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Abstract. In this article we analyze a mathematical model presented in [11].
The model consists of two scalar ordinary differential equations, which describe

the interaction between bacteria and amoebae. We first give the sufficient

conditions for the uniform persistence of the model, then we prove that the
model can undergo Hopf bifurcation and Bogdanov-Takens bifurcation for some

parameter values, respectively.

1. Introduction. Mathematical modeling of bacterial growth has recently attract-
ed increasing attention, also in connection with the problem of nosocomial infec-
tions, and different models of growth at the bacterial level have been investigated,
in order to understand specific mechanisms of pathogenesis and improve the effi-
cacy of drugs and antibiotics in controlling human infections [17, 8] (and references
therein). We also refer to [9] (and reference therein) for more information on models
for bacteria populations.

The ability of an organism to cause an infection in a human or animal host is
given by its virulence, whose factors can be determined from a genetic point of view
[14]. To this end, mammalian hosts are generally used as model hosts for studies on
pathogenic bacteria, because their mechanisms of infection are thought to be similar
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to those occurring in humans. However, non-mammalian organisms have also been
recently used, such as the nematode C. elegans, the insect D. melanogaster [15],
and the social amoeba D. discoideum [5, 10].

In this context, a recent study [11] has been developed on virulence of differ-
ent strains of the opportunistic human pathogen Pseudomonas aeruginosa, by per-
forming co-culture experiments with Dictyostelium discoideum. The interaction is
characterized by the capability of bacteria of attacking amoebae that, in turn, feed
upon bacteria, so that a cross action between the two populations is observed.

Based on these experiments, in [11] a mathematical model has also been devel-
oped to describe the interaction between the two populations and to derive the
evolution of the system with respect to a few relevant parameters. The model is
not a typical predator-prey one, because bacteria are both victims (amoebae feed
upon them) and predators (they are pathogenic and thus able to kill amoeba cells).
The specific features of the model are:

• in the absence of interactions between both populations, bacteria follow logis-
tic growth, while amoebae decay exponentially;

• amoebae feed on bacteria through a mass-action mechanism, and grow pro-
portionally to the uptake of bacteria;

• bacteria attack and kill amoeba cells through a Holling-type mechanism.

The above peculiarities are included in the following mathematical model, in
dimensionless form (see [11] for details):



u̇(t) = u(t) (1− u(t))︸ ︷︷ ︸
logistic growth of bacteria

− u(t)v(t)︸ ︷︷ ︸
predation of bacteria by amoebae

v̇(t) = δu(t)v(t)︸ ︷︷ ︸
predation yield

− µv(t)︸ ︷︷ ︸
mortality of amoebae

− γ
u(t)v(t)

1 + Tv(t)︸ ︷︷ ︸
infection of amoebae by bacteria

,
(1)

where u(t) is the number of bacteria at time t, and v(t) is the number of amoebae
at time t, δ > 0 is the growth rate of amoebae, µ > 0 is the natural mortality rate
of amoebae, γ > 0 is the rate at which bacteria kill amoebae and T > 0 is the
handling time of amoebae by bacteria.

In [11], existence and stability of positive steady states have been studied under
two particular assumptions arising from the experimental framework: namely, it is
supposed that µ � 1 because the timescale of interactions is small compared with
the lifetime of amoebae, and T � 1 to account for the fast killing of amoebae by
bacteria.

In the present work, instead, the dynamics of the same model is explored for the
general case: existence and stability of steady states is analyzed in detail, uniform
persistence is shown, and a bifurcation analysis is performed. In particular in this
article we prove that model undergoes Bogdanov-Takens bifurcation.
The plan of the paper is the following. In section 2 conditions for the existence of
nonnegative equilibria are provided. In section 3 we perform a local analysis of
equilibria. Section 4 is devoted to Hopf bifurcation. In section 5 we show that
Bogdanov-Takens bifurcation occurs.
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2. Preliminary. We can rewrite model (1) more comfortably as follows: u̇ = u(1− u− v),

v̇ = v

(
−µ+ δu− γu

1 + Tv

)
,

(2)

We can see that the u-axis and v-axis are invariant under the flow of system (2).
Thus [0,+∞) × [0,+∞) is positively invariant (i.e. forward invariant) for (2). In
this section, we first describe the equilibria of system (2). Then we will turn to its
dissipativity property, and the uniform persistence for system (2).

Equilibria: We first observe that (1, 0) and (0, 0) are equilibria for all permissible
values of parameters. So we just seek conditions for the existence of positive equi-
libria in (0,+∞)× (0,+∞), which is equivalent to looking for the positive solutions
of the following equations

1− u− v = 0,

−µ+ δu− γu

1 + Tv
= 0.

(3)

It is clear that equations (3) have no positive solutions if either µ
δ ≥ 1 or u is in

the interval (0, µδ ) ∪ [1,+∞) or if v is in the interval [1,+∞). From now on, we
shall consider (3) only in the case where µ

δ < u < 1 and 0 < v < 1. Thus, (3) is
equivalent to

v = 1− u, u =
µ

δ
+

γu

δ(1 + T )− δTu
.

Set

f(u) :=
µ

δ
+

γu

δ(1 + T )− δTu
, g(u) :=

γu

δ(1 + T )− δTu
, u ∈

[
0,

(1 + T )

T

)
.

Then f , g are convex and increasing functions. Moreover

f ′(u) = g′(u) =
γ(1 + T )

δ((1 + T )− Tu)2
≥ 0, f ′′(u) = g′′(u) =

2γ(1 + T )T

δ((1 + T )− Tu)3
≥ 0.

It is readily checked that if f has a positive fixed point u ∈ (0, 1), then µ
δ < u < 1,

so we just need to discuss conditions for the existence of the fixed point u ∈ (0, 1).
The equation f(u) = u is equivalent to the second order equation

δTu2 − (δ(1 + T )− γ + µT )u+ µ(T + 1) = 0,

having

∆ := (δ(1 + T )− γ + µT )2 − 4δ(T + 1)µT.

Then

∆ = (δ(1 + T ) + µT )2 − 2γ(δ(1 + T ) + µT ) + γ2 − 4δ(T + 1)µT

= (δ(1 + T )− µT )2 − 2γ(δ(1 + T )− µT ) + γ2 − 2γµT

so we also have

∆ = (δ(1 + T )− γ − µT )2 − 2µTγ.

Set

u± =
(δ(1 + T )− γ + µT )±

√
∆

2δT
,

and

v± = 1− u±.
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whenever ∆ ≥ 0.
We have

f(0) =
µ

δ
< 1, f ′(0) =

γ

δ(T + 1)
,

f(1) =
µ+ γ

δ
, f ′(1) =

γ(T + 1)

δ
, g(1) =

γ

δ
.

By using the fact that f is a convex and increasing function, together with the
fact that f = µ

δ + g, we obtain the following result.

Theorem 2.1. Assume first that f(0) < 1 and f ′(0) < 1. Then the following as-
sertions hold:

(a) If ∆ > 0 we have the following alternatives:
(i) If f(1) < 1 there is one positive equilibrium E0(u0, v0) := (u−, v−);
(ii) If f(1) = 1 and f ′(1) > 1 there is one positive equilibrium E0(u0, v0) :=

(u−, v−);
(iii) If f(1) > 1 and f ′(1) > 1, there are two positive equilibria E1(u1, v1) :=

(u+, v+) and E2(u2, v2) := (u−, v−);
(iv) If either f(1) > 1 or f ′(1) ≤ 1, there is no positive equilibrium.

(b) If ∆ = 0 then
(i) If f ′(1) > 1, there is one positive equilibrium E0(u0, v0) = (u−, v−) =

(u+, v+);
(ii) If f ′(1) ≤ 1, there is no positive equilibrium.

(c) If ∆ < 0, then there is no equilibrium.

Furthermore, if either f ′(0) ≥ 1 or f(0) ≥ 1, then there is no positive equilibrium.

We summarize Theorem 2.1 in Figure 1 and Figure 2.
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Figure 1: Number of equilibria in the (µ, γ)−plane of parameters. In this figure
T = 1 and δ = 1. In the green region, the system has one interior equilibrium. In
the yellow region, the system has two interior equilibria. In the white region, the
system has no interior equilibrium.
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Figure 2: Number of equilibria in the (µ, δ)−plane of parameters. In this figure
T = 1 and γ = 1. In the green region, the system has one interior equilibrium. In
the yellow region, the system has two interior equilibria. In the white region, the
system has no interior equilibrium.

Dissipativity and uniform persistence: We first observe that the subregions

∂D0 :=
{

(u, v) ∈ [0,+∞)2 : u = 0
}

and

∂D1 :=
{

(u, v) ∈ [0,+∞)2 : v = 0
}

are positively (forward) invariant by the flow. Set

D1 := {(u, v) : u ∈ [0, 1] , and v ≥ 0} .

Since

u̇ ≤ u(1− u)

we deduce that

u(t) ≤ max (1, u(0)) =: κ0,∀t ≥ 0

and

lim sup
t→+∞

u(t) ≤ 1.

Moreover, we have

u̇ = u(1− u− v),

v̇ ≤ v (−µ+ u) ,

thus

(δu+ v)
′ ≤ δu(κ0 − u)− µv ≤ δκ0(κ0 − u)− µv ≤ δκ20 − δκ0u− µv
≤ δκ20 −min (κ0, µ) (δu+ v) .

So we obtain

(δu+ v)
′ ≤ δκ20 −min (κ0, µ) (δu+ v) .
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Set

D2 :=

{
(u, v) ∈ [0,+∞)2 : (δu+ v) ≤ δ

min (1, µ)

}
.

In the following proposition, we use the terminology and the results of Hale [12],
and we derive the existence of a global attractor for system (2).

Proposition 2.2. System (2) is point dissipative, and every solution of (2) is
attracted by the bounded domain D1 ∩D2, that is to say that

lim sup
t→+∞

u(t) ≤ 1, and lim sup
t→+∞

(δu(t) + v(t)) ≤ δ

min (1, µ)
.

Moreover D = D1 ∩ D2 is a positively invariant subregion by the semiflow, and
system (2) has a global attractor in D.

Uniform persistence: It is clear that ∂D0 and ∂D1 are positively invariant. Set

M0 = (0,+∞)× (0,+∞) ,

and
∂M0 = R2

+ \ (0,+∞)× (0,+∞) = ∂D0 ∪ ∂D1.

Now, by combining Proposition 2.2 with some local analysis around (0, 0) and (1, 0),
and by applying the result of Hale and Waltman [13], one derives

Proposition 2.3. System (2) is uniformly persistent with respect to the pair (∂M0,
M0) if

δ > γ + µ (⇔ f(1) < 1).

That is, there exists ε > 0, such that for (u(0), v(0)) ∈M0, then

lim inf
t→+∞

u(t) > ε and lim inf
t→+∞

v(t) > ε.

Furthermore , if δ < γ+µ (⇔ f(1) > 1), then (1, 0) is locally exponentially stable.

Remark 2.4. As a consequence of Theorem 2.1, if there exist two equilibria in
(0,∞)2, we must have δ < γ + µ. In this case, by Proposition 2.3, we deduce that
the equilibrium on the boundary (1, 0) must be locally exponentially stable.

3. Local dynamics of nonnegative equilibria. In this section, we discuss local
dynamics of system (2). First, we calculate the jacobian matrix at the equilibrium
(u, v), which is

J(u, v) :=

(
1− 2u− v −u

δv − γ v

1 + Tv
δu− µ− γ u

(1+Tv)2

)
.

Obviously, J(0, 0) =

(
1 0
0 −µ

)
, so O(0, 0) is a hyperbolic saddle for all permissi-

ble choices of parameters.

Note that J(1, 0) =

(
−1 −1
0 −(µ+ γ − δ)

)
. Therefore, we have the following

lemma.

Lemma 3.1. (i) Equilibrium E(1, 0) is a stable node if µ+ γ − δ > 0;
(ii) equilibrium E(1, 0) is a saddle-node if µ + γ − δ = 0 and γT + γ − δ 6= 0;

equilibrium E(1, 0) is a stable degenerate node if µ+γ−δ = 0 and γT+γ−δ =
0;
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(iii) equilibrium E(1, 0) is a saddle if µ+ γ − δ < 0.

Proof. Conclusions (i) and (iii) are clear. We only prove conclusion (ii).
When µ+γ−δ = 0, then E(1, 0) has one zero eigenvalue. So E(1, 0) is degenerate.

To determine the topological classification of the equilibrium, we first move E(1, 0)
to the origin and expand system (2) in a power series around the origin. Let
x1 = u− 1, x2 = v. Then system (2) can be transformed into{

ẋ1 = −x1 − x2 − x21 − x1x2,
ẋ2 = (δ − γ)x1x2 + (γT + γ − δ)x22 + γTx1x

2
2 − γT 2x32 +R(x1, x2, λ),

(4)

where λ = (δ, µ, γ, T ), and R(x1, x2, λ) is a power series in (x1, x2) at least of the
fourth order. Making the affine transformation

y1 = x1 + x2, y2 = x2

and time reversal, system (4) is transformed into{
ẏ1 = ψ1(y1, y2, λ),
ẏ2 = ψ2(y1, y2, λ),

(5)

where λ = (δ, µ, γ, T ) and

ψ1(y1, y2, λ) =y1 + y21 − (δ − γ + 1)y1y2 − (γT + γ − δ)y22 + P1(y1, y2, λ),

ψ2(y1, y2, λ) =(γ − δ)y1y2 − (γT + γ − δ)y22 − γTy1y22 + γT (T + 1)y32 + P2(y1, y2, λ)

where P1(y1, y2, λ) is a power series in (y1, y2) at least of the third order, P2(y1, y2, λ)
is a power series in (y1, y2) at least of the fourth order.

According to the implicit function theorem, we can get that there exists a
smooth function y1 = φ(y2, λ) in a small neighborhood of the origin such that
ψ1(φ(y2, λ), y2, λ) ≡ 0 in this small neighborhood of the origin, where φ(y2, λ) =
(γT + γ − δ)y22 +O(y32).

Plugging y1 = φ(y2, λ) into ψ2(y1, y2, λ), we have

ψ2(y1, y2, λ) = −(γT + γ − δ)y22 + γT (T + 1)y32 − (δ − γ)(γT + γ − δ)y32 +O(y42).

From Theorem 7.1 in Chapter 2 of [19], we obtain that equilibrium (0, 0) of system
(5) is a saddle-node if γT + γ − δ 6= 0, while it is an unstable degenerate node if
γT + γ − δ = 0. This implies that statement (ii) is true since the time in (4) is
reversed with respect to (5).

Let us consider positive equilibria Ei(ui, vi), i = 0, 1, 2, and use the notation of
Theorem 2.1. By some computations, we get

J(ui, vi) =

 −ui −ui
µ
vi
ui

γ
Tuivi

(1 + Tvi)2

 (6)

The characteristic equation of J(ui, vi) is

λ2 + ui

(
1− γTvi

(1 + Tvi)2

)
λ+ vi

(
µ− γTu2i

(1 + Tvi)2

)
= 0. (7)

Note that (ui, vi) is a positive solution of (3). From Theorem 2.1 and the property
of the roots of the characteristic equation (7), we have

Lemma 3.2. Equilibrium E1(u1, v1) is a hyperbolic saddle, E2(u2, v2) is not de-
generate and it is not a saddle (i.e. det(J(u2, v2)) > 0), where 0 < u2 < u1 < 1.
Equilibrium E0(u0, v0) has the following topological classification:
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(i) E0(u0, v0) is not degenerate if condition (a)-(i) holds. Furthermore under the
conditions in (a)-(ii) (i.e. f(1) = 1, f ′(1) > 1), there are three cases for
E0(u0, v0). More precisely, E0(u0, v0) is a locally asymptotically stable node
or focus if either T + 1 ≥ δ or{

T + 1 < δ,

γ < δ2

(T+1)(δ−T−1) ;

E0(u0, v0) is an unstable node or focus if{
T + 1 < δ,

γ > δ2

(T+1)(δ−T−1) ;

E0(u0, v0) is a weak focus or center if{
T + 1 < δ,

γ = δ2

(T+1)(δ−T−1) .

(ii) E0(u0, v0) is degenerate if condition (b)-(i) holds. More precisely, E0(u0, v0)
is a cusp if 

µ =
δ

T

(√
T + 1−

√
γ

δ

)2

,

γ =

(√
T + 1

δ
+

√
δ

T + 1

)2

,

δ >
T + 1

T
;

E0(u0, v0) is a saddle-node if

µ =
δ

T

(√
T + 1−

√
γ

δ

)2

,

γ 6=

(√
T + 1

δ
+

√
δ

T + 1

)2

,

δ

T + 1
< γ < δ(T + 1).

From Theorem 2.1 and Lemma 3.2, we have

Theorem 3.3. (1) If system (2) has only two equilibria O(0, 0) and E(1, 0), then
E(1, 0) is a global attractor which attracts all orbits in the interior of the first
quadrant if one of the following conditions holds:
(a) µ− γ + δ > 0;
(b) µ− γ + δ = 0 and γT + γ − δ = 0;

(2) If system (2) has three equilibria O(0, 0), E0(u0, v0) and E(1, 0), then system
(2) will undergo some bifurcations around E0(u0, v0), such as saddle-node
bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation for some pa-
rameters.

(3) If system (2) has four equilibria O(0, 0), E1(u1, v1), E2(u2, v2) and E(1, 0),
then O(0, 0) and E1(u1, v1) are hyperbolic, E(1, 0) is a stable node and
E2(u2, v2) will undergo Hopf bifurcation for some parameters.
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4. Hopf bifurcation of system (2). In this section, we will assume that one of
conditions (a)-(i), (a)-(ii) or (a)-(iii) of Theorem 2.1 is satisfied. We will consider
γ as a bifurcation parameter of the system, and we will provide some conditions
to derive Hopf bifurcation around (u−, v−) with respect to γ. We recall that u− ∈
(µ/δ, 1) and v− = 1− u− satisfy the second equation in (3), that is

−µ+ δu− −
γu−

1 + Tv−
= 0

⇔ µ

u−
= δ − γ

1 + Tv−

⇔ (δu− − µ)

γu−
=

1

(1 + Tv−)
.

Then the matrix J(u−, v−) becomes

J(u−, v−) =

 −u− −u−
µ
v−
u−

γ
Tu−v−

(1 + Tv−)2


=

 −u− −u−
v−

(
δ − γ 1

1 + Tv−

)
−µ+ u−

(
δ − γ 1

(1+Tv−)2

) 
=

 −u− −u−
v−

µ
u−

−µ+ u−

(
δ − γ

(
(δu−−µ)
γu−

)2) 
=

(
−u− −u−

µ(1−u−)
u−

−µ+ δu− − (δu−−µ)2
γu−

)
,

so we obtain

J(u−, v−) =

(
−u− −u−

µ(1−u−)
u−

(δu− − µ)
[
1− (δu−−µ)

γu−

] )
.

Now we study the existence of purely imaginary roots for J(u−, v−). So we look
for the value of u− such that J(u−, v−) has a purely imaginary eigenvalue iω with
ω > 0. This is equivalent to

J(u−, v−)

(
x
y

)
= iω

(
x
y

)
⇔

{
−u−(x+ y) = iωx
µ(1−u−)

u−
x+ (δu− − µ)

[
1− (δu−−µ)

γu−

]
y = iωy

⇔

 y =
(
−1− iω

u−

)
x

µ(1−u−)
u−

x+ (δu− − µ)
[
1− (δu−−µ)

γu−

]
y = iωy

⇔

 y =
(
−1− iω

u−

)
x

µ(1−u−)
u−

+ (δu− − µ)
[
1− (δu−−µ)

γu−

] (
−1− iω

u−

)
= iω

(
−1− iω

u−

)
so we obtain

µ (1− u−)

u−
+ (δu− − µ)

[
1− (δu− − µ)

γu−

](
−1− iω

u−

)
= iω

(
−1− iω

u−

)
.
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By identifying the real and the imaginary parts, we obtain the system
µ(1−u−)

u−
− (δu− − µ)

[
1− (δu−−µ)

γu−

]
= ω2

u−

(δu− − µ)
[
1− (δu−−µ)

γu−

]
ω
u−

= ω

⇔

 u− = (δu− − µ)
[
1− (δu−−µ)

γu−

]
ω2

u−
= µ(1−u−)

u−
− u−

⇔

{
u− = (δu− − µ)

[
1− (δu−−µ)

γu−

]
ω2 = µ− µu− − u2−

⇔

{
1 = γ (δu−−µ)

γu−

[
1− (δu−−µ)

γu−

]
ω2 = µ− µu− − u2−

;

but
(δu− − µ)

γu−
=

1

(1 + Tv−)
, thus this is also equivalent to{

1 = γ 1
(1+Tv−)

[
1− 1

(1+Tv−)

]
ω = µ− µu− − u2−

⇔
{

(1 + Tv−)
2

= γ [(1 + Tv−)− 1]
ω = µ− µu− − u2−

⇔

{
(1 + Tv−)

2 − γ (1 + Tv−) + γ = 0

ω = µ+ µ2

4 −
(
u− + µ

2

)2
.

Therefore we have

ω = µ− µu− − u2− > 0 and u− > 0⇔ u− ≤
√
µ+

µ2

4
− µ

2
.

Set

χ∗ (γ) :=
γ −

√
γ (γ − 4)

2
> 1 ∀ γ > 4. (8)

which is the smallest solution of x2 − γx+ γ = 0 whenever γ > 4. We have

χ∗ (γ) > 2 for ∀ γ > 4.

Thus we must have γ > 4, and

(1 + Tv−) = χ∗ (γ)⇔ Tu− = (1 + T )− χ∗ (γ) .

If γ ≥ (µ+ δ) (1 + T ), the above inequality is always satisfied. If instead γ <
(µ+ δ) (1 + T ), then we need to impose the condition

u− <
µ (2 + T )

(µ+ δ) (1 + T )− γ
.

So we finally obtain {
u− = T−1 [(1 + T )− χ∗ (γ)] =: u∗0

0 < u− <
√
µ+ µ2

4 −
µ
2 .

(9)

Lemma 4.1. Let one of conditions (a)-(i), (a)-(ii) or (a)-(iii) of Theorem 2.1 be
satisfied, and assume that γ > 4. Then the spectrum of J(u−, v−) consists of a pair
of purely imaginary eigenvalues {−iω, iω} if and only if

µ = T−1 [(1 + T )− χ∗ (γ)]

[
δ − γ

χ∗ (γ)

]
, (10)
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whenever
γ

χ∗ (γ)
< (δ + µ) , (11)

(1 + T )− T

[√
µ+

µ2

4
− µ

2

]
< χ∗ (γ) < (1 + T ) . (12)

Proof. It remains to find some conditions to verify u− = u∗0. But u− is the unique
positive solution of

u =
µ

δ
+

γu

δ [1 + T − Tu]

and (1 + T − Tu∗0) = χ∗ (γ) , so it is sufficient to verify

δu∗0 = µ+
γu∗

0

χ∗(γ) ⇔ u∗0 = µ[
δ− γ

χ∗(γ)

]
⇔ T−1 [(1 + T )− χ∗ (γ)] = µ[

δ− γ
χ∗(γ)

] .

Remark 4.2. In the special case f(1) = µ+γ
δ = 1, we obtain a unique point in the

(γ, µ)-plane of parameters

δ0 = (T + 1)2, γ0 =
(T + 1)2

T
, and µ0 =

(T + 1)2(T − 1)

T
,

all the conditions of Lemma 4.1 are satisfied for T > 1. Indeed, in this case we have

χ∗ (γ0) =
T + 1

T
.

Condition (11) is satisfied as long as γ0 > 4 is equivalent to T > 1, and

µ = T−1 [(1 + T )− χ∗ (γ)]
[
δ − γ

χ∗(γ)

]
⇔ µ = (T+1)(T−1)

T 2

[
δ − γT

T+1

]
⇔ T 2µ = δ

(
T 2 − 1

)
− T (T − 1) γ.

Now, since δ = µ+ γ, we obtain

µ = γ [T − 1] ,

thus (10) is satisfied. Moreover for T > 1, we clearly have

χ∗ (γ) < (1 + T ) ,

and

u− =
(1 + T )− χ∗ (γ)

T
=
T 2 − 1

T 2
=

µ

T (T + 1)
.

Moreover one deduces that

ω = µ− µu− − u2− > 0, for T > 1.

Transversality condition: To prove the occurrence of Hopf bifurcation it remains
to prove the transversality condition. Now we consider γ as a parameter, and for
each γ, we consider u−(γ) the unique solution in (0, 1) of

δTu−(γ)2 − (δ(1 + T )− γ + µT )u−(γ) + µ(T + 1) = 0.
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By deriving this expression, we obtain

u−(γ)′ [2δTu−(γ)− (δ(1 + T )− γ + µT )] + u−(γ) = 0
⇔ u−(γ)′

[
δTu−(γ)2 +

[
δTu−(γ)2 − (δ(1 + T )− γ + µT )u−(γ)2

]]
+ u−(γ)2 = 0

⇔ u−(γ)′
[
δTu−(γ)2 − µ(T + 1)

]
+ u−(γ)2 = 0

thus if δTu−(γ)2 6= µ(T + 1), then

du−
dγ

=
u−

2

[µ(T + 1)− δTu−(γ)2]
. (13)

Moreover
δTu−(γ)2 6= µ(T + 1)
⇔ −(δ(1 + T )− γ + µT )u−(γ) 6= 0
⇔ −(δ(1 + T )− γ + µT ) 6= 0.

(14)

Now

Trace (J(u−(γ), v−(γ))) = −u−(γ) + (δu−(γ)− µ)

[
1− (δu−(γ)− µ)

γu−(γ)

]
and since (δu−−µ)

γu−
= 1

(1+Tv−) with v−(γ) = 1− u−(γ), we have

Trace (J(u−(γ), v−(γ))) = −u− + γu−
(1+Tv−)

[
1− 1

(1+Tv−)

]
thus

Trace (J(u−(γ), v−(γ))) = u−

[
−1 +

[
γTv−

(1 + Tv−)
2

]]
.

The main result of this section is the following theorem.

Theorem 4.3. Let (µ0, γ0, δ0, T0) ∈ (0,+∞)
4
, with γ0 > 4. Assume that one of

conditions (a)-(i), (a)-(ii) or (a)-(iii) of Theorem 2.1 is satisfied, and conditions
(10)-(12) hold for (µ0, γ0, δ0, T0) . Then there exists γ = γ0 such that

− χ∗ (γ0)
3

+ γ0T0 (1 + T0) (χ∗ (γ0)− 1) 6= 0, (15)

γ0 6= δ0(1 + T0) + µ0T0. (16)

System (2) undergoes Hopf bifurcation around E0(u−, v−), when γ passes through
γ0.

Proof. We first note that (16) implies u−(γ0)′ 6= 0. Moreover, we have u−(γ)′ =
−v−(γ)′, thus

dTrace(J(u−(γ),v−(γ)))
dγ = u′−

[
−1 +

[
γTv−

(1+Tv−)2

]]
+γTu−

[[
(1+Tv−)2−2Tv−(1+Tv−)

(1+Tv−)4

]
v′−

]
= u′−

{
−(1+Tv−)3+γT [−1+2v−+Tv−]

(1+Tv−)3

}
,

but by assumption

v− = 1− u∗0 = 1− T−1 [(1 + T )− χ∗ (γ0)] ,

so
Tv− = [χ∗ (γ0)− 1] .

Thus

T [−1 + 2v− + Tv−] = T
(
[χ∗ (γ0)− 2] + 2

[
1− T−1 [(1 + T )− χ∗ (γ0)]

])
= T

(
χ∗ (γ0)− T−1 [(1 + T )− χ∗ (γ0)]

)
= (1 + T ) (χ∗ (γ0)− 1)
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and
(1 + Tv−) = χ∗ (γ0) ,

so finally

dTrace (J(u−(γ), v−(γ)))

dγ
=

u′−

(1 + Tv−)
3

{
−χ∗ (γ0)

3
+ γT (1 + T ) (χ∗ (γ0)− 1)

}
,

and the result follows.

To be more precise about the Hopf bifurcation occurring in this problem, we draw
a bifurcation diagram in Figure 3, and some numerical simulations are presented in
Figure 4.

0 5 10 15
0

1

2

3

4

5

6

µ

γ

Hopf Bifurcation curve

Figure 3: The curve (10) with T = 1.6 and δ = 3(T + 1)2/(2T ) = 6.7600. Hopf
bifurcation occurs when γ crosses this curve.
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Figure 4: Solution to system (2), with T = 1.6, δ = 7.56, and µ = 2.835. We fix
γ = 2.7250 in figure (a), and γ = 4.7250 in figure (b). Due to the Hopf bifurcation,
by increasing the value of the parameter γ, we pass from a stable regime to a regime
with undamped oscillations.
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5. Bogdanov-Takens bifurcation of system (2). In this section, we consider
the bifurcation of cusp as the parameters vary in a small neighborhood of (δ0, µ0, γ0,
T0), where 

µ0 =

(√
T0 + 1

δ0T0
−
√

δ0T0
T0 + 1

)2

,

γ0 =

(√
T0 + 1

δ0
+

√
δ0

T0 + 1

)2

,

δ0 >
T0 + 1

T0
.

(17)

Under condition (17), system (2) has a unique positive equilibrium (u∗, v∗) =(
1− T0 + 1

δ0T0
,
T0 + 1

δ0T0

)
. Now we consider the system u̇(t) = u(t)− u2(t)− u(t)v(t),

v̇(t) = δ0u(t)v(t)− µ0v(t)− γ0
u(t)v(t)

1 + T0v(t)
.

(18)

First of all, we translate the positive equilibrium (u∗, v∗) to the origin and expand
system (18) in a power series around the origin. Let x = u− u∗, y = v − v∗. Then
system (18) can be written as ẋ = −u∗x− u∗y − x2 − xy,

ẏ = u∗x+ u∗y +
1

v∗
xy +

u∗

v∗(1 + T0v∗)
y2 + P (x, y),

(19)

where P (x, y) is a smooth function in (x, y) at least of the third order. Next we
derive the normal form of system (19) in the small neighborhood of the origin.
Making the affine transformation

u = x, v = −u∗x− u∗y,
we can see that system (19) becomes

u̇ = v +
1

u∗
uv,

v̇ = u∗
T0 + 1

1 + T0v∗
u2 +

T0u
∗v∗ − u∗

v∗(1 + T0v∗)
uv − 1

v∗(1 + T0v∗)
v2 +Q(u, v),

(20)

where Q(u, v) is a smooth function in (u, v) at least of the third order.
Let

x = u+

(
− 1

2u∗
+

1

2v∗(1 + T0v∗)

)
u2, y = v +

1

v∗(1 + T0v∗)
uv.

Then system (20) is transformed into{
ẋ = y +R1(x, y),
ẏ = d1x

2 + d2xy +R2(x, y),
(21)

where d1 = u∗
T0 + 1

1 + T0v∗
, d2 =

T0u
∗v∗ − u∗

v∗(1 + T0v∗)
, and R1 and R2 are smooth functions

in (x, y) at least of the third order.
Note that

d1 = u∗
T0 + 1

1 + T0v∗
> 0, d2 =

T0u
∗v∗ − u∗

v∗(1 + T0v∗)
=
u∗(T0 + 1− δ0)

δ0v∗(1 + T0v∗)
.

From the normal form of a nilpotent singular point in [3],[6] and [7], we have
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Theorem 5.1. The positive equilibrium (u∗, v∗) of system (18) is a cusp of codi-
mension 2 if δ0 6= T0 + 1, while it is a cusp of codimension at least 3 if δ0 = T0 + 1
and T0 < 1.

If T0+1−δ0 = 0, then bifurcation of high codimension will occur. Computations
of the normal form are complicated, and will be the subject of future work. In the
following we always assume that T0 + 1 − δ0 6= 0. Now we study the normal form
of system (2.1) in the small neighborhood of (u∗, v∗) if parameters (δ, µ, γ, T ) vary
in the small neighborhood of (δ0, µ0, γ0, T0).

For convenience, we denote

(δ0, µ0, γ0, T0) = (a01, a
0
2, a

0
3, a

0
4) = a0, (δ, µ, γ, T ) = (a1, a2, a3, a4) = a.

From (21), we know that system (2.1) in a small neighborhood of (u∗, v∗) can be
rewritten as {

ẋ = y + w1(x, y, a),
ẏ = d1x

2 + d2xy + w2(x, y, a),
(22)

where w1, w2 ∈ C∞(R2 × R5,R), w1(x, y, a0) = R1(x, y), w2(x, y, a0) = R2(x, y).

Lemma 5.2. Assume that (x, y, a) is in a small neighborhood of (0, 0, a0). If T0 +
1− δ0 6= 0, then system (22) is C∞ equivalent to ẋ = y,

ẏ = ϕ1(a) + ϕ2(a)x+ x2 + ψ(a)y +

[
d2√
d1

+ β(a)

]
xy +R(x, y, a),

(23)

where ϕ1, ϕ2, ψ, and β are smooth functions, ϕ1(a0) = ϕ2(a0) = ψ(a0) = β(a0) =
0, R is a C∞ function in (x, y) at least of the third order.

Proof. Consider the parameter-dependent nonsingular change of variables

x1 = x, x2 = y + w1(x, y, a),

then system (22) can be written as{
ẋ1 = x2,
ẋ2 = P1(x1, a) + x2P2(x1, a) + x22Ψ(x1, x2, a),

(24)

where P1,P2,Ψ ∈ C∞ and

P1(0, a0) =
∂P1(0, a0)

∂x1
= 0,

∂2P1(0, a0)

∂x21
= 2d1 > 0

P2(0, a0) = 0,
∂P2(0, a0)

∂x1
= d2 6= 0,Ψ(0, 0, a0) = 0.

Applying the Malgrange Preparation theorem (see [4], p. 43) to the function
P1(x1, a), we have

P1(x1, a) = (ϕ1(a) + ϕ2(a)x1 + x21)B1(x1, a),

where ϕ1,ϕ2,B1 ∈ C∞ and B1(0, a0)=d1, ϕi(a
0) = 0, i=1,2. Therefore, system (24)

becomes
ẋ1 = x2,

ẋ2 =

[
ϕ1(a) + ϕ2(a)x1 + x21 +

x2P2(x1, a)

B1(x1, a)
+
x22Ψ(x1, x2, a)

B1(x1, a)

]
B1(x1, a),

(25)



274 LAURA FUMANELLI, PIERRE MAGAL, DONGMEI XIAO AND XIAO YU

Since Ψ(0, a0) = 0 and B1(0, a0) = d1 > 0, there exists a function ψ(a) such that
P2(0,a)√
B1(0,a)

= ψ(a). Set

x = x1, y =
x2√

B1(x1, a)
, τ =

∫ t

0

√
B1(x1(s), a)ds.

Then system (25) becomes
dx

dτ
= y,

dy

dτ
= ϕ1(a) + ϕ2(a)x+ x2 +

yP2(x, a)√
B1(x, a)

+ y2G(x, y, a).
(26)

Expanding the function P2(x,a)√
B1(x,a)

in a power series of x around x = 0, we have

P2(x, a)√
B1(x, a)

= ψ(a) +

(
d2√
d1

+ β(a)

)
x+ F (x, a),

where β is a smooth function, F (x, a) is a C∞ function of (x, a), ∂F (0,a)
∂x = 0 and

β(a0) = 0.
If we set

R(x, y, a) = yF (x, a) + y2G(x, y, a),

then system (26) is transformed into system (23). Thus, the result follows.

We now choose δ and µ as the bifurcation parameters and fix (γ, T ) = (γ0, T0)
to study if system (2.1) can undergo Bogdanov-Takens bifurcation in the small
neighborhood of (u∗, v∗) as parameters δ and µ vary in the small neighborhood of
(δ0, µ0).

Consider u̇(t) = u(t)− u2(t)− u(t)v(t),

v̇(t) = (δ0 − λ1)u(t)v(t)− (µ0 − λ2)v(t)− γ0
u(t)v(t)

1 + T0v(t)
,

(27)

where δ0, µ0, γ0 and T0 satisfy condition (17) and T0 + 1− δ0 6= 0, and λ = (λ1, λ2)
is a parameter vector in a small neighborhood of (0, 0). Let

x = u− u∗, y = v − v∗
ẋ = −u∗x− u∗y − x2 − xy,
ẏ = v∗(−λ1u∗ + λ2) + (u∗ − λ1v∗)x+ (u∗ + λ2 − λ1u∗)y

+

(
1

v∗
− λ1

)
xy +

u∗

v∗(1 + T0v∗)
y2 + P (x, y, λ),

(28)

where P (x, y, λ) is a smooth function in (x, y) at least of the third order. Making
the affine transformation

u = x, v = −u∗x− u∗y,
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we see that system (28) becomes

u̇ = v +
1

u∗
uv,

v̇ = u∗v∗(u∗λ1 − λ2) + [(u∗v∗ − u∗2)λ1 + u∗λ2]u+ (−u∗λ1 + λ2)v

+

(
u∗(T0 + 1)

1 + T0v∗
− u∗λ1

)
u2 +

(
u∗(T0 + 1− δ0)

δ0v∗(1 + T0v∗)
− λ1

)
uv − 1

1 + T0v∗
v2

+Q(u, v, λ).
(29)

Let
A(λ) = u∗v∗(u∗λ1 − λ2),

B(λ) = (u∗v∗ − u∗2)λ1 + u∗λ2,
C(λ) = −u∗λ1 + λ2, D(λ) = −u∗λ1, E(λ) = −λ1,

where λ = (λ1, λ2).
Following the process for the normal form of system (20), system (29) can be

transformed into
ẋ = y +R1(x, y, λ),

ẏ = A(λ) +

(
B(λ) +

A(λ)

v∗(1 + T0v∗)

)
x+ C(λ)y

+(d1 + c1(λ))x2 + (d2 + E(λ))xy +R2(x, y, λ),

(30)

where d1 = u∗
T0 + 1

1 + T0v∗
> 0, d2 =

u∗(T0 + 1− δ0)

δ0v∗(1 + T0v∗)
6= 0, c1(λ) is a smooth function

of λ, R1 and R2 are smooth functions in (x, y) at least of the third order and the
coefficients depend smoothly on λ1 and λ2.

By Lemma 5.2, system (30) can be changed into the following system

ẋ = y,

ẏ =
A(λ)

d1
+ φ1(λ) +

B(λ) + A(λ)
v∗(1+T0v∗)

d1
+ φ2(λ)

x+

[
C(λ)√
d1

+ φ3(λ)

]
y,

+x2 +

[
d2√
d1

+ φ4(λ)

]
xy +R(x, y, λ),

(31)
where φ1,φ2 and φ3 are smooth functions of λ at least of the second order, φ4 is a
smooth function of λ at least of the first order, R is a smooth function in (x, y) at
least of the third order. Let

u = x− 1

2

B(λ) + A(λ)
v∗(1+T0v∗)

d1
+ φ2(λ)

 , v = y.

Then system (31) becomes u̇ = v,

v̇ = µ1 + µ2v + u2 +

(
d2√
d1

+ ψ4

)
uv +Q(u, v, λ),

(32)

where Q(u, v, λ) is a smooth function in (u, v) at least of the third order,

µ1 =
A(λ)

d1
+ ψ1(λ), µ2 =

C(λ)√
d1
− d2

2d
3
2
1

[
B(λ) +

A(λ)

v∗(1 + T0v∗)

]
+ ψ2(λ), (33)

and ψ1,ψ2 and ψ4 have the same properties of φ1,φ2 and φ4.
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Note that

det

(
∂µ1

∂λ1

∂µ1

∂λ2

∂µ2

∂λ1

∂µ2

∂λ2

)
(0,0)

= − d2

2d
5
2
1

u∗2v∗2 6= 0.

Thus, the parameter transformation (33) is a homeomorphism in a small neighbor-
hood of the origin, and µ1 and µ2 are independent parameters.

By theorems in [2], [3], [16] and [18], we know that system (32) undergoes the
Bogdanov-Takens bifurcation when λ is in a small neighborhood of the origin. The
local representations of the bifurcation curves are as follows:

(a) The saddle-node bifurcation curve is

SN = {(λ1, λ2) : µ1(λ1, λ2) = 0}

(b) The Hopf bifurcation curve is

H =

{
(λ1, λ2) : µ2(λ1, λ2) =

d2√
d1

√
−µ1(λ1, λ2), µ1(λ1, λ2) < 0

}
(c) The homoclinic bifurcation curve is

HL =

{
(λ1, λ2) : µ2(λ1, λ2) =

5d2

7
√
d1

√
−µ1(λ1, λ2), µ1(λ1, λ2) < 0

}
.

According to the bifurcation curves and the sign of d1d2, we now summarize the
dynamics of system (27) in a small neighborhood of (u∗, v∗) as parameters (δ, µ)
vary in a small neighborhood of (δ0, µ0) in the following theorem, where δ0,µ0,γ0,
and T0 satisfy the conditions (17) and T0 + 1− δ0 6= 0.

Theorem 5.3. There exists a small neighborhood of (u∗, v∗) such that system (27)
undergoes Bogdanov-Takens bifurcation as parameters (δ, µ) are in a small neigh-
borhood of (δ0, µ0). More precisely,

(i) system (27) has a unique positive equilibrium if parameters (δ, µ) are on the
saddle-node bifurcation curve SN ;

(ii) system (27) has two positive equilibria (one is a saddle and the other is a weak
focus of order one) if parameters (δ, µ) are on the Hopf bifurcation curve H;

(iii) system (27) has two positive equilibria (one is a saddle and the other is a hy-
perbolic focus) and a homoclinic loop if parameters (δ, µ) are on the homoclinic
bifurcation curve HL;

(iv) system (27) has two positive equilibria (one is a saddle and the other is a
hyperbolic focus) and a limit cycle if parameters (δ, µ) are in the region between
the Hopf bifurcation curve H and the homoclinic bifurcation curve HL. The
limit cycle is stable if max{T0 + 1, T0+1

T0
} < δ0, while it is unstable if T0 + 1−

δ0 > 0 and T0 > 1.

We give the numerical simulation of system (27) in two cases: I. max{T0 +
1, T0+1

T0
} < δ0; II. T0 + 1− δ0 > 0 and T0 > 1.

Case I. Taking δ0 = 20, µ0 = 2.25, T0 = 0.25 and γ = 18.0625, then system (27)
has a unique positive equilibrium (0.75, 0.25) if λ1 = λ2 = 0. In the interior of the
first quadrant there exists a unique orbit of system (27) which converges to this
positive equilibrium, and all other orbits of system (27) converge to the boundary
equilibrium (1, 0).

When λ1 = −0.36 and λ2 = −0.265, system (27) has two positive equilibria and
one stable limit cycle. Taking the initial condition (u, v) = (0.73, 0.27), we can
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see that the solution of system (27) converges to a stable limit cycle as t tends to
positive infinity.

Case II. Taking δ0 = 5.5, µ0 = 3.2, T0 = 10 and γ = 4.5, then system (27)
has a unique positive equilibrium (0.8, 0.2) if λ1 = λ2 = 0. In the interior of the
first quadrant there exists a unique orbit of system (27) which converges to this
positive equilibrium, and all other orbits of system (27) converge to the boundary
equilibrium (1, 0).

When λ1 = −0.324 and λ2 = −0.259, system (27) has two positive equilibria
and one unstable limit cycle. Taking the initial condition (u, v) = (0.7995, 0.2005),
we can see that the solution of system (27) converges to an unstable limit cycle as
t tends to negative infinity.

To conclude this section, we explain further the Bogdanov-Takens bifurcation
point in Figure 5, and some numerical simulations are presented in Figure 6.
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intersection point between the curve µ = θ(δ) and the curve ∆ = 0 corresponds to
the Bogdanov-Takens bifurcation point.
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Figure 6: Solution to system (2), with γ = 7.429 and T = 10. We fix δ = 2.1
and µ = 0.4329 in figure (a), and we fix δ = 2.0567 and µ = 0.04329 in figure
(b). These sets of parameters are a ”small” perturbation of the Bogdanov-Takens
bifurcation point. We observe that we can pass from a stable unique equilibrium
attracting all the orbits, to a heteroclinic orbit going from the interior equilibrium
to the equilibrium (u, v) = (1, 0) on the boundary.
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6. Conclusion. In this work we have shown that the dynamics of the proposed
model is quite rich. In particular, dropping the assumptions considered in [11] (small
natural mortality rate for amoebae and small handling time during the killing pro-
cess by bacteria) leads to a great increase in the complexity of the dynamics: both
Hopf and Bogdanov-Takens bifurcations may occur for proper choices of parameters.
Specifically, for sufficiently large values of the virulence parameter γ, an increase
in the natural mortality of amoebae µ gives chance of observing Hopf bifurcation
and thus oscillations in the two populations. Moreover, fixing the parameters ac-
counting for the killing of amoebae by bacteria (namely, γ and T ), the system may
undergo Bogdanov-Takens bifurcation for suitable values of the parameters related
to growth, δ, and natural mortality of amoebae µ.

Our theoretical investigation suggests that, depending on the aggressiveness of
the bacterial strain, on the growth and mortality rates of amoebae and on the
initial number of cells, a quite complex biological system, in which both predator-
prey and host-pathogen interactions occur, may show a large variety of behaviors.
Unfortunately, the experimental framework does not allow an easy investigation of
the (transient) behavior of the two populations; in fact, there are some practical
limitations (for instance due to frequency and precision of observations) that may
affect the measurement of possible oscillations in the number of cells. This makes
the empirical validation of the results derived by the mathematical analysis of the
model challenging.
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