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Abstract. In this work we present a mathematical model for tumor growth

based on the biology of the cell cycle. For an appropriate description of the

effects of phase-specific drugs, it is necessary to look at the cell cycle and its
phases. Our model reproduces the dynamics of three different tumor cell pop-

ulations: quiescent cells, cells during the interphase and mitotic cells. Starting

from a partial differential equations (PDEs) setting, a delay differential equa-
tions (DDE) model is derived for an easier and more realistic approach. Our

equations also include interactions of tumor cells with immune system effectors.

We investigate the model both from the analytical and the numerical point of
view, give conditions for positivity of solutions and focus on the stability of

the cancer-free equilibrium. Different immunotherapeutic strategies and their
effects on the tumor growth are considered, as well.

1. Introduction. For years cancer has been a reason for a dramatically high mor-
tality rate in populations. In the last century, enormous efforts have been made by
medical doctors, biologists and radiologists in order to understand, treat and cure
this disease ([25]). Recently, contributions have also been given by the mathemat-
ical biology, with theoretical models for the description and the comprehension of
tumor growth. One common idea to almost all these models is the classification of
tumor cells in three groups (Fig. 1): necrotic cells (which are dead and located in
the most internal part of the solid tumor), quiescent cells (are not dead, but have
not enough nutrients for cell growth or division), proliferating cells (the active part,
they undergo mitosis). The interested reader can find a review e.g. in [20].

A large class of models for cancer growth focuses on the dynamics of proliferating
cells, which are responsible for the extension of the tumoral mass. In particular cell
aging and cell cycle (Fig. 2) have been considered in many and different approaches
([12, 13, 16, 26]). The processes of cell aging and cell division can indeed not be
neglected when investigating tumor proliferation. All eukaryotic cells undergo the
cell cycle, a sequence of four phases ([2, 17]). The G1 phase is necessary for the cell
to grow up, before the DNA is replicated in the S phase. A second growth phase
(G2) follows and the mitotic phase (M ) concludes the cycle, with division of nucleus
and cytoplasm. As a result of a completed sequence, two daughter cells enter the
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Figure 1. Schematic illustration of the different stages of tumor growth.

cycle in G1. The first three phases are often summed up together and referred to as
’interphase’. In order to guarantee an error-free replication, there is a biochemical
control system which verifies at five different checkpoints whether the processes at
each phase of the cell cycle have been accurately completed before progression into
the next phase. If anything did not work properly, the cycle stops.

Cells may also enter the so-called G0 state in which they live in a quiescent state,
neither growing nor dividing. It usually happens that cells lacking growth factors
stop at a checkpoint, move from G1 to G0 and start the cycle again after a certain
time ([8]).

One of the main reasons for cancer is a malfunction of the control system, which
leads to uncontrolled growth of a group of cells. In this work we give a mathematical
model for tumor growth based on the dynamics of the cell cycle. For a better

Figure 2. Scheme of the cell cycle, its phases and checkpoints.

representation of the real-life problems, many biological phenomena are described by
mathematical models which include time delays ([18, 24]). In our model equations
(Section 2) a constant delay τ describes the length of the interphase. A similar
modeling approach has also been used in [16] and [26]. In both works, mathematical
models were developed using the mass action principle, which combined with the
delay equation approach leads to incorrectness in the equations. In contrast, we
derive our model from a renewal equation, which in turn corresponds to a set of
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differential equations with delay ([5, 19]). As a further improvement on the existing
delay models, we can also ensure positivity of solutions, choosing the initial functions
from a proper set of initial data (Section 3). In Section 4 we present the analysis of
the dynamical system, with particular attention to the stability of the tumor-free
state. Section 5 is dedicated to the numerical simulation of the model. In Section 6
we investigate the interplay between tumor cells and immune-system effectors. We
also simulate the effects of different immunotherapeutic cures on the tumor.

2. The mathematical model. To the knowledge of the authors, two mathemat-
ical models with delay have been written to date to describe the effects of phase-
specific drugs on a solid tumor. The first approach by Villasana and Radunskaya
[26] describes proliferating tumor cells which undergo chemotherapy and interact
with immune-system effectors. Liu et al. [16] modified and extended the model in
[26] including a resting state for the tumoral cells.

A standard delay model for an immature population (x1) and a mature one (x2)
has the structure ([4, 19]):

ẋ1(t) = r1(t)−m1(t)− d1(t), (1)

ẋ2(t) = r2(t)−m2(t)− d2(t),

where ri, mi, di are respectively recruitment, maturation and death factors of pop-
ulation xi. Recruitment in x1 is mostly given by a birth function, whereas in
x2 it occurs by maturation only ([19]). Nisbet et al. ([14, 19, 4]) showed that
m1(t) = r2(t) is indeed a function of x2(t− τ), where τ > 0 is the maturation time.

Although modeling basically an immature (interphase cells) and a mature (mi-
totic cells) population, the system in [16] does not show the standard setting (1): the
maturation term m1 in the immature population equation is undoubtedly missing.
In the authors’ opinion it should therefore be corrected.

Considering the biology of the cell cycle (Section 1), in the following we derive a
DDE model for tumor growth, respecting the standard structure (1).

Our starting point is a tumoral cell population structured by age. Let p(a, t) be
the density of proliferating cells in age-class a at time t. For this population, the
Lotka-Sharpe model ([22]) is used:

pt(a, t) + pa(a, t) = −µ(a)p(a, t),

p(0, t) =

∫ ∞
0

b(a)p(a, t) da, (2)

p(a, 0) = ψ0(a).

System (2) describes the aging process of individuals, with an age-dependent birth-
law, given an initial age distribution ψ0 ([22, 27]). In (2), both birth and death rate
do only depend on the age of the individuals. We assume here that these rates are
piece-wise constant functions of the age:

b(a) = b1Hτ (a),

µ(a) = µ0 + (µ1 − µ0)Hτ (a), (3)

where Hτ (a) is the Heaviside function with jump at a = τ and b1 > 0, µ0 ≥ 0,
µ1 > 0 are real, nonnegative constants. The value τ corresponds to the length in
time of the interphase. Thus, (3) means that interphase cells do not divide and
die at rate µ0, mitotic cells divide at rate b1 and die at rate µ1. Even though the
interphase duration may be affected by few factors (e.g. drugs concentration [21]),
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Variable Description

Q(t) Number of quiescent (G0) cells at time t
U(t) Number of mitotic cells at time t
V (t) Number of interphase (G1, S and G2) cells at time t
I(t) Number of lymphocytes at time t
D(t) Drug concentration at time t
Table 1. List of variables used for the mathematical model.

for the sake of simplicity we assume that τ is a constant value. The biology suggests
that τ is nonnegative and bounded, i.e. there exist τmin ≥ 0 and τmax < ∞ such
that τmin ≤ τ ≤ τmax holds.

Following the approach introduced in [5], we define the following three popula-
tions of cells:

• V (t) =
∫ τ
0
p(a, t) da, the total number of cells in G1, S and G2 (interphase).

Interphase cells cannot divide, become quiescent at rate µQ, die at rate µ0.
• U(t) =

∫∞
τ
p(a, t) da, the total population of mitotic cells. These cells divide at

rate b1 and die at rate µ1. The biological meaning of the parameters requires
µ1 > b1.

• Q(t), the total amount of G0 cells at time t. Quiescent cells do not age, do
not divide ([17]). They die at rate µG0 or enter the cycle again (at rate bQ),
starting from G1 ([8]).

A list of the model variables is to find in Table 1. Without loss of generality, we
consider a time t > a and write the renewal equation for p(a, t):

p(a, t) = p(0, t− a)e−
∫ a
0
µ(s) ds

= p(0, t− a)e−
∫ τ
0
µ0+µQ dse−

∫ a
τ
µ1 ds

= p(0, t− a)e−(µ0+µQ)τe−µ1(a−τ). (4)

The birth law for V (t) reads:

p(0, t) =

∫ ∞
0

b(a)p(a, t) da︸ ︷︷ ︸
result of mitosis

+ bQQ(t)︸ ︷︷ ︸
from quiescence

(5)

= 2b1U(t) + bQQ(t).

Substitution in (4) leads to:

p(a, t) = [2b1U(t− a) + bQQ(t− a)] e−(µ0+µQ)τe−µ1(a−τ). (6)

The total mitotic population at time t is then:

U(t) =

∫ ∞
τ

[2b1U(t− a) + bQQ(t− a)] e−(µ0+µQ)τe−µ1(a−τ) da. (7)

Differentiation with respect to the time t yields:

U̇(t) = [2b1U(t− τ) + bQQ(t− τ)] e−(µ0+µQ)τ︸ ︷︷ ︸
maturation

− µ1U(t).︸ ︷︷ ︸
dead cells

(8)

Equation (8) describes the evolution in time of the mitotic cells population: mitotic
cells at time t are those which have been generated by mitosis or came from the
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quiescent phase at time t−τ and did not die nor exit the cycle in [t−τ, t]. The term
µ1U(t) expresses the natural death of the mitotic cells. Analogously, we derive a
differential equation for interphase cells:

V̇ (t) = 2b1U(t)︸ ︷︷ ︸
from mitosis

− (2b1U(t− τ)− bQQ(t− τ)) e−(µ0+µQ)τ︸ ︷︷ ︸
maturation

+ bQQ(t)︸ ︷︷ ︸
from quiescence

(9)

− µ0V (t)︸ ︷︷ ︸
dead cells

− µQV (t).︸ ︷︷ ︸
enter quiescence

The dynamics of quiescent cells is easy to derive, for it is not characterized by
age-dependent factors:

Q̇(t) = µQV (t)︸ ︷︷ ︸
enter quiescence

− bQQ(t)︸ ︷︷ ︸
start the cycle

− µG0Q(t).︸ ︷︷ ︸
death of G0-cells

(10)

This basic model (8)-(10) can be extended by including drugs and immune system
agents (a summarizing scheme in Figure 3):

Q̇(t) = µQV (t)− bQQ(t)− µG0
Q(t)− kQI(t)Q(t), (11)

U̇(t) = (2b1U(t− τ) + bQQ(t− τ))e−(µ0+µQ)τ−k0
∫ τ
0
I(t−τ+σ)dσ (12)

− U(t)(µ1 + k2I(t) + k5(1− e−k3D(t))),

V̇ (t) = 2b1U(t) + bQQ(t)− V (t)(µ0 + µQ + k0I(t)) (13)

− (2b1U(t− τ) + bQQ(t− τ))e−(µ0+µQ)τ−k0
∫ τ
0
I(t−τ+σ)dσ,

İ(t) = k + ρI(t)
(Q(t) + U(t) + V (t))n

α+ (Q(t) + U(t) + V (t))n
− δ4I(t) (14)

− (c1Q(t) + c2U(t) + c3V (t))I(t)− k6(1− e−k7D(t))I(t),

Ḋ(t) = −γD(t). (15)

Tumor cells are attacked by the immune system: e.g. the term −kQI(t)Q(t) in (11)
models the death of tumoral quiescent cells due to immune system effectors. Similar
holds for equations (12) and (13). The terms e−(µ0+µQ)τ and e−k0

∫ τ
0
I(t−τ+σ)dσ in

(12) describe the probabilities that an interphase cell survives for a period τ , neither
becoming quiescent, nor being attacked by the immune system. Further we consider
the effects of chemotherapy: the phase-specific drug attacks mitotic tumor cells only.
The impact of the drug on the mitotic cells is described by −U(t)k5(1− e−k3D(t)),
where (1− e−k3D(t)) is the probability of tumor-drug interaction. We assume that
the drug kills lymphocytes as well, therefore a similar term is to be found in equation
(14). The chemotherapeutic treatment is assumed to be a one-time injection at
time t = 0. Drug usage and decay occur at constant loss rate γ ([16, 26]). For the
immune system agents we assume that there is a constant production rate k, even
in the tumor-free state. In presence of tumor cells, the lymphocyte production is
stimulated. Interaction with tumor cells leads to immune system cells loss ([10]).

3. Nonnegative solutions. In this Section we give conditions for positivity of the
basic delay model (8)-(10). Similar considerations could be done for the extended
system (11)-(15) (results not shown here).
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Figure 3. Schematic illustration of the mathematical model.

3.1. The proper initial data. We consider now the simple delay model (8)-(10)
for tumoral cells only. This system holds for all t ≥ τ . The challenge at this point
is to define what happens for a time t < τ .

We go back for a moment to the PDE model (2). For t < τ , the solution of
the balance-equation requires information on the initial distribution ψ0(a). At this
point we recall that only interphase and mitotic cells are age-structured populations.
Quiescent cells do not age, indeed ([17]).

Let us define

u0(s) := ψ0(s), s < τ. (16)

We indicate by u0(τ − t) the density of cells of age τ − t at time 0. At time t these
cells will be of age τ and, consequently, enter the mitotic class. As we are dealing
with initial distributions, the previous consideration only holds for the structured
populations, thus there is no similar term for the quiescent cells. Quiescent cells
enter the cycle form G1, so we believe them to be of “age zero” when they re-enter
the cycle. A quiescent cell which re-enters the cycle should spend a time τ in the
interphase, before passing to the mitotic phase. This does not happen for t < τ .
All in all, for t < τ the model equations read:

V̇ (t) = 2b1U(t) + bQQ(t)− u0(τ − t)e−(µ0+µQ)t − (µ0 + µQ)V (t),

U̇(t) = u0(τ − t)e−(µ0+µQ)t − µ1U(t), (17)

Q̇(t) = µQV (t)− (bQ + µG0
)Q(t).

This system gives the appropriate description of the phenomenon in [0, τ ] and it is
thus the correct expression of the initial data. Still, there is an inconvenience: the
solution of (17) depends on the initial data of the age-structured problem (2). This
is the next point we are going to discuss.

3.2. Nonnegativity of solutions. A recurrent challenge in mathematical biology
is given by the fact that solutions are not allowed to leave the positive cone or a
part of it. Although being more and more used in applications, systems of delay
equations may show negative solutions, even when the initial data are nonnegative
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([24]). In population dynamics, problems concerning nonnegativity of solutions were
already considered e.g. in [1, 5].

The first delay model for tumor growth ([26]) was questioned by Liu et al. ([16])
mainly because it was showing negative solutions in positive time. In [16] the
authors gave an alternative system whose structure guarantees positive solutions
(cf. [24], Chapter 3). We discussed in Section 2 the reasons why also this second
model needs to be improved. However, both our simplified model (8)-(10) and
extended model (11)-(15) do not respect the condition given in [24] and thus do
not ensure positivity of solutions. We could derive the proper initial system (17)
which gives the required information of the initial interval [0, τ ], but we noticed
as well that this system depends on the initial distribution ψ0(a) of (2). If the
initial age-distribution is known, one can compute the solution of the initial system
(17) and use it as history function for the DDE problem. In this case, positivity is
preserved and guaranteed from the well-posedness of the PDE problem ([22, 27])
and the formal derivation of the ODE (17) and DDE (8)-(10) problems. Difficulties
arise when we do not know the initial distribution ψ0. In this case we have to define
a set of “good” initial-functions which guarantee preservation of positivity for the
solutions of the delay model. We proceed as it was done in [5] for a simpler problem.

Consider the second equation of (17) and transform it as follows:

U̇(t) + µ1U(t) = u0(τ − t)e−(µ0+µQ)t,

d

dt

(
U(t)eµ1t

)
e(µ0+µQ−µ1)t = u0(τ − t). (18)

Condition (18) means that U(t)eµ1t is a nondecreasing function in [0, τ ]. Further,
integration in [0, τ ] yields: ∫ τ

0

d

dt

(
U(t)eµ1t

)
e(µ0+µQ−µ1)t dt =

∫ τ

0

u0(τ − t) dt,

U(τ)e(µQ+µ0)τ − U(0)−
∫ τ

0

U(t)e(µQ+µ0)t(µ0 + µQ − µ1) dt =

∫ τ

0

u0(z) (dz).

So we get:

V (0) = U(τ)e(µ0+µQ)τ − U(0)− (µ0 + µQ − µ1)

∫ τ

0

U(t)e(µ0+µQ)t dt (19)

Substitution of the term u0(τ − t)e−(µ0+µQ)t in V̇ (t) yields:

V̇ (t) = (2b1 − µ1)U(t) + bQQ(t)− U̇(t)− (µ0 + µQ)V (t). (20)

We solve (20) using variation of constants method and integration by parts and get

V (t) = (U(0) + V (0))e−(µQ+µ0)t − U(t) + bQ

∫ t

0

Q(x)e(µ0+µQ)(t−x) dx

+(2b1 + µ0 + µQ − µ1)

∫ t

0

U(x)e−(µ0+µQ)(t−x) dx. (21)

The third equation of (17) is an ODE, so we have no problem with it, as long as we
choose a nonnegative initial value Q(0). The explicit solution for Q is:

Q(t) = Q(0)e−(bQ+µG0
)t + µQ

∫ t

0

V (s)e(bQ+µG0
)(s−t) ds. (22)
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We define an operator T : C[0, τ ] → C[0, τ ] so that (TU)(t) = V (t), t ∈ [0, τ ] and
V (t) is given by (21) with V (0) as in (19). At this point we dispose of all elements
to define the cone

K :=
{

(V,U,Q) ∈ (C[0, τ ])3 : U(0) ≥ 0, U(t)eµ1t is nondecreasing in [0, τ ],

V = TU, Q(0) ≥ 0} . (23)

Let us sum up the results in the following

Proposition 1. Consider (2) with the restriction of the initial function (16).
The functions V (t), U(t), Q(t) defined in Section 2 satisfy (17) for t ∈ [0, τ ] and
(V[0,τ ], U[0,τ ], Q[0,τ ]) ∈ K.

Conversely, for functions (Ṽ , Ũ , Q̃) ∈ K there is an initial distribution ψ0(a) ≥ 0

such that the solution (V,U,Q) of (17) restricted to [0, τ ] corresponds to (Ṽ , Ũ , Q̃),

i.e. (V[0,τ ], U[0,τ ], Q[0,τ ]) = (Ṽ , Ũ , Q̃).

4. Stability results. For biomedical reasons, it is important to look at the long-
time behavior of tumoral cell populations. In this Section we investigate the stability
of the cancer-free steady state and determine conditions on the model parameters
for tumor growth or eradication. As next we analyze the model without delay, then
we investigate the (de)stabilizing effects of τ .

4.1. System without delay. In the following we investigate the ODE system
(τ = 0) corresponding to (11)-(15).

4.1.1. Simple model: Tumor cells, no immunotherapy, no chemotherapy. For a first
investigation, we observe the tumor cells only, neglecting both immunotherapy and
chemotherapy. The simplified model reads:

Q̇(t) = µQV (t)− (bQ + µG0)Q(t), (24)

U̇(t) = 2b1U(t) + bQQ(t)− µ1U(t), (25)

V̇ (t) = −(µ0 + µQ)V (t). (26)

This is a linear system with the only stationary state P ∗3 := (0, 0, 0). To check for
stability, we calculate the eigenvalues of the coefficient matrix

A :=

−(bQ + µG0) 0 µQ
bQ 2b1 − µ1 0
0 0 −(µ0 + µQ)

 . (27)

The roots of the characteristic equation are

λ1 = −bQ − µG0 , (28)

λ2 = 2b1 − µ1, (29)

λ3 = −µ0 − µQ. (30)

It is trivial to see that all roots are real and that λ1 < 0 and λ3 < 0. All in all:

Proposition 2. The stationary state P ∗3 is locally asymptotically stable, if b1 <
µ1

2
holds.

This means that, if the death rate µ1 of the mitotic cells is large compared to the
division rate b1, the tumor will vanish at a point.
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4.1.2. Model with immunotherapy, no chemotherapy. In this paragraph, we include
immunotherapeutic effects into the basic ODE model (24)-(26):

Q̇(t) = µQV (t)− bQQ(t)− µG0
Q(t)− kQI(t)Q(t), (31)

U̇(t) = 2b1U(t) + bQQ(t)− U(t)(µ1 + k2I(t)), (32)

V̇ (t) = −V (t)(µ0 + µQ + k0I(t)), (33)

İ(t) = k + ρI(t)
(Q(t) + U(t) + V (t))n

α+ (Q(t) + U(t) + V (t))n

− δ4I(t)− (c1Q(t) + c2U(t) + c3V (t))I(t). (34)

Since our interest focuses on tumor growth (or eradication) in the long-time be-
havior, we investigate the stability of the cancer-free equilibrium P ∗4 := (0, 0, 0, kδ4 ).
The Jacobian matrix at the stationary point is:

B := J(P ∗4 ) =


−(bQ+µG0

+
kQk

δ4
) 0 µQ 0

bQ 2b1−µ1− k2kδ4 0 0

0 0 −(µ0+µQ+
k1k
δ4

) 0

− c1kδ4 − c2kδ4 − c3kδ4 −δ4

 . (35)

From the characteristic polynomial

pB(λ) =
1

δ34
(λ+ δ4)(δ4λ+ µ1δ4 + k2k − 2b1δ4) (k1k + δ4λ (36)

+µ0δ4 + µQδ4) (kQk + δ4λ+ bQδ4 + µG0δ4),

we get the eigenvalues

λ1 = −δ4, (37)

λ2 = − 1

δ4
(µ1δ4 + k2k − 2b1δ4), (38)

λ3 = − 1

δ4
(k1k + µ0δ4 + µQδ4), (39)

λ4 = − 1

δ4
(kQk + bQδ4 + µG0

δ4). (40)

It is easy to verify that all eigenvalues are real and λ1, λ3 and λ4 are always negative.
The stability of P ∗4 depends on the real part Re(λ2).

Proposition 3. The tumor-free equilibrium P ∗4 is locally asymptotically stable if
δ4(µ1 − 2b1) + k2k > 0.

When µ1 − 2b1 > 0, it is δ4(µ1 − 2b1) + k2k > 0 and the tumor would be defeated
even without immune system interaction (Section 4.1.1). In case µ1−2b1 < 0, a low
death rate δ4 of the lymphocytes, a high lymphocytes production rate k or a high
immunotherapy effectiveness k2 is necessary for tumor eradication. The stability
condition for the tumor-free steady state can be as well written as k > δ4

k2
(2b1−µ1).

It is indeed practical to have a stability condition in terms of the parameter k,
as that can be controlled from the outside, for example with immunotherapeutic
treatments (see also Section 6).
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4.1.3. Model with immuno- and chemotherapy. Now we consider the complete model
(11)-(15), for τ = 0. The tumor-free steady state is

P ∗5 := (0, 0, 0,
k

δ4
, 0).

The corresponding Jacobian matrix is

C := J5 (P ∗5 ) =


0

B 0
0

−k6kδ4
0 0 0 0 −γ

 , (41)

where B is the Jacobian in (35). The spectrum of C is σ(C) = σ(B)∪{−γ}. Because
of γ > 0, the stability conditions of (3) stay unchanged even if chemotherapy is
included.

4.2. System with delay. Now we consider the delay model and compare the re-
sults to the previous ones. For simplicity, consider first the model with no im-
munotherapy nor chemotherapy and neglect the quiescent state:

U̇(t) = 2b1U(t− τ)e−µ0τ − µ1U(t), (42)

V̇ (t) = 2b1(U(t)− U(t− τ)e−µ0τ )− µ0V (t). (43)

In this case the only stationary point is (U∗, V ∗) = (0, 0). To determine stability,
it is not necessary to investigate the roots of the characteristic equation of the
system. As it can be easily recognized, equation (42) is autonomous and for the
structure of (43), it is sufficient to determine stability conditions for U∗ = 0 to have
the corresponding conditions for the trivial equilibrium. Equation (42) is linear
and has a “positivity structure”, indeed, whenever U(t) = 0 the right hand-side
is non-negative (compare [23], Section 5.1). In this case, the dominant root of the
characteristic equation must be real ([23, 24]). Therefore it is sufficient to investigate
the real characteristic roots of

z + µ1 − 2b1e
−µ0τe−zτ = 0. (44)

The real roots z ∈ R of (44) are given by the intersections of the line y = z+µ1 with
the curve y = 2b1e

−µ0τ−zτ . If 2b1e
−µ0τ < µ1, then there is no intersection in the

positive half-plane and so no characteristic root z with Re(z) > 0. If the parameter
values are such that 2b1e

−µ0τ > µ1, then the two curves intersect at some point z
such that Re(z) > 0 and the fixed point becomes unstable. An equivalent condition
for instability can be formulated in terms of the delay:

2b1e
−µ0τ > µ1 ⇔ ln

(
2b1
µ1

)
> µ0τ ⇔ τ < τ̂ :=

1

µ0
ln

(
2b1
µ1

)
.

Let us summarize our results in a proposition:

Proposition 4. Consider the delay system (42)-(43) for mitotic and interphase
tumor cells. The stability of the tumor-free steady state depends on the parameters
as follows:

• For all τ > τ̂ := 1
µ0
ln
(

2b1
µ1

)
the dominant characteristic root of (44) lies in

the negative half-plane and the stationary point is stable.
• For τ < τ̂ the tumor-free equilibrium is unstable.
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Symbol Description Value

µG0 death rate of G0-cells ( 1
[time]

) 0.1 · 10−4

µQ transition rate from G1 to G0 ( 1
[time]

) 0.02

kQ effectiveness of immune system on G0-cells ( 1
[cells·time]

) 0.1 · 10−8

bQ transition rate from G0 to G1 ( 1
[time]

) 0.2

b1 division rate of M -cells ( 1
[time]

) see text

µ0 death rate of G1-cells ( 1
[time]

) 0.11

k0 effectiveness of immune system on G1-cells ( 1
[cells·time]

) 10−8

µ1 death rate of M -cells ( 1
[time]

) 0.28

k2 effectiveness of immune system on M -cells ( 1
[cells·time]

) 0.4 · 10−8

k5 drug degradation rate on M -cells ( 1
[time]

) 0.7

k3 effectiveness of drugs on M -cells ( 1
[concentration]

) 0.25 · 10−3

k production rate of lymphocytes ( [cells]
[time]

) 0.15 · 106

ρ stimulation rate of I due to the tumor ( 1
[time]

) 0.2

n non-linearity of tumor-immune system interplay 3

α threshold for the immune system activation ([cells]n) 0.5 · 106

δ4 death rate of lymphocytes ( 1
[time]

) 0.3

c1 loss of lymphocytes by interaction with G0-cells ( 1
[cells·time]

) 0.2 · 10−6

c2 loss of lymphocytes by interaction with G1-cells ( 1
[cells·time]

) 0.8 · 10−7

c3 loss of lymphocytes by interaction with M -cells ( 1
[cells·time]

) 0.108 · 10−6

k6 drug degradation rate on lymphocytes ( 1
[time]

) 0.3

k7 effectiveness of drug on lymphocytes ( 1
[concentration]

) 0.5 · 10−2

γ degradation rate of drug ( 1
[time]

) 0.3 · 10−2

Table 2. Model parameters, descriptions and values chosen for simulations.

In other words, if cells divide too often (i.e. the interphase is too short), the tumor
size will explode because of the large number of mitotic cells. For µ1 < 2b1 and
τ > τ̂ there is no real characteristic root z ∈ R+.

5. Numerical simulations. In this Section numerical simulations of the models
in Section 2 and Section 4 are shown. The algorithm for solving systems of delay
differential equations is a continuous Runge-Kutta ([3]) based on an explicit method
for ODEs. Parameter values are mostly taken directly from [16, 26] or derived from
these works. An overview of the model parameters and their values is given in Table
2. In all our plots the time scale is shifted of τ , i.e. we move the starting point to
t = 0. This shifting is of course possible because of time-invariance in autonomous
systems ([24], Chap. 5).

5.1. Delay 2D model. Consider the simple delay model (42)-(43) with constant
delay τ > 0. In this Section we are particularly interested in showing the qualitative
behavior of the solutions, which validates the stability analysis of Section 4. We
set the parameter values as in Table 2 and change the value of b1 and τ to show
stability switches. Further we choose constant history functions U0(t) = 200 [cells],
V0(t) = 500 [cells] for t ∈ [−20, 0]. More realistic initial values are considered
in Section 6. With b1 = 0.25, µ1 = 0.28, µ0 = 0.11 a stability switch occurs at
τ = τ̂ ≈ 5.27 (Proposition 4): for τ = 5 the cancer-free equilibrium is unstable
(Figure 4(a)), whereas for τ = 6 it is stable (Figure 4(b)).
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(a) Instability of (0, 0) for τ = 5. (b) Stability of (0, 0) with τ = 6.

Figure 4. Stability switches due to the delay.

5.2. Delay 3D model. Consider the three-dimensional basic model (8)-(10). To
confirm the positivity conditions given in Proposition 1, we choose constant history
functions and compute the values of U(0), V (0) and Q(0) according to Section 3.
For Q(0) = 100 [cells] and U(0) = 200 [cells], the solution curve remains in the
positive cone (Figure 5).

Figure 5. Preservation of positivity.

6. Effects of periodic immunotherapy. In this Section we focus on cancer treat-
ments. In particular, we shall investigate the effects of immunotherapy which aims
to stimulate the immune system in order to better fight the tumor. More and more
immunotherapeutic treatments are preferred over chemotherapy, since the effectors
of the immune system are more specific than drugs in their actions: they target in-
deed cancer cells only and leave the vast majority of other healthy cells untouched
([6]).

As suggested in [10], a constant immunotherapy is not really applicable, but is
rather an idealization of a periodic treatment which can instead be easily carried
out. To simulate the effects of immunotherapy, we generalize the equation for I(t)
by introducing a function θ for the stimulation of the immune system over time:

İ(t) = θ(t) + ρI(t)
(Q(t) + U(t) + V (t))n

α+ (Q(t) + U(t) + V (t))n
− δ4I(t) (45)

− (c1Q(t) + c2U(t) + c3V (t))I(t).



DELAY EQUATIONS FOR PROLIFERATING TUMOR CELLS 253

We choose expressions for θ from those proposed in [9, 10, 11]:

• θ(t) = θ0(t) := k constant immunotherapy. Its effects have been investigated
in Section 4.

• θ(t) = θ1(t) := k(1 + cos( 2π
T t)), an idealized T -periodic therapy which is

reminiscent of periodic forcing.
• θ(t) = θ2(t) := k exp(− 1

γI
Mod(t, T )) is a more realistic T -periodic therapy:

here k is the delivered drugs concentration, γI the degradation rate of drugs
in the body and T the time between two consecutive deliveries. The term
Mod(t, T ) is the result of t mod T , i.e. Mod(t, T ) = t− T b tT c.

In the following, we simulate the administration of each one of these treatments on a
tumoral mass and assume that the patient undergoes immunotherapy from the very
beginning. Unless other specifications are made, we use the parameter values as in
Table 2 and choose history functions Q(t) = 2 · 105, U(t) = 1 · 105, V (t) = 4 · 105,
I(t) = 3 · 105, D(t) = 100, for t ∈ [−20, 0].

6.1. Constant treatment θ0(t). We start with the numerical investigation of the
effects of constant treatment θ(t) = θ0(t). If the time between one mitosis and the
next one is large enough and the division rate is small, then the tumor vanishes
independently of the delivered dose (cf. Section 4), see Figure 6. However, cancer

(a) Constant immunotherapy dose k = 2 · 106. (b) Constant immunotherapy dose k = 2 · 104.

Figure 6. Constant immunotherapy θ0: with large delay (τ = 10)
and small division rate (b1 = 0.12), the tumor vanishes indepen-
dently of the immunotherapy.

is due to the uncontrolled growth of cells, so a large division rate (b1 = 0.20) is
plausible. Further, we assume the interphase duration to be very short (τ = 2) and
we look at the effects of a constant immunotherapy. Increasing the dose can be a
winning strategy: the tumor vanishes when the immune system is highly stimulated
(Figure 7).

6.2. Periodic treatment. As a constant immunotherapy is not really possible
([10]), we shall include in the model the effects of an idealized periodic treatment
θ(t) = θ1(t) = k(1 + cos( 2π

T t)), where k is the mean value of θ over one period of
length T .

Assume cell division occurs at rate b1 = 0.27. When considering the simple
2D model (42)-(43) with the chosen parameter values there is a stability switch
at τ̂ ≈ 5.97: for τ < τ̂ the tumor-free stationary point is unstable. So we choose
τ = 5.5 and investigate the effects of therapies on the tumor. Assume a period
T = 20 for the treatment and choose k = 2 · 104 as the mean value for the therapy.
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(a) Constant immunotherapy dose k = 2 · 104. (b) Constant immunotherapy dose k = 2 · 106.

Figure 7. Constant immunotherapy θ0: short interphase duration
(τ = 2) and large division rate (b1 = 0.2) lead to tumor growth (left
panel). Immunotherapy helps in eradicating the tumor (right
panel).

This strategy is unfortunately not effective and the tumor escapes the immuno-
surveillance (Figure 8(a)). However, if we administer a larger dose, e.g. k = 2 · 106,
the tumor vanishes (Figure 8(b)). Tumor eradication is still possible when an in-
termediate drug concentration (k = 5 · 104) over a longer time period (T = 50) is
sustained (Figure 9). This would be a sort of “compromise” between the two strate-
gies: not too much medicament nor too often! Similar results hold for a T -periodic

(a) Periodic immunotherapy T = 20, k = 2·104. (b) Periodic immunotherapy T = 20, k = 2·106.

Figure 8. Effects of the periodic immunotherapy θ1(t).

treatment in the form θ(t) = θ2(t). This expression is more correct that the one
given by θ1(t), as it takes into account the degradation of drugs over time. Here, k
describes the immunotherapy dose at time t = nT , for n ∈ N0. Drug decay occurs
at constant rate 1

γI
(γI ≈ 0 corresponds to a very fast decay). For γI → ∞, θ2(t)

approaches a constant therapy. The mean value of θ is given by [θ] = kγI
1−e−T/γI

T
([11]).

From the medical point of view, varying the decay parameter γI might be difficult.
For the numerical simulation, we choose a fixed value γI = 20 in order to investigate
the effects of T and τ . As for the periodic therapy θ1(t), we choose b1 = 0.27 and
τ = 5.5. For T = 20 and k = 2 · 104 (Figure 10(a)) or k = 4 · 104 (Figure 10(b))
the tumor grows larger. By reducing the gap between two consequent deliveries or
giving a larger dose to the patient, tumor eradication would be possible, as in the
limit the constant therapy θ0 is approached (data not shown).
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Figure 9. Periodic immunotherapy θ1(t): an effective treatment
with a intermediate drug concentration (k = 5 · 104) over a period
T = 50.

But we would like to achieve a compromise, as in the case of the θ1-therapy. Indeed,
this is possible: e.g. a weekly (T = 7) dose of k = 4 ·104 [cells]/[time] is sufficient to
reduce the tumor size (Figure 11(a)). Similar results are also possible, when giving
to the patient a larger dose (k = 6 · 104) every 15 days (Figure 11(b)). The reader
will have noticed that in both cases we have not achieved complete eradication of
the tumoral mass, but only its reduction. This is often the aim of medical doctors,
if complete eradication of the tumor is not possible.

(a) Tumor growth for T = 20, k = 2 · 104. (b) Tumor growth for T = 20, k = 4 · 104.

Figure 10. Inefficacy of periodic therapy θ2 when the administra-
tion period is too large and the drugs concentration too low.

7. Discussion. Starting from a cell population structured by age, we have derived
a delay differential equations system for proliferating tumor cells (8)-(10). This
approach allowed us to simulate the effects of phase-specific drugs which target
cells in the mitotic phase. The basic model was further extended by including im-
munotherapeutic treatments (11)-(15). The result is an improvement of the models
in [26, 16], both from the mathematical and the biological point of view.
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(a) Tumor reduction for T = 7, k = 4 · 104. (b) Tumor reduction for T = 15, k = 6 · 104.

Figure 11. Periodic immunotherapy θ2(t): tumor size reduces by
weekly or biweekly administrations.

Although being an oversimplification of the real-life phenomenon, a constant
delay approach was our choice. Our aim was to give results for the dynamics of
a solid tumor cured with mitosis-specific drugs and immunotherapy. As it was
observed by Santiago et al. ([21]), the time between two consecutive mitoses (i.e.
the length of the interphase) is affected by medicaments: if the drug concentration
is high, tumor cells stay in the interphase longer. The next approach could be
the inclusion of a state-dependent delay τ(D) into the model, where D(t) is the
drug concentration at time t. Our results suggest that, if we manage to extend the
interphase duration to a certain time interval, the tumor can be defeated by drugs
only or with the parallel support of immunotherapy (Section 4, Section 6).

From the mathematical point of view, we gave new insights for the stability
analysis of a delay system for which the standard approach by Cooke ([7]) is not
suitable (Section 4.2). Our results were inspired by [15]. Further, we gave conditions
on the initial data for the positivity of solutions of the delay system (Section 3).
Choosing the initial data from a proper set, solutions will not leave the positive
cone. This is an important result, as in DDE systems the nonnegativity of solutions
is not automatically given by nonnegative initial data ([24]).

For the moment we have focused on the qualitative dynamics of the system. As
next, we would compare our simulations to medical data and estimate the param-
eters from the latter. This would allow for a better definition of criteria for tumor
reduction or, in the best case, eradication.
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