
b2
d2

, k0 =
y0d1b2

−r2d1 + r1b2 + b1b2y0
. (4)

The dynamic behavior of (1) is shown in three cases.

Case 1. r2/b2 < r1/d1.
In this case, the point O1(r1/d1, 0) is at the right side of A2(r2/b2, 0), as shown in

Figs. 1b and 1c. When k2 > k0, there is a unique interior equilibrium P2. It follows
from Theorem 3.1 and phase portrait analysis that all orbits in intR2

+ converge
to P2, where intR2

+ = {(x, y) : x > 0, y > 0}. In order to show the transition
of interaction outcomes, we need to give an obvious condition for p21 > r1/d1.
As shown in Fig. 1b, let P ∗(r1/d1, y

∗) (respectively, P ∗∗(r1/d1, y
∗∗)) denote the

intersection of l12 (respectively, l2) with the vertical line x = r1/d1. Then we have

y∗ = 2y0, y∗∗ =
r1b2 − r2d1

d1d2
.

The condition p21 > r1/d1 is equivalent to the situation that the point P ∗ is above
P ∗∗, i.e., y∗ > y∗∗, which can be described as

y0 > y∗0 , y∗0 =
r1b2 − r2d1

2d1d2
. (5)

Hence y∗0 is a threshold for the transition of interaction outcomes of species 1.
When k2 ≤ k0, there is a unique interior equilibrium P1(p11, p12). By the mono-

tonicity of l11, we have p11 > r1/d1. It follows from Theorem 3.1 and phase portrait
analysis that all orbits in intR2

+ converge to P1 with p11 > r1/d1, as shown in Fig.
1c. Hence we have the following results.

Proposition 1. Let r2/b2 < r1/d1.

(i) When k2 > k0, all orbits in intR2
+ converge to P2(p21, p22); p21 > r1/d1 if and

only if y0 > y∗0 .
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(ii) When k2 ≤ k0, all orbits in intR2
+ converge to P1(p11, p12) with p11 > r1/d1.

Case 2. r2/b2 = r1/d1.
In this case, the points O1(r1/d1, 0) and A2(r2/b2, 0) coincide, as shown in Figs.

1d, 2a and 2b. When k2 > k0, there is a unique interior equilibrium P2 with
p21 > r1/d1. Similar to the discussion in case 1, all orbits in intR2

+ converge to P2.

When k2 = k0, the line segment A1A2 consists of stable equilibria and the system
(1) is degenerate, while (1) is a so-called constant motion in the mutualism region
{(x, y) : x > 0, 0 < y < y0} (Hofbauer and Sigmund 1998). It follows from phase
portrait analysis that all orbits in intR2

+ converge to the continuum line segment

A1A2, as shown in Fig. 2a. When k2 < k0, there is no interior equilibrium. All
orbits in intR2

+ converge to O1, as shown in Fig. 2b. Hence we have the following
results.

Proposition 2. Let r2/b2 = r1/d1.

(i) When k2 > k0, all orbits in intR2
+ converge to P2(p21, p22) with p21 > r1/d1.

(ii) When k2 = k0, all orbits in intR2
+ converge to the equilibrium segment A1A2.

(iii) When k2 < k0, all orbits in intR2
+ converge to O1(r1/d1, 0).

Case 3. r2/b2 > r1/d1.
In this case, the point O1(r1/d1, 0) is at the left side of A2(r2/b2, 0) as shown in

Figs. 2c and 2d. When k2 > k0 > 0, we have k2 > k0 > k11. By (4), k0 > 0 can be
described as

y0 >
r2d1 − r1b2

b1b2
. (6)

There are two interior equilibria P1 and P2 as shown in Fig. 2c. By k2 > k11, we
have b2/d2 > d1/b1, i.e., d1d2 − b1b2 < 0. The Jacobian matrices of (1) at P1 and
P2 are

J(P1) =

(
−d1p11 b1p11
b2p12 −d2p12

)
,

J(P2) =

(
−d1p21 −b1p21
b2p22 −d2p22

)
.

Since det J(P1) = (d1d2 − b1b2)p11p12 < 0, the equilibrium P1 is a saddle. Since
det J(P2) = (d1d2 + b1b2)p21p22 > 0 and trJ(P2) = −d1p21 − d2p22 < 0, the
equilibrium P2 is asymptotically stable. By Theorem 3.1, all orbits in intR2

+ above
the separatrix of P1 converge to P2, while those below the separatrix of P1 converge
to O1, as shown in Fig. 2c.

When k2 = k0, the equilibria P1 and P2 coincide and P1 becomes a saddle-node
point (Hofbauer and Sigmund 1998). All orbits in intR2

+ above the separatrix of P1

converge to P1, while those below the separatrix of P1 converge to O1 as shown in
Fig. 2d.

When k2 < k0 or k0 < 0, there is no interior equilibrium. All orbits in intR2
+

converge to O1 as shown in Fig. 2b. Hence we have the following results.

Proposition 3. Let r2/b2 > r1/d1.

(i) When k2 > k0 > 0, all orbits in intR2
+ above the separatrix of P1 converge

to P2 with p21 > r1/d1 and those below the separatrix of P1 converge to
O1(r1/d1, 0).
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(ii) When k2 = k0, all orbits in intR2
+ above the separatrix of P1 converge to

P1 with p11 > r1/d1, while those below the separatrix of P1 converge to
O1(r1/d1, 0).

(iii) When k2 < k0 or k0 < 0, all orbits in intR2
+ converge to O1(r1/d1, 0).

In order to show the situations in which the prey approaches a high production,
we have the following corollary from Propositions 1, 2 and 3.

Corollary 1. The prey in the system (1) approaches a high production if and
only if one of the following conditions is satisfied: (i) r2/b2 < r1/d1, k2 > k0
and y0 > y∗0 ; (ii) r2/b2 < r1/d1, k2 ≤ k0; (iii) r2/b2 = r1/d1 and k2 ≥ k0; (iv)
r2/b2 > r1/d1, k2 ≥ k0 > 0 and the initial density point is not below the separatrix
of P1.

4. Coexistence. In this section, we demonstrate features of the system (1) by
comparing dynamics of (1) with those of the Lotka-Volterra models.

We show that the mutualism at low density promotes coexistence of the species
by comparing the dynamics of (1) with those of the Lotka-Volterra predator-prey
model. Indeed, when there is no mutualism in (1), i.e., y0 = 0, the system (1)
becomes the Lotka-Volterra predator-prey model

dx/dt = x(r1 − d1x− b1y),

dy/dt = y(−r2 + b2x− d2y).
(7)

It is known that when r1/d1 ≤ r2/b2, all orbits of (7) in intR2
+ converge to the

equilibrium (r1/d1, 0), which corresponds to extinction of the predators (Hofbauer
and Sigmund 1998). However, under the same condition, the species can coexist in
(1) when there is mutualism at low density (i.e., y0 > 0). This can be described in
the following situations A and B.

Situation A. When r1/d1 = r2/b2, i.e., b2 = r2d1/r1, it follows from Proposition
2 that the two species can coexist if k2 ≥ k0. By (5), k2 ≥ k0 can be expressed as

b1 ≥
d2r1
r2

. (8)

That is, when the positive effect b2 of the prey on the predators is intermediate
(b2 = r2d1/r1), the predators can persist in (1) if the positive effect b1 of the
predators on the prey is not small (b1 ≥ d2r1

r2
). Here, b1 can not be regarded as

the negative effect of the predators on the prey since by Proposition 2, the interior
equilibrium is on the line segment l11, which is in the mutualism region.

Situation B. When r1/d1 < r2/b2, i.e., b2 < r2d1/r1, it follows from Proposition
3 that the two species can coexist if k2 ≥ k0 and the initial density point is not
below the separatrix of P1 (see Fig. 2c). By (5), k2 ≥ k0 can be expressed as

y0 ≥ y∗∗0 , y∗∗0 =
r2d1 − r1b2
b1b2 − d1d2

. (9)

Here, we have r2d1 − r1b2 ≥ 0 by r1/d1 ≤ r2/b2, while we have b1b2 − d1d2 > 0 by
k11 < k2 as shown in Fig. 2c. Thus y∗∗0 > 0, while y∗∗0 is a threshold for the species
coexistence. That is, when the positive effect b2 of the prey on the predators is
small (b2 < r2d1/r1), the predators can persist in the system (1) if the mutualism
region is not small (y0 ≥ y∗∗0 ) and the initial density of the predators is relatively
large (the initial density point is not below the separatrix of P1).
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Figure 2. Phase portrait diagrams for dynamical behavior of the
mutualism-parasitism system. Zero-growth isoclines for x and y are
represented by green and red lines, respectively. Grey arrows in the
phase plane display the direction and speed of vector fields. Filled
and open circles denote stable and unstable equilibria, respectively.
Saddle points have a black line (separatrix), which subdivides the
plane into two basins of attraction that correspond to particular
equilibria. In the following numerical simulations, fix r1 = 0.2, d1 =
b1 = 0.01, y0 = 10. In Fig. 2a, let r2 = 0.2, b2 = d2 = 0.01. Then
r1/d1 = r2/b2 and k2 = k0. All orbits in intR2

+ converge to the
equilibrium set l11. In Fig. 2b, let r2 = 0.1, b2 = 0.005, d2 = 0.01.
Then r1/d1 = r2/b2 and k2 < k0. All orbits in intR2

+ converge to
O1(r1/d1, 0). In Fig. 2c, let r2 = 2, b2 = 0.08, d2 = 0.01. Then
r1/d1 < r2/b2 and k2 > k0. All orbits above the separatrix (the
black line) of P1 converge to P2 with p21 > r1/d1, while those
below the separatrix tend to O1(r1/d1, 0). In Fig. 2d, let r2 =
2.3, b2 = 0.08, d2 = 0.01. Then r1/d1 < r2/b2 and k2 = k0. All
orbits above the separatrix (the black line) of P1 converge to P1

with p11 > r1/d1, while those below the separatrix tend to
O1(r1/d1, 0).

We show that the parasitism at high density in (1) enhances stability of the
system by comparing dynamics of (1) with those of the Lotka-Volterra cooperative
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model (2). As shown by Hofbauer and Sigmund (1998), all orbits of (2) in intR2
+

converge to infinity when b1 ≥ d1d2/b2 and b2 > r2d1/r1. That is, population
densities of the species tend to infinity if the positive effects b1 and b2 are not well
balanced. The tendency to infinity corresponds to an unstable situation since a
limited environment can not support infinite individuals. This tendency will not
happen in (1). Indeed, when y > y0, the system (1) becomes (3) where we have

dx/dt = x(r1 + 2b1y0 − d1x− b1y) < x(r1 + 2b1y0 − d1x).

Since solutions of the logistic equation dx/dt = x(r1 + 2b1y0 − d1x) are bounded,
then the solutions x(t) of (3) are bounded. Hence, it follows from dy/dt = y(−r2 +
b2x − d2y) that the solutions y(t) in (3) are bounded. Thus the orbits (x(t), y(t))
of (1) are bounded. Similarly, when y < y0, the first equation of (1) is dx/dt =
x(r1 − d1x + b1y) < x(r1 + b1y0 − d1x), and hence the orbits of (1) are bounded.
Therefore, the tendency of the orbits to infinity in (2) is prohibited in (1) by the
parasitism at high density (y > y0).

5. Transition of outcomes. In this section, according to the results in section
3, we divide the parameter space into six regions and demonstrate how and in
which order the interaction outcomes transition when the parameters and/or initial
population densities of the species vary. Meanwhile, the mechanism by which the
mutualism improves the production of the prey is shown. In order to show the
roles of all parameters in the transition of interaction outcomes, we consider the
seven-dimensional parameter space (b1, b2, d1, d2, r1, r2 and y0) in (1).

Firstly, it follows from Proposition 1 that when b2 > r2d1/r1 and y0 < y∗0 , all
orbits in intR2

+ converge to P2 with p21 < r1/d1 (see Fig. 1b); when b2 > r2d1/r1
and y0 = y∗0 , all orbits in intR2

+ converge to P2 with p21 = r1/d1; when b2 > r2d1/r1
and y0 > y∗0 , all orbits in intR2

+ converge to P2 with p21 > r1/d1, or converge
to P1 with p11 > r1/d1 as shown in Fig. 1c. Hence when b2 > r2d1/r1, the
parameter space can be divided into three regions: I = {b2 > r2d1/r1, y0 < y∗0}, II
= {b2 > r2d1/r1, y0 = y∗0} and III = {b2 > r2d1/r1, y0 > y∗0}, which correspond
to the interaction outcomes (+ −), (+ 0) and (+ +), respectively. When we fix
all but b2 and y0, the regions can be shown as the regions of I, II and III in the
b2y0 parameter plane in Fig. 3. That is, when the parameter point (b2, y0) varies
from regions I, to II, and to III, the interaction outcomes transition in the order of
(+ −)→ (+ 0)→ (+ +). The ecological meaning is that when the positive effect of
the prey on the predators is large (b2 > r2d1/r1), the interaction outcomes transition
from parasitism, commensalism to mutualism as the mutualism region between the
predators and prey increases from small (y0 < y∗0), intermediate (y0 = y∗0), to large
regions (y0 > y∗0).

Secondly, it follows from Proposition 2 and (8) that when b2 = r2d1/r1 and
b1 ≥ r1d2/r2, all orbits in intR2

+ converge to P2 with p21 > r1/d1 (see Fig. 1d) or
to the equilibrium set l11 (see Fig. 2a); when b2 = r2d1/r1 and b1 < r1d2/r2, all
orbits in intR2

+ converge to O1 (see Fig. 2b). Here, we define the parameter region
IV = {b2 = r2d1/r1}. When we fix all but b2 and y0, the region can be shown as
that of IV in Fig. 3. In this region, the interaction outcomes transition from (0 0)
to (+ +) as the positive effect of the predators increases from small (b1 < r1d2/r2)
to large values (b1 ≥ r1d2/r2). The ecological meaning is that when the positive
effect of the prey is intermediate (b2 = r2d1/r1), the interaction outcomes transition
from neutralism to mutualism as the the positive effect of the predators increases
from small to large values.
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Figure 3. The mechanism by which the interaction outcomes
vary with the factors and/or initial population densities is shown:
(a) when b2 > r2d1/r1, the outcomes transition in the order of
(+ −) → (+ 0) → (+ +) as the mutualism interval y0 changes
from small, intermediate to large values, which is shown in regions
I, II and III; (b) when b2 = r2d1/r1, the outcome transitions in the
order of (0 0) → (+ +) as the positive effect b1 of the predators
on the prey changes from small to large values, which is shown in
region IV; (c) when b2 < r2d1/r1, y0 > (r2d1 − r1b2)/(b1b2) and
y0 ≥ y∗∗0 , the outcomes transition in the order of (0 0)→ (+ +) as
the initial population density of the predators varies from small to
large values, which is shown in region V; (d) when b2 < r2d1/r1,
y0 ≤ (r2d1− r1b2)/(b1b2) and y0 < y∗∗0 , the outcomes become (0 0)
as shown in region VI.

Thirdly, it follows from Proposition 3(i)(ii), (6) and (9) that when b2 < r2d1/r1,
y0 > (r2d1 − r1b2)/(b1b2) and y0 ≥ y∗∗0 , all orbits which are above the separatrix of
P1 converge to P2 with p21 > r1/d1, while those below the separatrix of P1 converge
to O1 (see Fig. 2). Here, we define the parameter region V = {b2 < r2d1/r1, y0 >
(r2d1 − r1b2)/(b1b2), y0 ≥ y∗∗0 }. When we fix all but b2 and y0, the region can be
shown as that of V in Fig. 3. In this region, the interaction outcomes transition
from (0 0) to (+ +) as the initial density point varies from the area below the
separatrix of P1 to that above the separatrix. The ecological meaning is that when
the positive effect of the prey is small (b2 < r2d1/r1) but the mutualism region
is large, the interaction outcomes transition from neutralism to mutualism as the
initial density of the predators increases from small to large values.
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Finally, it follows from Proposition 3 (iii) that as b2 < r2d1/r1, all orbits in intR2
+

converge to O1 when y0 ≤ (r2d1 − r1b2)/(b1b2) or y0 < y∗∗0 . Here, we define region
VI = {b2 < r2d1/r1, y0 < y∗∗0 }

⋃
{b2 < r2d1/r1, y0 ≤ (r2d1 − r1b2)/(b1b2)}. Indeed,

VI = intR7
+ − I − II − III − IV − V. When we fix all but b2 and y0, the region

can be shown as that of VI in Fig. 3. In this region, the interaction outcomes are
(0 0). The ecological meaning is that when the positive effect of the prey is small
and the mutualism region is also small, the interaction outcomes are neutralism.

Therefore, the parameter space of (1) can be divided into six regions. When the
parameters in (1) vary continuously among the regions, the interaction outcomes
transition among (+ +), (+ 0), (+ −) and (0 0) in a smooth fashion. In addition,
in the region V, varying initial population densities of the species may lead to the
transition of outcomes between (0 0) and (+ +).

6. Discussion. In this paper, we introduced mutualism to the Lotka-Volterra
predator-prey model through a very simple device that did not increase the com-
plexity of the model. Based on the analysis of the mutualism-parasitism system,
we demonstrated the mechanisms by which mutualism promotes coexistence of the
species and leads to the high production of the prey. We also divided the parameter
space into six regions and showed that the interaction outcomes transition contin-
uously when the parameters vary among the regions and/or the initial population
densities of the species change. Our work provides a complement to the results by
Holland and DeAngelis (2009) and Neuhauser and Fargione (2004).

Based on the Lotka-Volterra predator-prey model, it is known that the prey
approaches a population density less than its carrying capacity when in coexistence
with the predators. The Lotka-Volterra model is based on the assumption that
the predators consume the prey without providing any form of positive feedback
to the prey in the process, which is not always consistent with real situations. It
follows from the analysis of our mutualism-parasitism system that the prey can
approach a high production when the effect of the predators changes from negative
to positive as predator population numbers decrease (Corollary 1). Thus our work
has potential applications for the growth of some specific species, which can be
stated as follows. Firstly, when the positive effect of the prey on the predators is
large, as shown in regions I, II and III of Fig. 3, large regions of mutualism between
predators and prey can lead to the high production of the prey. Secondly, when the
positive effect of the prey on the predators is intermediate, as shown in region IV
of Fig. 3, the predators, which have a large positive effect on the prey, will promote
the high production of the prey. Finally, when the positive effect of the prey on
the predators is small, but the region of mutualism between the predators and prey
is large as shown in region V of Fig. 3, large initial densities of the predators will
help the prey to approach the high production. For example, the problem of how to
enhance the production of oaks in forests has been a challenge in ecology (Miyaki
and Kikuzawa 1988; Herrera 1995; Cantrell et al. 2004; Li et al. 2006; Pérez-Ramos
and Maran 2008; Wang, Wu and Ruan 2011; Wang, DeAngelis and Holland 2011)).
The results in this paper have applications to the problem. Indeed, (a) when each
acorn provides high energy for the mice and the mutualism region between the mice
and oaks is large (see explanations in section 2), the oaks will approach the high
production; (b) when each acorn provides intermediate energy for the mice and the
mice are efficient in dispersing and burying the acorns, the oaks will also approach
the high production; (c) when each acorn provides low energy for the mice but the
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mutualism between the mice and oaks is very large, a high initial density of the
mice will lead to the high production of the oaks.

Based on the Lotka-Volterra model for mutualism, it is shown that ‘mutualism
between species tends to have a destabilizing effect on the community dynamics’
(May 1974). The destabilizing situation will not occur in the mutualism-parasitism
system in this paper. The reason is that in the mutualism-parasitism system, para-
sitism dominates when the predators are at high density. Then the explosive growth
of the prey is not possible. As a result, the explosive growth of the predators is
prohibited. Hence, the parasitism at high density promotes stability of the system.
Detailed discussions were given by Holland and DeAngelis (2010).

The consumer-resource theory established by Holland and DeAngelis (2009) well
described the general mutualism-parasitism interactions, in which the consumer has
a positive effect on its resource. In their paper, numerical simulations on a specific
system, which is an extension of the Rosenzweig-MacArthur model, show that the
positive effect may promote the species coexistence and production of the resource,
and result in the transition of interaction outcomes. While the system considered
in this work is simpler than their model, rigorous analysis is possible here, which
exhibits a quantitative description in how and when the positive effect (including
the mutualism region and the strength of mutualism) leads to the promotion and
transition.

Numerical simulations in Figs. 1 and 2 display transition of interaction outcomes
between the prey and predators. Figs. 1b and 1c exhibit that when the parameter
value b2/d2 decreases, the prey will approach a density larger than its carrying
capacity. Fig. 1d demonstrates a situation in which the two species can coexist
if both r2 and b2 are large. Figs. 2a and 2b show that the predators will go
to extinction when b2/d2 decreases. Figs. 2c and 2d demonstrate a situation in
which the interaction outcomes are density-dependant: when the initial densities of
the species are sufficiently large, the two species coexist and the prey approaches a
density larger than its carrying capacity; when the densities are small, the predators
will go to extinction while the prey approaches its carrying capacity.

In the specific mutualism-parasitism system, we use the parameter b1 to represent
both the positive and negative effects of the predators on the prey. When we use
different parameter values to represent these effects, similar results can be shown
in the same way. While the specific mutualism-parasitism model in this paper is
simple, our work provides an insightful explanation of the mechanisms involved in
the mutualism-parasitism systems.
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